Multiple Imputation in Stata — \texttt{mi} and \texttt{ice} commands

Henrik Støvring
(stovring@biostat.au.dk)

Department of Biostatistics

\textbf{SCHOOL OF PUBLIC HEALTH}
\textbf{FACULTY OF HEALTH SCIENCES}
\textbf{AARHUS UNIVERSITY}

November 19, 2010
Outline

Background and terminology

Generating imputed datasets

Brief list of introductory references
Background and setting

- Assume we “know” that
 - Data belongs to MAR category
 - More than one variable has missings
 - Missing data pattern is not monotone

- What is needed in order to proceed?
 - Prediction model for missing values
 - Tool to impute the missing values
 - Tool to combine estimates from analysis of each imputed dataset into an overall estimate
Terminology

Dataset zero: The original dataset with missing values

Imputed dataset: A copy of the original dataset with all missing values replaced with imputed values \((j = 1, \ldots, m)\)

Imputed values: (Randomly generated) values substituted for unobserved values

Multiple imputation analysis: The ordinary analysis on each imputed dataset AND combination of estimates into a single estimate

Iteration: Do a procedure (compute some numbers), update starting values with the result (the computed numbers), and repeat the procedure

Passive variable: A variable that depends on an imputed variable
Obtaining and installing

- Obtained in Stata with the commands

 . search ice
 . net sj 9-3 st0067_4

 and then click “(click here to install)"

- Background information in

 - help-file and references therein
 - Royston (2009)
Rationale

- **M** ultiple (Imputation)
 - Iterated: Repeat to achieve stability...
- **C** hained: In a specific order, one by one...
- **E** quations: Based on a set of regression equations

- Consists of two “steps”
 1. Estimate relationships between each variable to be imputed and predictive variables (covariates)
 2. Impute values from fitted model
Initial observations regarding \texttt{-ice-}

- Variables take turn in being predictor and predicted ("outcome"/ to be imputed)
- Variables to be imputed can be predicted from variables without missing values
- Allows regression types for categorical data
 - Logistic
 - Multinomial/Ordered logistic
- Allows imputation of interval censored data

\textbf{H Støvring} \quad \textbf{Stata, MI, and ICE}
Major options

- **m()**: Number of imputed datasets
- **eq()**: Equations used to predict from
- **cmd()**: Regression type used to model “dependent” variable
- **by()**: Impute separately for subsets of dataset
- **cycles()**: Number of cycles used to obtain estimated regression coefficients used in subsequent prediction/imputation
Useful options

- **dryrun** Checks syntax and equations for consistency, but doesn’t do any actual imputations
- **saving()** Save imputed dataset to named file
- **seed()** Fix random origin, i.e. make process reproducible
Other options

- Countless:
 - clear
 - match()
 - passive()
 - boot()

- **WARNING:** Package is often updated AND options sometimes changes definition!
Imputing values: running \texttt{–ice–}

- Two types of approaches (at least!):
 1. “Black box” — minimal specification, maximal complexity:
 \[
 \begin{align*}
 \text{. ice total	extunderscore noncompl health incmean edulvl sex, m(10) clear}
 \end{align*}
 \]
 where \texttt{sex} is a binary indicator for gender
 2. “Dedicated” — detailed specification, transparent modeling
 \[
 \begin{align*}
 \text{. ice total	extunderscore noncompl health logincmean edulvl sex, ///}
 \text{~ m(10) clear ///}
 \text{~ eq(logincmean: total	extunderscore noncomp edulvl sex, ///}
 \text{~ total	extunderscore nomcomp: incmean edulvl sex) ///}
 \text{~ passive(incmean:exp(logincmean))}
 \end{align*}
 \]
 [etc....]
Advice and cautions

- Always include outcome in predictions of covariates
- Always check the reported equations used by \texttt{ice-}
- Always check that imputed values are sensible
 (Barnard and Meng (1999), Meng (1994))
- When you estimate many parameters, m should be large
- Build from simple to complex:
 Try it out in a simple setting which you understand!
What you get from `-ice-`

- Output report on how it all went
- A dataset consisting of
 - $m + 1$ sub-datasets: The original plus m imputed datasets
 - Two new variables:
 - `_mi_`: Record identifier across all imputed datasets, $i = 1, \ldots, n$
 - `_mj_`: Identifier of imputed dataset, $j = 1, \ldots, m$
Importing data into \texttt{mi} command family

- Stata has its own suite of commands for multiple imputation analysis: \texttt{mi}
- Requires
 - Specific organization of datasets
 - Specific naming of variables \texttt{_mi_id} different from those of \texttt{_ice_id}
 - Registration of relation between variables
- Obtained with
 - \texttt{mi import ice, clear auto}
- Creates variables: \texttt{_mi_m, _mi_id, _mi_miss}
Formats for multiply imputed datasets

- Stata has four different types of formats:
 - **wide**: Adds new variables with imputed values
 - **mlong**: Adds a new record for each missing value per imputed dataset
 - **flong**: Adds a full dataset per imputed dataset
 - **flongsep**: Stores each of the imputed dataset in separate files

- Two first are efficient, computationally and storagewise
- Latter two are transparent
-mi estimate-

- General syntax is similar to `-bysort variable : -`:

 . mi estimate, post: regress outcome covar1 covar2

 . mi estimate, or post: logit binoutcome covar1 covar2

- Runs regression on each imputed dataset and combines results using Rubin’s rule

- Leaves behind results that allows use of `-mi test-

- This part is the easiest!
Interactions

- Consider ESS data
- Suppose we are interested in
 - **Outcome**: Health (binary)
 - **Covariates**: Age (3 categories), Income (4 categories) and their interaction
- Should interaction term be included in imputations?
- Yes!
Not including interactions in imputations?

- Consider all subjects with missing health
- If we impute health based on Age and Income alone:
 1. In imputed subjects, the interaction is non-existing in any subsequent analysis
 2. For the entire dataset, the interaction effect (if truly present) becomes diluted
- Same reasoning basically if for example Income category is missing:
 If interaction effect is truly present, then this should be allowed for in imputations of Income
- Remember to use `passive` option of `ice` command!

PMID: 16980149.

Can differences in medical drug compliance between European countries be explained by social factors: analyses based on data from the European Social Survey, round 2.

BMC Public Health 9, 145.

Statistical Analysis with Missing Data.
New York: Wiley.

Multiple-Imputation inferences with uncongenial sources of input.
Missing data: dial M for ???
J. Amer. Statist. Assoc. 95(452), 1325–1330.

Can one assess whether missing data are missing at random in medical studies?
PMID: 16768297.

Multiple imputation of missing values: Further update of ice, with an emphasis on categorical variables.
Stata Journal 9(3), 466–477(12).
Inference and missing data.
Biometrika 63, 581–92.

Multiple imputation for nonresponse in surveys.
Wiley Series in Probability and Mathematical Statistics:

Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls.
BMJ 338, b2393.
Thank you for your attention!

Slides prepared with \LaTeX and Beamer