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A SIMPLE APPROACH TO POWER AND SAMPLE SIZE CALCULATIONS IN 

LOGISTIC REGRESSION AND COX REGRESSION MODELS 

 

SUMMARY 

For a given regression problem it is possible to identify a suitably defined equivalent two-

sample problem such that the power or sample size obtained for the two-sample problem also 

apply to the regression problem. For a standard linear regression model the equivalent two-

sample problem is easily identified, but for generalised linear models and for Cox regression 

models the situation is more complicated. An approximately equivalent two-sample problem 

may, however, also be identified here. In particular, we show that for logistic regression and 

Cox regression models the equivalent two-sample problem is obtained by selecting two 

equally sized samples for which the parameters differ by a value equal to the slope times 

twice the standard deviation of the independent variable and further requiring that the overall 

expected number of events is unchanged. In a simulation study we examine the validity of 

this approach to power calculations in logistic regression and Cox regression models. Several 

different covariate distributions are considered for selected values of the overall response 

probability and a range of alternatives. For the Cox regression model we consider both 

constant and non-constant hazard rates. The results show that in general the approach is 

remarkably accurate even in relatively small samples. Some discrepancies are, however, 

found in small samples with few events and a highly skewed covariate distribution. 

Comparison with results based on alternative methods for logistic regression models with a 

single continuous covariate indicates that the proposed method is at least as good as its 

competitors. The method is easy to implement and therefore provides a simple way to extend 

the range of problems that can be covered by the usual formulas for power and sample size 

determination. 
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INTRODUCTION 

Standard software for power and sample size calculations usually covers one- and two-sample 

problems, but less frequently offers calculations for regression problems and then typically 

only for standard linear regression. For a given regression problem it is, however, possible to 

identify a suitably defined equivalent two-sample problem for which simple formulas for 

power and sample size are available or for which standard software can provide the answer. 

The sample size or power thus obtained will then apply also to the regression problem. For a 

standard linear regression model this equivalence is particularly simple and the calculation 

will be identical to the one obtained if the correct formula was implemented. For generalised 

linear models, including logistic regression, and for proportional hazards regression further 

approximations are needed in order to obtain a simple solution. To assess the validity of these 

approximations for small to moderate sample sizes a simulation study must be undertaken. In 

this article we outline the approach and report the main results from a comprehensive 

simulation study of its performance when applied to logistic regression and proportional 

hazards regression. In the final section we compare our results with those of previously 

published approaches and briefly discuss extensions to regression models with several 

covariates. 

 

THE BASIC IDEA 

The basic idea is most easily explained in a normal linear regression setting since no 

approximations are involved here. Consider a continuous response y and a covariate x 

satisfying a standard linear regression y a bx e= + +  for which the error, e, has a normal 

distribution with mean 0 and standard deviation σ . Usually we want to determine a sample 

size such that a test of the hypothesis of no association, i.e. that the slope b is 0, has a 

specified power for an alternative value of the slope representing an important association not 



 4 

to be overlooked. To accomplish this we must specify a level of significance α , the power 

1 β−  of the test for an alternative Ab , a value σ  for the standard deviation of the random 

variation about the regression line, and the expected variation of the covariate x in the sample 

measured by the sum of squared deviations XSSD . In the design situation the extra variability 

introduced by estimating the variance is usually ignored and the test statistic then becomes 

2

ˆ
ˆ

ˆ. .( )
XSSDb

b
s e b σ

= , 

where b̂  is the usual least squares estimate of the slope. On the hypothesis of no association 

the test statistic is a standard normal deviate. If the slope is Ab  the test statistic follows a 

normal distribution with variance 1 and mean 

 
2
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b N b
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where Xs  is the empirical standard deviation of the covariate x. To derive the appropriate 

sample size the null distribution of the test statistic is used to identify an α -level rejection 

region, and the sample size is then found as the smallest N for which the non-null probability 

of a value in the rejection region is larger than 1 β− . Alternatively the sample size may be 

fixed and the power of the test for a specified alternative can be obtained. 

Now consider a two-sample problem for which the response in the two groups, group 1 

and group 2 say, is assumed to follow normal distributions with a common standard deviation 

ω  and means µ  andµ δ+ , respectively. Samples of size m and n are to be drawn from the 

two groups. Let N m n= +  denote the total sample size and let 1 m Nπ =  and 2 11π π= −  

denote the sample fractions. To determine the appropriate size of a study for comparison of 

the two groups, i.e. to test the hypothesis 0δ = , we must specify a level of significance α , 

the power 1 β−  of the test for a value Aδ  representing the expected difference, a value ω  for 
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the standard deviation, and the fraction 1π  of the total sample coming from group 1. The 

sample size calculation is based on the test statistic 

2 1

1 1

y y

n m
ω

−

+
, 

where 1 2 and  y y  are the sample averages. On the hypothesis of no difference the test statistic 

is a standard normal deviate. If the difference is Aδ  the statistic follows a normal distribution 

with standard deviation 1 and mean 

 1 1(1 )

1 1
A

AN

m n

π πδ δ
ω
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−
=

+
, (2) 

To derive the appropriate sample size the null distribution of the test statistic is used to 

identify an α -level rejection region, and the sample size is then found as the smallest N for 

which the non-null probability of a value in the rejection region is larger than 1 β− . Almost 

all computer programs for sample size determinations will do this calculation. Comparing 

formula (1) and (2) the following approach to sample size calculations for the regression 

problem suggests itself. Select 1,π ω  and Aδ  such that  

1 1(1 )
X

A A

s
b

π π
δ

σ ω
−

= . 

The sample size derived for the two-sample problem will then also apply to the regression 

problem, since the non-null distributions then become identical. A simple choice would be to 

let 1 0.5π = , ω σ=  and 2A X As bδ = , i.e. to derive the sample size for the regression problem 

consider a two-sample problem with equal sample sizes, a standard deviation ω  equal to the 

root mean square error σ , the value of the difference on the alternative hypothesis equal to 

2A X As bδ = , and then compute the total sample size for this two-sample problem. 
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LOGISTIC REGRESSION 

The sample size result for the linear regression problem is in principle exact since the 

standard deviation is assumed known. Moreover, the solution obtained by identifying a two-

sample problem with the same non-centrality parameter is simple and easy to apply in 

practice. For other regression models the properties of statistical tests are usually derived 

from asymptotic theory. Unfortunately, the asymptotic results will often be complicated, since 

the variance is typically a function of the parameters specifying the mean. Further 

approximations are therefore needed in order to obtain a sufficiently simple approach to 

sample size calculations. We here consider a logistic regression model, but similar results 

may easily be derived for other generalised linear models.  

In a logistic regression model the association between a binary response y and a continuous 

covariate x is modelled by the relation 

( )ln (1 )p p a bx− = + , 

where ( ) ( 1; )p p x P y x= = =  is the probability of a positive response. To test the hypothesis 

of no association one of several asymptotically equivalent large-sample tests may be used. For 

the developments here it is convenient to consider Wald’s test statistic, which relies on the 

asymptotic normality of the maximum likelihood estimate. The test statistic is simply  

ˆ

ˆ. .( )

b

s e b
 

A straightforward, but tedious, calculation shows that 

( ){ }22
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, 



 7 

where ip  is the estimated probability of a positive response for observation i and the weights 

iw  are given by 

(1 )

(1 )
i i

i
j j

p p
w

p p

−
=

−∑ . 

Note that on the hypothesis of no association these weights are all equal and the term in 

brackets becomes XSSD . If the slope is Ab  Wald’s test statistic is asymptotically normal with 

variance 1 and mean 

( )22 (1 )
ˆ. .( )

A
i i i i i i A

b
N w x w x p p N b

s e b
= − −∑ ∑ ∑ . (3) 

For values of Ab  close to 0 the mean is thus approximately equal to  

(1 ) ,X AN s p p b−% %  (4) 

where Xs  is the empirical standard deviation of the covariate x and p%  is a typical response 

probability, e.g. the average value or the value for x equal to the average value of the 

covariate. In the simulation study described below the latter value was used. 

The results for the two-sample problem can be obtained from those above by letting the 

covariate x take one value for m of the observation and another value for the remaining 

n N m= −  observations. Let 1p  and 2p  denote the response probabilities for the two groups 

and ( ){ }2 1 1 2ln (1 ) (1 )A p p p pδ = − − , then the asymptotic mean of Wald’s test statistic 

becomes 

 
1

1 1 1 2 2 2

1 1

(1 ) (1 ) AN
p p p p

δ
π π

− 
+ − − 

. (5) 

For values of Aδ  close to 0 the mean is approximately equal to 

 1 1(1 ) (1 ) AN p pπ π δ− − , (6) 
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where p  is the average of the response probabilities.  

A comparison of formula (4) and (6) suggests that a two-sample problem approximately 

equivalent to the regression problem is defined by p p= % , 1 0.5π =  and 2A X As bδ = . The 

sample size computed for the equivalent two sample problem will then also apply for the 

regression problem. 

 

COX REGRESSION 

For the two sample problem with censored survival data Schoenfeld1,2 obtained a simple 

formula for sample size determination under a proportional hazards model. His result 

coincides with the one based on an exponential survival time distribution. To implement the 

basic approach developed above for Cox regression models we therefore consider an 

exponential regression model in which the hazard rate λ  depends on the covariate x as 

( ) ( )ln ln ( )x a bxλ λ= = + , 

To test the hypothesis of no association we again consider Wald’s test statistic. Note that this 

is not the test statistic used when the data is analyzed by Cox regression, but in view of 

Schoenfeld’s result we would expect a sample size or power calculation derived from the 

exponential model to apply also for the Cox regression model. The distribution of Wald’s test 

is asymptotically normal with variance 1 and mean equal to 

( )
( )

22

1ˆ. .( )

i i i iA
A

i

w x w xb
N b

s e b P N
−

−
=
∑ ∑
∑
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Here iP  is the response probability, i.e. the probability of an event, for the i’ th individual and 

the weights iw  are given by 

i
i

j

P
w

P
= ∑ . 
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These probabilities depend in general on the underlying survival distribution and on length of 

accrual and follow-up. For values of Ab  close to 0 the mean is approximately equal to  

,X AN s P b%  (8) 

where P%  denotes the average response probability. 

The two-sample problem can again be viewed as a special case of the regression problem. 

Let 1λ  and 2λ  denote the hazard rates for the two groups and introduce the log-hazard ratio 

{ }2 1lnAδ λ λ=  , then the asymptotic mean of Wald’s test statistic becomes 

 
1

1 1 2 2

1 1
AN

P P
δ

π π

− 
+  

, (9) 

where 0π  and 1π , as before, denote the sample fractions and 1P  and 2P  are the response 

probabilities in the two groups. For values of Aδ  close to 0 the asymptotic mean is 

approximately equal to 

 1 1(1 ) AN Pπ π δ− , (10) 

where P  is the average response probability. 

An equivalent two-sample problem is therefore obtained by choosing P P= % , 1 0.5π =  and 

2A X As bδ = . A sample size computed for this two-sample problem would be approximately 

correct for the exponential regression problem and consequently also for the Cox regression 

problem.  

 

SIMULATIONS 

The theoretical results suggest that sample size and power calculations for logistic regression 

and Cox regression models with a single continuous covariate can be obtained directly from 

the analogous calculations for a two-sample problem with equally sized samples for which 
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the parameters differ by the slope times twice the standard deviation of the independent 

variable and with the further requirement that the overall expected number of events is the 

same as in the regression sample. 

In a simulation study we examined the validity of this approach to power calculations 

using Stata3 both for data generation and analysis. For each regression model a number of 

scenarios was considered. In each scenario we specified a set of values of the covariate, an 

overall response probability, and for the simulations of survival data also an underlying 

survival time distribution and a censoring scheme. In a given scenario data sets were 

generated for 9 to 14 different values of the slope Ab . We considered samples of size 100, 

200 and 500 and the proportion of rejections in 10,000 simulated replications was used to 

estimate the power of Wald’s test of the hypothesis of no association. A rejection occurred if  

ˆ| |
1.96

ˆ. .( )

b

s e b
> , 

where b is the estimate obtained from the logistic regression or the Cox regression analysis. 

Without loss of generality covariate values were generated as a sample from a distribution 

standardized to have mean zero and variance 1. The following covariate distributions were 

used: normal, uniform, double exponential, and gamma with shape parameter 3. We also 

simulated the two-sample problem to check that the standard formulas were appropriate. 

Since the covariate had mean zero the overall response probability could be determined from 

the constant term a in the regression model. For logistic regression we used the values -1.5, 

-1, -0.5, 0, 0.5, 1, 1.5 for a giving, respectively, a response probability of 0.18, 0.27, 0.38, 

0.50, 0.62, 0.73, and 0.82 for 0x = . 

The survival data were generated as censored survival times from an exponential 

distribution or from Weibull distributions with shape parameter 0.2, 0.5, 2, or 5. For the 

exponential distribution the values -1, 0, and 1 were used as the constant term a in the 
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regression. For the Weibull simulations these values were modified such that the overall 

response probability was approximately unchanged. To mimic a clinical trial censoring 

schemes were selected to reflect a uniform patient arrival in an accrual period of length A 

with an additional follow-up interval of length1 A− , see e.g. Schoenfeld & Ritcher1 for use of 

similar censoring schemes. Three values of A, 0.2, 0.5 and 0.8, were used. The overall 

proportion of responses, i.e. one minus the proportion of censored values, is a complex 

function of the parameters defining the scenario, but is in most cases essentially equal to the 

response probability at the average value of the covariate. In the survival data scenarios the 

response probability for 0x =  varied from 0.20 to 0.91.  

The simulated power was compared with the power of the equivalent two-sample test.  

For the logistic regression model this is just a test of no association in a 2×2 table and we 

used the standard formula for the power of this test, see e.g. Machin & Campbell4, with 

response probabilities 1p  and 2p  selected such that ( )1 1ln (1 ) X Ap p a s b− = −  and 

( )2 2ln (1 ) X Ap p a s b− = + . For a we used the value chosen for the simulation. In real-life 

applications this option is obviously not available, but we wanted the comparison to focus on 

the validity of the approximation and not on the effect of misspecification of the parameters. 

For Cox regression the simulated power was compared to the formula for the power derived 

by Schoenfeld2 for the two-sample problem with the logarithm of the hazard ratio given as 

2 X As b  and the expected proportion of events equal to the probability of response for the 

average value of the covariate computed for the parameters specified in the simulation 

scenario. Again, this option would not be available in practice; indeed the choice of an 

appropriate value for the expected proportion of events is a major problem in applications and 

is discussed extensively by several authors2,5,6,7.  
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Since the covariates were generated as pseudo-random numbers from a distribution the 

simulations also allowed us to assess the impact of sampling variation in the covariates. The 

simulated power could be compared both to the two-sample formula based on the population 

values of the mean and variance of the covariate (0 and 1, respectively) and the formula based 

on the mean and variance in the sample, which may differ slightly from their population 

values. A comparison with the latter curve focuses on the quality of the approximation while 

deviations from the former curve also include sampling variation in the covariate. 

 

RESULTS 

The full set of simulation results are found in an appendix, which can be downloaded from 

http://www.biostat.au.dk/~vaeth. Here we show results from some representative scenarios 

and describe the general aspects of the remaining results.  
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Figure 1. Simulated and estimated power of Wald’s test in a logistic regression model with a covariate sampled 
from a standard normal distribution. Sample sizes are 100, 200 and 500. In panel A p(0) is 0.18 and in panel B 
p(0) is 0.38. Solid curves show estimated power using the sample mean and standard deviation of the covariate. 
Dotted curves show estimated power using the corresponding population values. 
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Figure 1 includes the results for a normal covariate with response probabilities of 18% (left 

panel) and 38% (right panel). Negative values of the slope Ab  are not considered, since the 

symmetry of the standard normal distribution ensures that the power depends only on the 

absolute value of the slope. Moreover, when the covariate distribution is symmetric results 

from a scenario with response probability p also apply to a scenario with response probability 

1 p− .  
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Figure 2. Simulated and estimated power of Wald’s test in a logistic regression model with a covariate sampled 
from a standardized gamma distribution with shape parameter 3. Sample sizes are 100, 200 and 500. In panel A 
p(0) is 0.18 and in panel B p(0) is 0.38. Solid curves show estimated power using the sample mean and standard 
deviation of the covariate. Dotted curves show estimated power using the corresponding population values. 
 

The results in Figure 1 shows in general an excellent agreement between the simulations and 

the calculations based on the empirical moments, but a slight underestimation of the power is 
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found for the lowest response probability when the sample size is only 100. Results from 

simulations with uniform or double exponential covariates were almost identical to those with 

a normal covariate suggesting that the approach works fine for symmetrical covariate 

distributions unless the sample size is small and the response probability is close to 0 or 1. 

Figure 2 shows the results from the same scenarios but with a covariate taken as a sample 

from a standardized gamma distribution with three degrees of freedom. By changing the sign 

of the slope results from a scenario with response probability p apply to a scenario with 

response probability 1 p− . Especially in the upper panel the agreement is less satisfactory 

unless the sample size is large. The calculations overestimate the power for negative values of 

the slope and, to a somewhat lesser degree, underestimate the power for positive values of the 

slope. In the lower panel the deviations are much less pronounced and the agreement seems 

satisfactory for sample size equal to 200 and 500. The gamma distribution was chosen to 

represent a distribution with considerable skewness to the right. For distributions with a long 

left tail the deviations are reversed, i.e. underestimation of the power for negative values and 

overestimation for positive values. 

 
Figures 3 and 4 show selected scenarios from simulations with Cox regression models. 

The overall impression is very similar to the one for the logistic regression: For a symmetric 

covariate distribution the agreement is fine unless the expected number of events is small, i.e. 

small sample size and/or heavy censoring and for a gamma distributed covariate the 

deviations are in the same direction as for logistic regression. The disagreement is largest for 

heavy censoring and gradually disappears with increasing sample size.  
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Figure 3. Simulated and estimated power of Wald’s test in a Cox regression model with a covariate sampled 
from a standard normal distribution. Sample sizes are 100, 200 and 500. The proportion of censored values is 
81% in panel A, 48% in panel B, and 9% in panel C. Solid curves show estimated power using the sample mean 
and standard deviation of the covariate. Dotted curve shows estimated power using the corresponding population 
values. 
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Figure 4. Simulated and estimated power of Wald’s test in a Cox regression model with a covariate sampled 
from a standardized gamma distribution with shape parameter 3. Sample sizes are 100, 200 and 500. The 
proportion of censored values is 81% in panel A and 48% in panel B. Solid curves show estimated power using 
the sample mean and standard deviation of the covariate. Dotted curve shows estimated power using the 
corresponding population values. 
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The simulations with Weibull survival times were essentially identical to the one for 

exponential distributions with approximately the same probability of an event. This was to be 

expected as the asymptotic properties of the test statistic are a function of the number of 

events only2.  

The calculations based on the population values are also shown in Figures 1 to 4. 

Especially for small sample sizes the simulations agree less well with these curves indicating 

that sample size calculation is sensitive to random variation in the value of the standard 

deviation of the covariate. Although the correct population value is used in the calculation the 

actual power may differ as it depends on the covariate values in the sample.  

Recent versions of a few statistical software packages8,9 for sample size and power 

calculations include modules for logistic regression with a normal covariate implementing 

some of the alternative methods that have been developed during the last 15 years10,11,12,13. 

For selected scenarios with a standard normal covariate we compared the power reported by 

nQuery8 and Power & Precision9 with those based on the equivalent two-sample test and the 

simulated power. The procedure ROT0 used in nQuery’s menu ‘ logistic regression with one 

covariate’  uses the method developed by Hsieh11. The manual also explains how to 

implement the more accurate approach of Hsieh et al.13 using the menu for unpaired t-test, 

MTT0U. The results shown in Figure 5 suggest that the present approach is at least as good as 

its competitors. It is well-known8,13 that the approach used in nQuery’s ROT0 procedure 

underestimates the power especially for distant alternatives. The results from Power & 

Precision show better agreement with the simulated results, but some underestimation is seen 

when the power is larger than 0.5. Our method essentially gives the same results as those 

based on Hsieh et al.13 and in general these approaches are the most accurate. 
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Figure 5. Simulated power, power estimated by nQuery, Power and Precision, and the proposed procedure for 
logistic regression with a covariate sampled from a standard normal distribution. Sample sizes are 100 and 200. 
In panel A p(0) is 0.18 an in panel B p(0) is 0.38. The sample mean and standard deviation are used for all 
estimated power curves. 
 
 

DISCUSSION 

The simulations indicate that a sample size derived from an equivalent two sample test 

provides a useful estimate of the sample size required for the regression problem for covariate 

distributions with at most a moderate skewness. For covariates with highly skewed 

distributions the results are less reliable, but such covariates would in practice often be 

transformed before they are entered into the regression model. Results for small sample sizes 

are also less accurate, but this is probably a general characteristic of calculations based on 

asymptotic theory.  

We are not aware of any alternative method for easy sample size calculations in a Cox 

regression model with a continuous covariate, but for logistic regression Hsieh et al.13 have 

described a relatively simple approach to sample size and power calculations based on a 

comparison of the covariate distributions in the two response categories. The present 

approach is different since the equivalent two-sample problem can be applied both to logistic 
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regression and Cox regression models and may in fact be extended to any response model 

forming a generalised linear model.  

Approaches to sample size or power calculations for logistic regression and Cox regression 

models with more than one independent variable are also needed. In special cases, e.g. the 

comparison of two slopes, it seems likely that an approach based on an equivalent two-sample 

test is feasible, but in general other solutions are required. For models with several covariates 

Hsieh et al.13 recommends that the result of the univariate sample size calculation is modified 

by a so-called variance inflation factor such that 

( )2
1 1mN N ρ= − , 

where 1N  and mN  are the required sample sizes with 1 and m covariates, respectively, and ρ  

is the multiple correlation coefficient between the covariate of interest and the remaining 

1m −  covariates. We have evaluated this approach, which was originally introduced by 

Whittemore14, in a small simulation study of a logistic regression with two covariates taken as 

a sample from a two-dimensional normal distribution. The results suggest that this provides a 

simple and reasonably accurate method to expand the present approach to more complex 

problems. 
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