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STATISTICAL ANALYSIS OF SURVIVAL DATA
IN CLINICAL RESEARCH 1

In this course: Presentation of statistical methods to
describe mortality and prognosis of patients suffering a
particular disease in a given period of time.

Also some discussion of related methods used in
epidemiological studies.

Basic problem:
The study of occurrence of health-related event in time.
Events are experienced by (independent) individuals.

Standard setting: At most one event per individual.

Some examples:
Chronic disease incidence
Mortality
Also:
Product reliability
Life insurance
Duration of unemployment

More generally: Several types of events
Example: Cause-specific mortality

More generally: Several events per individual
Example: Recurrent diseases
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SURVIVAL DATA

Two aspects: A waiting time
Occurrence of an event

A continuous and a discrete part.
Choice of time scale:
A waiting time, but what is the appropriate starting
point?
e Time since entry
e Birth, i.e. time = age
e Time since diagnosis
or something else?
Describing occurrence in time of a health-related
event:
How do we quantify
Prognosis,
Risk,
Chance ?

Probabilities are an obvious choice, but not the only
possibility.

Compare: Is it dangerous to travel by airplane ?
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DATA: For each individual in the study:

A waiting time (event occurred) or an incomplete
waiting time (no event occurred).

i.e. each individual contributes:

(t,d)= (period of observation, status at the end of

the period)

Status:

d=1 The period of observation is terminated by
the occurrence of the event

ad=0 The event has not (yet) occurred at the
end of the period of observation.

(Right) censoring:

Incomplete information: For some patients the exact
value of the waiting time is not observed, but it is known
that the waiting time exceeds a specified value.

Additional feature, which complicates the data
analysis:

In most studies the potential follow-up time (= time
from entry date until closing date) will vary among
patients included in the study.

Consequences of right censoring and varying follow-
up times: Standard statistical methodology can not
be applied directly. Modifications, or generalizations
are necessary.
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DESCRIBING THE PROGNOSIS, HOW ?

Survival function = Survivorship function
= Survival curve

S(t) = The probability of being alive (event-free) at time
after entry

" S

Time t

If all patients are followed until death, i.e. data with no
censored observations:

The survival function is estimated by

number of patients alive at time ¢
number of patients alive at time 0

Presence of censored observations: The simple
proportion is no longer appropriate. Instead, the survival
function is estimated by

The life table method
or
Kaplan-Meier's method
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ALTERNATIVE DESCRIPTION OF
MORTALITY/SURVIVAL
In Demography and Insurance Mathematics :

Mortality rate = Death intensity = Force of Mortality =
Hazards rate

Notation: several versions in common use

The mortality rate describes the instantaneous risk
of dying.
More formally

m(t)-At= The probability of dying before time f+ At
if alive at time t (Atsmall)

The mortality rate gives the relative rate of change of the
survival function
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Estimating the mortality rate:

Divide the follow-up period up in small intervals:

Time Closing
=0 Date

For each small time interval compute:

Number of deaths in the interval
Total time at risk in the interval

The ratio

Death  Number of deaths in the interval
Risk time Total time lived in the interval

is an estimate of the mortality rate at this point in time

Note:

S(t) A probability, i.e. 0<S(h) <1
No dimension

m(t)=A(t) Arate,i.e. 0<m(t)

Dimension = per time unit
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Relations between the theoretical functions

S(t) = Survival function

At) = Mortality rate, Death intensity

A(t) = h A(s)ds = Integrated mortality rate or
integrated hazard

S(t) = exp(~A(t)) = 967 [! \:mv%v

A(t) =-In(S(t))

(S(t)—S(t+dt))/dt

At) = S0

The mortality rate is the relative rate of change of the
survival probability or the relative rate of change in the
number of survivors.
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ESTIMATION OF THE SURVIVAL FUNCTION A simple example
WITH CENSORED DATA

Data:

Standard survival analysis: Survival time in days measured from time of entry

event = death from all causes (Censored observations marked by +)

. 55 61+ 74 81 93+ 122+
For each individual 138 151 168 202+ 220+ 238
Does he/she experience the event ?

If yes When ? Sample size=n=12

If no Event-free for how long ?

Basic data summaries: : _ : _

Number at risk Y(t) Number of events N(t)

Y(t)= Number of patients alive and not censored just
before time t = Number at risk at time t. 10

N(t)= Number of patients with survival times less

than or equal to t = Number of deaths up to and
including time t.

Y(0)=n and  N(0)=0

If data contain no censored observations then 0 100 200 0 100 da?
days ays
Y(t)= n-empirical survival function
N(t)= n-empirical distribution function

With censored data these relations are no longer true.
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KAPLAN-MEIER'S METHOD

The calculations involves the following steps:

1) The observations are sorted in ascending order.
Convention for ties: Uncensored observations are
placed before the censored observations.

In the example

Time At Risk
55 12
61+ 11
74 10
81 9
93+ 8
122+ 7
138 6
151 5
168 4
202+ 3
220+ 2
238 1

2) For each time of death t, compute Y, = Y(¢,) and
then
Q\.HA\K D.H,_IQ\.H,_I._\K.

3) Kaplan-Meier's estimate (also denote the product-
limit estimate)

S(t) =the products of the p,'s from death times <t

11
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The example:

. 11
§655= 1
9= 13
. 11
g7ay= 1
(74) 12
. 11
&en= 1
@)= 13
$rsgy=1

12
. 11
&5 =
( ) 12
Sreg)=1

12
$(e38) =11

12

April 26 2004
Michael Veth

=0.917

=0.825

=0.733

=0.611

=0.489

=0.367

=0.000
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KAPLAN-MEIER'S ESTIMATE
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USING STATA FOR THE ANALYSIS

Data: A sample of size n. The number of observed
deaths d (d< n). In the example n=12and d=7.

Ordered survival times (uncensored observations).

L<t,<---<t,

Kaplan-Meier's estimate:

0Ty

A product: Each time of death t, <t contributes a factor
to this product.

The formula above assumes that all death times are
distinct (no ties among uncensored observations).

If ties are present in the data:

So=T1[ 54

where m, =number of deaths at time ¢,

If censored and uncensored observations are tied:
Deaths occur before censoring

No om:moﬁa observations:
S(t) =1—empirical distribution function

13

1) Enter the data in Stata’s spreadsheet (convenient
only for small data sets) and name the variables, e.g.
time and status
time status
55
61
74
81
93
122
138
151
168
202
220
238

PO e o QIS G G Y o, R J QU G o Y

2) Define the data to be survival time data
a) Onthe command line write

stset time , failure(status==1)
or use the mouse

b) Statistics - Survival analysis — Setup & Ultilities
- Declare data to be survival time data
Specify Time variable (time), Failure variable
(status) and failure value (1) in the menu.
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3) To get a Kaplan-Meier estimate as tabular output
write on the command line

sts list
or use the mouse: Statistics - Survival analysis —

Summary statistics, tests & tables — List survivor and
cumulative hazard function and fill out the menu.

OUTPUT

stset time , failure(status==1)

failure event: status ==
obs. time interval: (0, time]
exit on or before: failure

12 total obs.

0 exclusions

12 obs. remaining, representing

7 failures in single record/single failure data

1603 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 238

sts list

failure _d: status ==
analysis time _t: time

Beg. Net survivor std.
Time Total Fail Lost Function Error [95% C.I.]
55 12 1 0 0.9167 0.0798 0.5390 0.9878
61 11 0 1 0.9167 0.0798 0.5390 0.9878
74 10 1 0 0.8250 0.1128 0.4609 0.9533
81 9 1 0 0.7333 0.1324 0.3790 0.9056
93 8 0 1 0.7333 0.1324 0.3790 0.9056
122 7 0 1 0.7333 0.1324 0.3790 0.9056
138 6 1 0 0.6111 0.1569 0.2546 0.8375
151 5 1 0 0.4889 0.1664 0.1623 0.7545
168 4 1 0 0.3667 0.1637 0.0908 0.6574
202 3 0 1 0.3667 0.1637 0.0908 0.6574
220 2 0 1 0.3667 0.1637 0.0908 0.6574
238 1 1 0 0.0000 . . .

15
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4) to get a graph as output write on the command line
sts graph

to get

Kaplan-Meier survival estimate

T T T T
0 50 100 150 200 250
analysis time

to include 95% pointwise confidence limi on the graph
write

sts graph , gwood
Some additional options (to be placed after the comma)

atrisk
censored
tmin(#)
tmax (#)
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AN ESTIMATE OF THE INTEGRATED HAZARD:
NELSON-AALEN'S METHOD
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NELSON-AALEN'S ESTIMATE

The calculations involves the following steps:

1) The observations are sorted in ascending order.

2) For each time of death t, compute Y, = Y(¢,) and

then
q; HA\«\\

3) Nelson-Aalen's estimate

A(t) =the sum of the g;'s from death times < ¢

The example:

Ass)= - ~0.083
12

At ot =0.183
12 10

. 11 1

A@N= —+—+o = 0.294
12 10 9

\,/:mmvuP+P+H+H —0.461
12 10 9 6

A(151) = P+P+H+H+H =0.661
12 10 9 6 5

(168)= Loty l ] =0.911
12 10 9 6 5 4

>AmmeHP+P+._+A+A+._+H =1.911
12 10 9 6 5 4 1

17

Data and notation: As for the Kaplan-Meier estimate.

Nelson-Aalen’'s estimate:

. 1
AD=2 vy

If ties are present use

1) EVITEY
ti<t \.v
or

2) Separate the survival times slightly and use basic
formula.

Example: If for some data Y(t,) =105 and m, =3 then
3
105

Contribution using 2) ! + ! + 1
105 104 103

Contribution using 1)

Note:  A(t)=-In(S(t)),

but A(t) < -In(S(t))

The difference is usually small

0<—In(&(t) = A(t) < —— -1
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USING STATA FOR THE ANALYSIS

Each data set has only to be declared as survival time
data once.

To get tabular output and a graph of the Nelson-Aalen
estimate use the commands

sts list , na
sts graph , na

To include 95% confidence limits on the plot
sts graph , na cna

OUTPUT (plot only)

Nelson-Aalen cumulative hazard estimate

T T T T
50 100 150 200 250
analysis time

19
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Sketch of arguments used to derive Kaplan-Meier's
estimate and Nelson-Aalen's estimate

Divide the follow-up period up into a number of small
intervals of length At such that each interval contains at
most one observation.

Let ¢; denote the lower limit of the j'th interval and let g,

denote the probability of dying in the j'th interval given
alive at the start of the interval (at timet,)).

The probability g; is estimated by

1/Y(t;) if the interval contains an
Q\, _ uncensored observation
0 otherwise
Since
S(t) uﬁ:éﬁ
and B

estimates of S(f) and A(f) can be obtained by replacing
the probabilities q; by their estimated <m_cmm9.

Note that intervals not containing death times can be
omitted. They contribute a factor 1 to the product and a
term 0 to the sum.

20
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KAPLAN-MEIER'S AND NELSON-AALEN'S
ESTIMATES: UNCERTAINTY OF THE ESTIMATES
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CONFIDENCE INTERVALS FOR S(#)

Estimated standard errors when the data have no ties
among uncensored observations:

(note: STATA uses a slightly different version) and

~

SE(S(t) = 8(t)- SE(A(t))

If ties are present

m;
Mbmﬂ ¢\A~.‘.v . C\Aﬁ.vl 5\. +._v

1) SE(A(t) =

or

2) Separate the survival times slightly and first version.

Simple estimate (requires only calculation odﬁw::”

Note:

Unlike the other estimates of the standard error the
simple estimate changes both at survival times and
censoring times.

21

Approximate confidence intervals for the survival
probability S(f) for fixed t.

Standard version (Symmetric):
S(t)-1.96- SE(S(t)) < S(t) < S(t) +1.96 - SE(S(1))

Symmetric confidence interval not reasonable for S(i)
close to 0 or close to 1.

Improved version (Asymmetric):

A confidence interval of the form

(5))" < st < (S0
where
b=exp(-1.96- SE(INA(1)))
a=1/b
and

~ A

SE(InA(t)) = SE(A(t))/A(t)
The asymmetric confidence interval is obtained from a

symmetric confidence interval of In(A(t)). This quantity
has no range restrictions.

22
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Confidence intervals for S(t): lllustration Estimate of median survival time VI
The example Choose M such that

. . S(M)=0.5

S5(81)=0.733 SE(5(81))=0.125

A(81)=0.294 SE(A(81))=0.171 An approximate 95% confidence interval for the median

can be obtained from the confidence intervals for the

Symmetric interval: survival probability:
_lO<<®—.. UOCDQ =0.733-1.96-0.125 = 0.488 XNU_NJ-_/\_Q_Q—. survival estimate
Upper bound =0.733+1.96-0.125 = 0.978 ]

Alternative version (asymmetlric):

b=exp(-1.96-0.171/0.294) = exp(-1.140) = 0.320

a=1/b=3.127 2 | 95% Clfor survival fet. 7

> 7 95% confidence interval for the median
Lower bound = S(81)? =0.733%*"* =0.379 o1, , : :
Upper bound = $(81)° =0.733°* = 0.905 ° " anaysis time 2 0

95% Cl Survivor function

Calculation of 95% confidence interval for the median

(or other percentiles) with STATA: use the command
stci

23 24
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METHODS FOR GROUPED FOLLOW-UP DATA

Sometimes exact follow-up times are not available:
if e.g. the status of the individuals are ascertained only
periodically.

With large data sets it may also be convenient to divide
the time scale into a number of categories and use only

information about the categories, and not the exact
times, in the analysis.

Estimation of the survival function for grouped data:
The life table method

Example:

Follow-up times in days:

55 61+ 74 81 93+ 122+
138 151 168 202+ 220+ 238

Consider 60 days intervals: [0,60[, [60,120][, [120,180[
and [180,240[

55 61+7481 93+ 122+ 138 151 168 202+ 220+ 238

25
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Let 7,,7,,7,,7,,...,7, denote the cutpoints of the time
categories.

For each interval determine

1.Y,=Y(r,)= The number alive and at risk at the
start of /"th interval.

2.d. =N(z,-)-N(z,_,—)= The number dying in the
interval.

3.C = The number censored in the interval.

Then compute

4. The modified number at risk n, =Y, —c,/2
5. The conditional death proportion=g, = d,/n;.

6. The conditional survival proportion = p, =1-g;

and finally the estimated survival function

26
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(1) @2 @B @4 6 6 @) (8)

Interval start no.of no. mod. cond. cond. estimate
at death of no.at death surv. of surv.
risk cens. risk prob. prob. fet.

K. Q\. C n; q p; rw?. \.v
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USING STATA FOR THE ANALYSIS

0-60 12 1 0 12 0.083 0.917 0.917
60-120 711 2 2 10 0.200 0.800 0.733
120-180 7 3 1 6.5 0462 0.538 0.395
180-240 3 1 2 2 0500 0.500 0.197

Standard error of the life table estimate:
Greenwood's formula

SE(S(z,)) = 8(z,)-

Example
At 60 days:
SE(3(60)) = §(60)- |—F—
Py -y
=0.917- _0.083 _ 0.080
0.917-12
At 120 days

g 9

SE(S5(120)) = §(120)- |—"—+ 12
PNy P,y

=0.917- 0.083 + 0.200 =0.132

0.917-12 0.800-10

etc.

27

To get the life-table estimate of the survival function
using Stata submit one of the commands

ltable time status, intervals(0,60,120,180,240)
Ttable time status, intervals(0,60,120,180,240) graph

Mouse: Statistics - Survival analysis — Summary
statistics, tests & tables — Life tables for survival data

OUTPUT
Beg. std.
Interval Total Deaths Lost Survival Error [95% CI.]
0 60 12 1 0 0.9167 0.0798 0.5390 0.9878
60 120 11 2 2 0.7333 0.1324 0.3790 0.9056
120 180 7 3 1 0.3949 0.1601 0.1124 0.6737
180 240 3 1 2 0.1974 0.1609 0.0130 0.5455
Onw\
2
=
Za]
@
]
5« |
g™
o
o
od
50 100 150 200 250

time

28
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COMPARING SURVIVAL IN TWO GROUPS

Standard non-parametric test can not be applied, when
the data contain censored observations.

Several non-parametric procedures, e.g. Wilcoxon-
Mann-Whitney rank test, Kruskal-Wallis test, have been
generalized to allow for censored observations.

Here: primarily log rank test for comparison of the
survival in two (or several) groups.

The terminology is not very consistent:

Log rank test  Generalized Savage's test,
Mantel-Cox test,

Mantel-Haenszel test for survival data.

Alternative tests: Gehan's test (also called Generalized
Wilcoxon test or Breslow's test), Tarone-Ware test,
Peto-Prentice test etc.

Several slightly different versions of these procedures
exist. (differences are typically the result of applying
different variance estimates).

Note:

We shall only consider unpaired two-sample problems
here.

29
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THE TWO-SAMPLE PROBLEM WITH CENSORED
DATA

Problem:
Comparison of the survival in two groups of patients.

Data:
Two samples of life times, some of which may be
censored.

Notation:

Group 1 Group 2
Survival
function Si(0) S,(1)
Hazard
function A(1) (1)

Null hypothesis: Same survival in the two groups.

S,(f)=S5,(1) forall t
or, equivalently

A() = A,(1) for all ¢

Note:
The methods to be described are suitable for detection
of consistent deviations from the null hypothesis, i.e. if

A,(1) < A,(1) forall t
A () = A,(8) for all t

or

30
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The test statistics are particularly well suited (i.e. have
high power), if the hazard rates are proportional:

A (1) =60-A(t)

The parameter 0 is called the hazard rate ratio or the
mortality rate ratio.

Proportional hazard rates corresponds to the following
relations between the survival functions:

S,(t)=(S,(1)’

The test statistics are not well suited in situations, where
the hazard rates cross (this will for instance be the case
if the survival functions cross):

It is advisable always to study diagnostic plots, e.g.

A

1) A,(t) versus A,(t)

The points in plot will approximate a straight line if the
mortality rates are proportional.

~

2) In(A(t)) and _:Twmgvm@m_:mﬁ tin the same plot.

This plot will show two curves with roughly constant
vertical distance if the mortality rates are proportional.
In both plots \,/.S can be replaced by-In( >‘,3v. In the

~

second plot this leads to plots of In(—In(S,(t))) against t.

31
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THE LOG RANK TEST

Example 1: A randomized, placebo-controlled trial to
assess the effect of remission maintenance therapy with
6-MP on the duration of steroid-induced remission in
acute leukemia.

The study was designed and originally analyzed as a
matched pairs sequential trial. For illustrative purposes
the data are here analyzed as a standard parallel group
trial (i.e. ignoring the paired design and sequential
stopping rule).

Data: Relapse-free survival in weeks.

6-MP Group Placebo Group
6 11+ 25+ 1 5 12
6 13 32+ 1 8 15
6 16 32+ 2 8 17
6+ 17+ 34+ 2 8 22
7 19+ 35+ 3 8 23
9+ 20+ 4 11
10 22 4 11
10+ 23 5 12
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Estimated survival curves:

1.0 ——6-MP
—— Placebo

o o o
S [e)] (o]
1 1 1

Probability

o
N
1

0.0 T T T T T T y
0 10 20 30 40

Time in weeks

Estimated integrated hazards:
4

—6-MP
Placebo

Integrated hazard

o T T T T T T T
0 10 20 30 40

Time in weeks
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Diagnostic plots:

1.0
5 °
N
8 o
B 054
© o o
..W °
< ° °
o °
=
[(e]
[ J
0.0 o—0—o- T T T T T
0 1 2 3
Placebo Integrated hazard
2
B
§ 0
©
<
pe)
Q
o
g 2
=
> 6-MP
S ——— Placebo
-4 T T T T T T
0 10 20 30 40

Time in weeks
The relapse rates seem roughly proportional.
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A valid test can be established by comparing the pattern
of occurrences of relapses in the two groups controlling
for the time at which the relapses occur.

This approach resembles the Mantel-Haenszel test, but
the formal justification is different.

Basic idea:
For each event-time a 2x2 table is established:
Event time f, Treatment

6-MP Placebo Total
Relapse m, m;, m,
No relapse Y(t)-m,
Atrisk at time ¢, Y(t) Y,(t) Y(t)

The total m, in the Relapse row is always 1, if no ties
are present among uncensored observations.

At time ¢, the proportion of patients at risk belonging to
group 1isY(t)/Y(t).

If the relapse rates are identical we will therefore at time
t, expect the same proportion of the relapses to

occur in group 1, i.e. the expected number in group 1 is
m;-Y,(t)/Y(t)

The data set in the example have 17 distinct relapse
times, so this argument should be applied to 17 different
2x2 tables.

35
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Time Relapse 6-MP Plac. Total Obs. Expected

Yes 0 2 2 0 2.21 \Am
1 No 21 19 40
At risk 21 21 42
Yes 0 2 2 0 2.21 \Ao
2 No 21 17 38
At risk 21 19 40
Yes 1 0 1 1 1-15/23
10 No 14 8 22
At risk 15 8 23
Yes 1 1 2 1 2-7/9
22  No 6 1 7
At risk 7 2 9
Yes 1 1 2 1 2-6/7
23  No 5 0 5
At risk 6 1 7
Total 9 19.251

A total of 9 relapses is observed in the treatment
group. On the null hypothesis we would have expected
19.25 relapses based on the relative size of the two
groups at the 17 different relapse times.

A variance estimate is needed to assess the
significance of this discrepancy.

36
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A valid variance estimate can be obtained as the sum of
contributions from each 2x2 table in the same way as for
the Mantel-Haenszel procedure.

For the first table
6-MP Placebo Total
Relapse 0 2 2
No relapse 21 19 40
Total 21 21 42

the contribution to the variance becomes

Calculating the remaining 16 contributions in a similar
fashion and adding the results together gives

Variance =V =6.257
and the test statistic, the log rank test, is obtained as

(Obs.— Exp.)?
Variance

X2 =

Ir

(9-19.251)2
6.257

=16.79

On the null hypothesis of identical survival distributions
the distribution of the test statistic is approximately a
x° distribution with 1 degree of freedom. Large values
provide evidence against the null hypothesis.

A value of 16.79 is highly significant (p =0.00004).

37
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The log rank test — in general

Consider two samples of possibly censored survival
times. The sample sizes are denotedn, and n,.

The observations in the combined data are sorted in
ascending order. Ties among censored and uncensored
values are resolved by taking uncensored values first.
Let d denote the number of distinct values found among
uncensored observations in the combined sample and
denote these values byt, <t, <---<t,.

At time ¢, the following 2x2 table can be established:

Event time t, Group

1 2 Total
Event m, m, m,
No event KQ.LIE: «\NQVIS\N <A$I3\.
Atrisk at time f, Y,(t) Y, (t) Y(t)

For each table compute

m, = the observed number of events in group 1 at
timet,.

e, = the expected number of events in group 1 at
time t,
(t)

o
Vit
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<
Il

the variance of m,

m; - (Y(t) —m;)-Yi(t)- Y, (1)
Y(t,)* - (Y(t)-1)

The expected number and variance are computed on
the hypothesis of identical hazard rates.

The contributions from each table are added
together:

O, = MM ,m; Total observed number of events
in group 1.

E = MM , & Total expected number of events
in group 1

V= MM WV, Total variance.

The log rank test is finally obtained as

_EV
X\WHAD_< ._v

On the null hypothesis X2 is approximately a y* variate

on 1 degree of freedom. Large values provide evidence
against the null hypothesis.
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Comments:

1. Exactly the same test statistic is obtained if we
instead consider group 2 and compute the observed
and expected number of deaths in this group.

2. The standard terminology "observed" and "expected"
is appealing, but not really justified. E, and E,are not
expected values in the usual sense, rather they are
sums of conditional expectations. They represent our
expectation based on the relative size of the two
groups at the d different event times.

3. Some computer packages and text books use the
name log rank test for a slightly different test
statistic, namely:

X2 = Ap Iﬂvm + AON Immvm
m_ mm

where the observed and expected numbers are those
described above. The alternative version of the log
rank test is (slightly) conservative, since

X2 < X2

is always satisfied. The p value from the alternative
test is therefore too large. If the data contain no tied
event times the discrepancy is minimal, but the
difference increases with the number of ties among
the uncensored observations.
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USING STATA FOR THE ANALYSIS

Read data into Stata and declare data as survival time
data. The data set has three variables: time, failure, and
treatm.

use e:\kurser\survivallaarhus2003\ex31l.dta
stset time , failure(status==1)

To compare the survival in the two treatment groups
using log rank test write

Sts test treatm

OUTPUT

Sts test treatm

failure _d: status ==
analysis time _t: time

Log-rank test for equality of survivor functions

| Events Events

treatm | observed expected
|||||||| I
MP-6 | 9 19.25
Placebo | 21 10.75
|||||||| o1
Total | 30 30.00
chi2(1) = 16.79

Pr>chi2 = 0.0000

The first two lines are suppressed if the option noshow

is added
sts test treatm , noshow
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Graphs: To get Kaplan-Meier survival curves for each
group write

sts graph , by(treatm)

s

* to Tnclude confidence intervals write
sts graph , by(teatm) gwood

* to show each estimate in separate plot write
sts graph , by(treatm) separate

Graphs of Nelson-Aalen estimates: add option na
sts graph , na by(treatm)

sts graph , na cna by(treatm)

Tabular output:

sts Tist , by(treatm)

Format of listing similar to the one used to a single
group

* to list estimates side-by-side
sts Tist , by(treatm) compare

Listing of Nelson-Aalen estimates: add option na
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ALTERNATIVE NON-PARAMETRIC TEST

The log rank test is essentially a scaled version of the
difference O, - E,. Since

d d d d
OA_ - m._ = M\.u_ 3: |M\.H4 m: = M\.HAASZ |®:v = \.H_._ ’ ASZ |m\.._v

The contribution to the numerator from each 2x2 has the
form m, —e,. In the log rank test these contributions are

given equal weight.

By using different weighting schemes alternative test
statistics are obtained. All these tests have the form

X2 |.uMuM;<<\.A:sA|.®:v
da 2
Wi Vi

w

The test statistic has approximately a * distribution on
1 degree of freedom on the null hypothesis.

In STATA the following test statistics are available

Weight w, Name STATA option
1 log rank | (default)
Y(t) Wilcoxon-Breslow-Gehan w
wA t) Peto-Prentice p
Y(t) Tarone-Ware t
S(t)"(1-8(t))? Fleming-Harrington f(p q)
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Gehan’s test and Peto-Prentice’s test both reduce to a
Wilcoxon test if the data contain no censored
observations.

Additional option: The likelihood ratio test (more on that
later) in a proportional hazards model is computed with
the option cox.

STATA output

. sts test treatm , w noshow

wilcoxon (Breslow) test for equality of survivor
functions

| Events Events sum of
treatm | observed expected ranks
|||||||| e
MP-6 | 9 19.25 =271
Placebo | 21 10.75 271
|||||||| Mmoo
Total [ 30 30.00 0
chi2(1) = 13.46
Pr>chi2 = 0.0002

. Ssts test treatm , p noshow

Peto-Peto test for equality of survivor functions

| Events Events sum of
treatm | observed expected ranks
|||||||| oo L
MP-6 | 9 19.25 -6.3622095
Placebo | 21 10.75 6.3622095
|||||||| oo I
Total | 30 30.00 0
chi2(1) = 14.08
Pr>chi2 = 0.0002
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DESCRIBING EXCESS MORTALITY

The log rank test and the alternative test statistics are
non-parametric tests used to assess if chance
fluctuations are a likely explanation for an observed
discrepancy between two survival curves.

Generally, it is also important to describe such a
difference and quantify it in a suitable way.

Plotting the two Kaplan-Meier estimates to be compared
in the same figure is one possibility, but it is often
convenient to supplement such a figure with a simple
numerical description of the difference in mortality.

Possible summaries include:

1. The difference or the ratio of e.g. the two-year survival
probabilities.

2. The difference or the ratio of the estimated median
survival times.

3. An estimate of the ratio of the mortality rates. If the
rates are approximately proportional this corresponds
to estimating the constant of proportionality 6 (see
page 31).
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The mortality rate ratio as a measure of discrepancy

An estimated mortality rate ratio (summary measure 3)
could be presented e.g. as

"Treatment A reduces the mortality with 30% relative to
treatment B",

i.e. 14(t)/A5(t) = 0.70, often described as the relative risk
being 0.70, although it would be more appropriate to call
the estimate a relative rate.

The regression coefficients computed by a Cox's
regression analysis (to be discussed later) can, after a
simple transformation (taking exp), be interpreted as
estimated mortality rate ratios.

Occasionally, it is necessary to use alternative estimates
of the mortality rate ratio. This could for instance be the
case, if access to the original data is not possible, e.g. in
a meta-analysis. Several proposals exist, e.g.:

A "quick and dirty" estimate of 6 is obtained as

— Om.mA

¥ =E 0

This estimate is known to be bias towards to 1, but the
performance is adequate in the range 2 to 2.
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Example (Freireich et al’s data)

The output from the command sts test allow calculation
of the “gick and dirty” estimate
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THE K-SAMPLE PROBLEM:
COMPARING SEVERAL SURVIVAL CURVES

sts test treatm , noshow

Problem: Comparison of the survival in K (K> 2)
different populations.

Data: A sample of possibly censored survival times from
each population.

Null hypothesis: A,(t) = 4,(t)=---= 4,(t) for all ¢

Test statistics
The test statistics used for comparing two groups can all
be generalized to comparison of more than two groups.

STATA: K-sample log rank test of age effects on
mortality in patients with malignant melanoma

generate mommquummm

recode agegrp 0/39.999=1 40/49.999=2 50/59.999=3
60/69.999=4 70/120=5

sts test agegrp , noshow

| Events Events
treatm | observed expected
|||||||| gmmm oS IZZ D
MP-6 | 9 19.25
Placebo | 21 10.75
|||||||| o1
Total | 30 30.00
chi2(1) = 16.79
Pr>chi2 = 0.0000
. 21-19.25
QaD-estimate=———=4.18
9-10.75
sts test treatm , c noshow
| Events Events Relative
treatm | observed expected hazard
|||||||| R
MP-6 | 9 19.25 0.5823
Placebo | 21 10.75 2.6338
........ oo IT1C
Total | 30 30.00 1.0000
LR chi2(1) = 15.21
Pr>chi2 = 0.0001
2.6338

“Optimal” estimate = =4.52

0.5823

Confidence intervals are not computed by sts test (use
stcox)

47

| Events Events

agegrp | observed expected
||||||| gm e m oS IDZTD
1 | 9 13.69
2 | 11 13.64
3 | 15 12.52
4 | 11 11.08
5 | 11 6.07
||||||| el
Total | 57 57.00

chi2(4) = 6.75

Pr>chi2 = 0.1496
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THE K SAMPLE PROBLEM WITH ORDERED
CATEGORIES: TEST FOR TREND.

Problem: Again, comparison of the survival in K (K= 2)
different groups of patients, but there is a "natural”
ordering of the groups, they might e.g. represent
different age groups, different dose levels of some
exposure or increasing severity of the disease at time of
entry.

Data: A sample of possibly censored survival times from
each population.

Null hypothesis:
A () =A4,(t) == A1) for all t

In situations with a natural ordering of the groups it is
often of special interest to investigate if the mortality
increases (or decreases) with the natural ordering.

The usual K sample tests (log rank test etc.) are valid
tests, but not particularly well suited for detecting this
type of departures from the null hypothesis. Information
about the ordering is not utilized: The value of these test
statistics does not change if the order of the groups is
changed.
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Solution: For each of the K-sample tests a
corresponding test for trend has been developed.
These test are particularly sensitive to monotone
dependencies of the mortality rates on the ordering of
the groups. Alternatively, regression models may be
considered.

The log rank test for trend is a normalized version of
the statistic

ﬂuM“Wu_x\_ (0,~E))

where O, and E; are observed and expected

numbers derived as described for the K sample log
rank test and x; are the group scores, i.e. values

assigned to the groups reflecting the ordering (e.g.
average age of patients in the group or dose level).

The log rank test for trend:

2
X2 nmnﬁMWx\..AO\im\.L
trend ’\.ﬁ S‘

where V; is an estimate of the variance of the
numerator. On the null hypothesis the trend test is
approximately distributed as a y* variate on 1 degree of

freedom. Large values provide evidence against the null
hypothesis.
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Note:
A linear transformations of the scores will not change
the value of the test statistic, e.g.

Group Scores x  Alt. scores
1 100 -1
2 145 0
3 190 1

The two set of scores give the same value of the test
statistic, but the alternative scores are much simpler to
use.

Example: log rank test for trend with age in mortality of
patients with malignant melanoma

sts test agegrp , noshow trend

Log-rank test for equality of survivor functions

| Events Events

agegrp | observed expected
||||||| I
1 _ 9 13.69
2 | 11 13.64
3 _ 15 12.52
4 | 11 11.08
5 _ 11 6.07
||||||| i
Total | 57 57.00

chi2(4) = 6.75

Pr>chi2 = 0.1496

Test for trend of survivor functions

chi2(1)
Pr>chi?2

4.94
0.0263
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STRATIFIED ANALYSIS OF SURVIVAL DATA

Purpose:

A stratified analysis is a procedure to compare
outcomes in different groups and at the same time
correct for (or reduce) the effect of other factors
which are related to the outcome but not identically
distributed in the different groups (so-called
confounding factors).

An example:

Suppose that for a particular disease male patients are
known to have a worse prognosis than female patients.
If the proportion of males differ markedly between two
treatment groups a comparison based on a simple two
sample test will be misleading: The result of a statistical
test will not only reflect a possible difference in efficacy,
but also the difference in the proportion of patients with
poorer prognosis.

A stratified analysis can here be used to compare the
two treatments and at the same time adjust for the effect
of the difference in the sex distribution.

The basic idea:

In a stratified analysis the comparability is improved by
dividing the patients up into smaller and more
homogeneous groups. The basic comparison is made
within such groups (or strata), and the discrepancy
found is accumulated across all strata. The test statistic
is derived from these accumulated statistics.
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A STRATIFIED ANALYSIS BASED ON
THE TWO-SAMPLE LOG RANK TEST:

Problem:

Comparison of the survival after two different treatment
modalities A and B controlling for the effect of the age of
the patients, say.

Data:

Two samples of life times, some of which may be
censored. The value of the factor, which is used to
define the strata, must also be known for each patient.

Procedure:

1. The age range of patients are divided up into a
suitable number of age categories. Patients
belonging to each age group are considered
separately.

2. For each stratum the survival in the two treatment
groups is summarized by the observed number of
deaths O, and Og, the corresponding expected
numbers E, and E, and the variance V.. These
quantities are all derived in the same way as for the
usual log rank test.

3. The observed and expected numbers and the
variance are summed across strata and a test statistic
is computed from these sums:

M“O\,le\, N

XN __ \strata strata
s =

%

strata
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Stratum 1: Age < 30.

Treatment Observed Expected Variance
A Ou En v,
m Om._ mmA

Stratum 2: 30 < Age < 50.

Treatment Observed Expected Variance
> 0\6 m\»m ,\m
w Omw mmm

Stratum 3: 50 < Age < 70.

Treatment Observed Expected Variance
> Obw mbw ,\w
w Omw mmm

Stratum 4: 70 < Age.

Treatment Observed Expected Variance
A Oﬁ mi S
B O Es,

Summed across strata:
Treatment Observed Expected Variance

A MML O\; MML m\; MML ,\»

B MML Omx MML E Bk

The stratified log rank test is based on these statistics
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Comments:

1. The stratification may be based on several variables.
Increasing the number of variables to use will typically
improve the comparability within strata (tighter
control), but at the same time it may reduce the
effective sample size: The risk of having strata with
observations from only one of the groups increases
also with the number of strata, and such strata can not
be utilized in the analysis.

2. Because too many strata may reduce the effective
sample size, one will typically not include among the
stratifying factors risk factors with approximately the
same distribution in the groups.

3. Note that the amount of computation depends largely
on the number of events, so a stratified analysis
requires roughly the same computational effort as the
corresponding unstratified test.

4. A Cox regression analysis may alternatively be used
to control for effects of confounding factors when
assessing the difference between the survival in two
treatment groups.

5. A Cox regression analysis will also allow a study of
variation in the treatment difference between strata
(treatmentxstrata interaction). The stratified analysis
implicitly assumes that a treatment difference has
roughly the same size in all strata.
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STRATIFIED ANALYSIS BASED ON THE OTHER
NON-PARAMETRIC TESTS:

Stratified versions of the other non-parametric test
statistics and of test for trend can derived in a similar
fashion. The basic idea is in all cases to compute the
summary statistics within each stratum, add them
together across strata and compute the relevant test
statistic from these sums.

STRATIFIED ANALYSIS USING STATA

A log rank test to compare the survival in two exposure
groups (expo) stratified by agecat and sex:

sts test expo , strata(agecat sex)

If output should include separate comparisons for each
strata add the option detail. Apparently, only one
stratum variable is allow when detail is specified. This
problem (bug?) can be solved in the following way:

egen agesex=group(agecat sex)

sts test expo , strata(agesex) detail

A Peto-Prentice test for trend in age (agecat) stratified
by sex with detailed output

sts test agecat , /// )
peto strata(sex) trend detail
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