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Logistic regression models: Diagnostics
In the linear regression we saw some example of statistics:
residuals, standardized residuals and leverage

which can be used in the model checking and search for
strange or influential data points.

Such statistics can also be defined for the logistic regression
model.

But they are much more difficult to interpret and cannot in
general be recommended.

Checking the validity of a logistic regression model will mostly
be based on comparing it with other models.

We will return to this later!
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Logistic regression models: Test of fit

A common, and to some extend informative, test of fit is the
Hosmer-Lemeshow test.

Consider the model for obesity from Monday
logit(Pr(obese))= /3, + /3, - woman + j3, - (age —45)

Logit estimates er—of obs = 4690
LR chi2(2) = 55.68
Prob > chi2 = 0.0000
Log likelihood = -1767.7019 Seudo RZ = U.0155
obese | Coef. std. Err. z P>|z]| [9% conf. Interval]
________ oo e
_Isex_2 | .2743977 .0903385 3.04 0.002 /0973375 .451458
age45 | .0344723 .0051354 6.71 0.000 .0244072 .0445374
_cons | -2.147056 .0721981 -29.74 0.000 -2.288561 -2.00555
Significantly better than nothing - but is it good?
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Logistic regression models: Test of fit

What about comparing the estimated prevalence with the
observed prevalence?

In the Hosmer-Lemeshow test the data is divided into groups
(traditionally 10) according to the estimated probabilities

and the observed and expected counts are compared in these
groups by a chi-square test.

Most programs, that can fit a logistic regression model, can
calculate this test.

In STATA it is done by (after fitting the model):
1fit, group(10) table

The data is divided into deciles after the estimated
probabilities.
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Logistic regression models: Test of fit Logistic regression models: Test of fit
xi: logit obese i.sex*age45
OUTPUT 'Iﬁ:t, _group(lO) table )
A e g Logistic model for obese, goodness-of-fit test
Lo%_-:_s;;]c m0(1:i$1 fo; obese, gc_)sladnes]i Oftf-'tttsSt babilities) (Table collapsed on quantiles of estimated probabilities)
able collapsed on quantiles oT estimate probabi lities m e +
| Group | Prob | Oobs_1 | Exp_1l | Obs_0 | Exp_0 | Total |
Jlr Jlr Jlr l [-=====- Fmmmmm Fommmm e  Etatatai ittt o mmmmmm |
‘ | 110.0796 | 361 35.9 | 466 | 466.1 | 502 |
: % : g-ggg : g;‘ : 2(5)-2 jgg : 223-% : zgg : | 2 10.1011 | 42 | 41.1| 406 | 406.9 | 448 |
i 3 1 01085 | 44 | a4 1 \3%8 | 397.2 | 443 | | 3] 0.1053 | 49 | 49.6 | 429 | 428.4 | 478 |
i 2101113 | 42| 5003 | S | 157 | 464 | | 41 0.1096 | 50 | 54.8 | 458 | 453.2 | 508 |
| S 1 01217 | 441 3141 39w 3866 | 438 | | 5] 0.1124 | 52 | 54.2 | 436 | 433.8 | 488 |
i 10,1532 | 521 €301 #41N4300| 493 | | 61 0.1153 | 51 | 46.4 | 355 | 359.6 | 406 |
i 7 01456 | 55| 6171 389 [\Sa0.3 | 442 | | 710.1182 | 52| 53.9 | 410 | 408.1 | 462 |
i 60,1502 | €21 €908 3921 32| 454 | | 8 10.1590 | 76 | 70.3 | 428 | 433.7 | 504 |
| 910.1834 | 98 | 89.0 | 424 | 43234 | 522 | | gloamsl gl el son 952 | e |
: 8 |89, : 10 | 0.3310 97 | 103.0 310 | 304.0 407
| 10 | 0.2407 | [99 | 83.8 314 | 329.2 413 | AR N
+"";;r;ll;;;_;;;;;;;\_/;;;;;_; _______ 1 One pr‘ob|em: number of observations = 4690
nu.mbPI: af ﬁ'j;”m = Too mqny in Hosmer—Egg:;ozfcg:glEZ; n 1(2).43
Hosmer-Lemeshou chi2(®) - the tails prob > chi2 = 0.9650
| Significant difference between observed and expected! The model *fits’ - when we look at in this way !l
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Logistic regression models: Do you have enough data? The lincom command after logit or regress
. . . . Consider the model:
All inference in logistic regression models are based on loci b 45
asymptotics , i.e. assuming that you have a lot of data! ogit(Pr(obese)) =, + - woman + f5, -(age - 45)
Rule Of 'I'humb' obese | Coef. std. Err. z P>|z]| [95% conf. Interval]
e [ [P, e e -
You should have at least 10 events per variable _Isex_2 I .2743977  .0903385  3.04 0.002  .0973375 .451458
: age45s .0344723  .0051354 6.71  0.000 .0244072  .0445374
(parameter) in the model. _cons | -2.147056 .0721981 -29.74 0.000  -2.288561  -2.00555

A large standard error typical indicates that you have to Here men are reference.

little information concerning the variable and that the
estimate and standard error are not valid. If we want to find the log odds for a 45 year old women

Lower your ambitions or get more data | we can calculate by hand —2.147+0.274=—1.873

. . 5
A exact methods exists, but only one (expensive) program But what about confidence interval:

can do . We could change the reference to women and fit the
And it will give also wide confidence intervals. model once more.
But.......
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The lincom command after logit or regress
logit(Pr(obese))= /3, + f3, - woman + j3, - (age —45)
STATA has a command that can be used for this: “lincom"”

lincom _cons+_Isex

(1) _Isex_2 + _cons = 0
obese | Coef. Std. Err. z P>|z| [95% Conf. Interval]
,,,,,, e
(1) | -1.8726 .05813 -32.21 0.000 -1.986602 -1.758714

You can add *, or" to get odds/odds ratios.

lincom _cons+_Isex,or

P>|z| [95% Conf. Interval]
,,,,,,,, . N

0.000 .1371606 .172266
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The lincom command after logit or regress
logit(Pr(obese))= /3, + f3, - woman + 3, - (age —45)

Some examples:
Odds for a 42 year old woman:

Tincom _cons+_Isex-age45%3,or

(1) _1Isex_2 - 3 aged45 + _cons =0

z P>|z]| [95% conf. Interval]

@ | .1386122 .008

Odds ratio for 4.5 age difference:

Tincom age45%4.5,or
(1) 4.5 aged5 =0

Collinearity

Consider a subsample of the serum cholesterol data set
and the three models:

model O: regress logscl sex sbp dbp
model 1: regress logscl sex dbp
model 2: regress logscl sex sbp

variable | model10 mode1l model12
————————————— e et i
sbp | .00126448 .00149884— Estimate
.00087992 .0005548 «— Se

|
I 0.1524+—————————  0.0075
dbp | .00056517  .00239702 \P
| .00164485 .0010424
I 0.7315«—> 0.0226

sex | .02080574  .02446746 .0197773 .
| 0636140 0263111 .o261304s EACh BP-measure is
| 0.4310 0.3536 0.4501 iati
_cons | 5.1444085  5.1555212  5.1615877 STGT.'ST'CGI

| .09912234  .09909537  .08539118 significant, when the

| 0.0000 0.0000 0.0000 . |
_____________ e 2777 other is removed!

N 194 194 194
1 HL)
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obese | 0dds Ratio z P>|z]| [95% conf. Interval]
________ s
@ | 1.167804 6.71 0.000 1.116091 1.221914
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Collinearity
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Diastolic Blood Pressure

SBP and DBP are highly positively correlated that will lead
to highly negatively correlated estimates!!!
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Collinearity

This can be seen by listing the correlation between
the estimates.
In STATA by the command:  vce, cor

regress logscl sbp dbp sex

vce,cor
| sbp dbp sex _cons
_____________ T
shp | 0000
dop || -0.7750 | 1.0000
sex | -0.0967 0.1135 1.0000
_cons | -0.0780 -0.5044 -0.4665 1.0000

If two estimates are highly correlated, it indicates that it is

very difficult to estimate the “independent effect” of the
each of the two variables.

Often it is even nonsense to try to do it!
Often it see better to try to reformulate the problem.
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Collinearity

One way to work around the problem of colinearity is
to ‘ortogonalize’ it:

Create two new variable:
one measures the blood pressure

and another that measure the difference in
systolic and diastolic blood pressure.

Some candidates:

(sbp+dbp) /2 and (sbp-dbp)
| (sbp+dbp)/2  and  (sbi/dbp)
Tn(sbp*dbp)/2 and Tn(sbp/dbp)

We will here consider the second pair.
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Collinearity
avebp=(sbp+dbp) /2 and bpratio=(sbp/dbp)

2.5 Plot02
Only weakly .. . .-,
associated I . ‘3
i) o o %o (] . LX}
s el e, o, TS
g ’:,’ e .¢l W e °
o 8,00 Coreyt F l" )
| wol o VPe g% ¢
MR E A2 A
1
86 160 WéO 1)’0 1é0 1‘80
. avebp
regress logscl avebp bpratio sex
vce,cor
| avebp bpratio sex _cons
_____________ oo o e
avebp | 0000
bpratio ||_-0.2456 1.0000
sex | 0.0382 -0.1041 1.0000
_cons | -0.4542 -0.6874 -0.2585 1.0000
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Collinearity
The serum cholesterol data set and the three models:

model O: regress logscl sex avebp bpratio
model 1: regress logscl sex avebp
model 2: regress logscl sex bpratio
 variable | modelo modell mode12 |
- Blood pressure
avebp | .00198973 .00206564
| .0007887  .00076285 seems to play a role,
| 00128 00074
bpratio | .02769662 .07148118 .
| .07067134 ‘osoac246 | | The ratio between
| 0.6956 0.3048 1
sex | .02060675 .02168128 .01806662 SBP Gnd DBP mlghT
| .02632924 026128 .02667689 | hot.
| 0.4348 0.4077 0.4991
_cons | 5.1003417 5.1351912 5.2485724
| .12936418 .09374803 .11685799
| 0.0000 0.0000 0.0000
_____________ e
N 194 194 194
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Collinearity
Look out for it:

-systolic and diastolic blood pressure

*24 hour blood pressure and ‘clinical’ blood pressure
‘weight and height

-age and parity

*age and fime since menopause

*BMI and skinfold measure

*age , birth cohort and calendar time

*volume and concentration

Remember you will need a huge amount of data to disentangle

the effects of correlated explanatory variables
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Which model should I use?

This a hard question!

The first thing to remember is that all models are
approximations!

The “true" , the "best” or the “correct” model does not exist!
The quality of a model depends on what you want to use it for.

So the first thing to clarify is:
What is the purpose of your analysis - what is the aim of
your' data collection?

When you have found out what you want you still have an
infinity of models to chose between.
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Which model should I use?

The choice is always a choice between complicated and less
complicated models.

Complicated models are often better models, in the sense that
they are better approximations to the truth.

But complicated models can be:
Very hard to estimate - many parameters.
Very hard to understand.
Very hard to communicate.

So in these senses they are not so good models.
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Which model should I use?

Less complicated models are often not as good models, in the
sense that they are not so good approximations to the
truth.

But less complicated models can be:
Easy to estimate - few parameters.
Easy to understand
Easy to communicate
So in these senses they are better models.

The first thing o remember is that all models are
approximations!

Statistical significance has nothing to do with the quality of
the model!
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Which model should I use?

You can often divide the explanatory variables into groups:
1: Variables of primary interest- main exposure.

2: Variables of less interest - variables you want to adjust
for.

A good model will try to infroduce the first group in an
interpretable way into model.

- You want to known “how they work".

E.g. if you specifically are interested on the "effect” of age
you should model age in a understandable way.

Still you have to look out for collinearity.
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Which model should I use?

The second type of variables can be introduces any way you
like.

Tt can be very complicated - you do not care- as long as they
do the job - that is, adjust sufficiently.

If you are not interested in age in itself - you just want to
adjust - then age can be introduce in a complicated/weird
way, e.g. a fourth order polynomial.

In general:

Models with many parameters need more data to obtain
precise estimate.

Again few data - lower your ambition !
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Automatic model selection

Some programs (even STATA) have programmed algorithms
for automatic model selection!

That is, procedures that will find the "best" model to answer
you question with out knowing what you want, know or
anything else about the problem!

It is very rarely of any interest, especially if you have little
data.

There are in general three types of such algorithms:

Backward selection : You specify a start model and the
procedure will reduce the model by removing variables from
the model until nothing can be removed.

The criteria for removing variables are typically high p-
values.
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Automatic model selection

Forward selection : You specify a start model together with
a list of variables that might be included in a model. The
procedure will build the model by adding variable from the
list to the model until nothing can be added.

The criteria for adding variables is typically low p-values.

Best subset selection: You specify a list of variables that
might be included in a model and number of variables you
want in the model. The procedure will then search among
the possible models and find the "best".

The criteria is the typically the highest likelihood or related
statistics.
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Automatic model selection Model selection and some implications
Some comments: Even when you do not use an automatic model selection
' procedures :The final model is selected!

* These procedures do not know anything about the subject. That is, you have spend some time working with the model you

* They will not consider transformation of the variables. present!

* or interaction. You might choose only to include statistical significant

* They will chose arbitrarily between explanatory variables variables in the model.

that are highly correlated. You might group two levels of a explanatory variable into one
level if there is no statistical significant difference
between the two levels.

The implications of this selection:
* The estimates tend to be too far away from null.
* The standard errors are too small.

* The CTI's are to narrow and the p-values too small.
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