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Regression in general
A regression model can be many things!

In general it models the relationship between:

y: dependent/response
and a set of
x's: independent/explanatory variables.

The dependent variable is modelled as a function of the
independent variable plus some unexplained random variation:

y=r(x0) +" e

Unknown Parameters

Unknown Parameters
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Regression in general
y=f(x0) "+" e(0)
Some examples:
pefr =3, + B, - height + E
pefr = B, + B, height + j3, - height” + E and E ~ N(0,0°
gfr= exp(,b'() + 5 ~1n[Cr]) +E
conc(t)=dose-V -[exp(—/iu,u -t)—exp(-4

eli

0]+E

The first two are linear regressions, the last two non-linear.

In this course we will focus on the linear regressions.

Simple linear regression

The relationship between measured PEFR and height in 101
medical students.
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A model:  PEFR = line + some random variation
seems to be valid.
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Simple linear regression: The model

Let PEFR; and height; be the data for the ith person.
PEFR, = 3, + 3, - height, + E, E,~N(0,07)

This model is based on the assumptions:

1. The expected value of PEFR is a linear function of height.
2. The unexplained random deviations are independent.

3. The unexplained random deviations have the same
distributions.

4. This distribution is normal.
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Linear and Logistic Regression: Note 1.1

Morten Frydenberg Linear and Logistic regression - Note 1.1 4

Simple linear regression: The parameters
PEFR = f3,+ 3, - height, + E,  E, ~N(0,0)

The model have three unknown parameters:
1. The intercept 3,
2. The slope (or regression coefficient) /3,
3. The residual variance o2 or residual standard deviation o.
The interpretation of the parameters:
[, is expected PEFR of a person with height=0.

Obviously, this does not make sense.

We will later look at how one can get a meaning full estimate
of the general level of PEFR !
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Simple linear regression: The parameters
PEFR = 3, + 3, - height, + E,  E,~N(0,6)
[, is the expected difference in PEFR for two persons who
differ with one unit (here cm) in height.

If a person is 6 cm higher than another, then we will expected
that his PEFR is 63, higher than the other.

o'is best understood by the fact that a 95%-prediction
interval around the line is given by +1.960.
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Simple linear regression: The estimates (by hand)
PEFR = f3,+ 3 - height, + E,  E, ~N(0,0°)

The estimates of the parameters are found by the method
of least square, which, for this model, is equivalent to the
maximum likelihood method.

The estimates can be calculated in hand, but they are of
course found much easier by using a computer program.

y - 200 =9)(x %) B=y-5-x

b= 2
Z (x,-%)
N N 2 1
A2 l 2
6" =——Y(v-B-Bx) =—=2r
0 1
n-2 ' ' n—-2<"
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Simple linear regression: The estimates (by computer)
In STATA we fit the model by the command

|n: Always check This|
v

regress PEFR height

Source | SS df MS Number of obs =
+ FC 1, 99) = 69.90
Model | 226303.854 1 226303.854 Prob > F = 0.0000
Residual | 320519.473 99 3237.57044 R-squared = 0.4139
- Adj R-squared = 0.4079
Total | 546823.327 100 5468\23327 Root MSE = 56.9
VA

P>|t| [95% conf. Iyerva'lj

PEFR | coef. std. Err.| ‘ t
+
height | 5.711578 .6831558 8.36 0.000 4.356049 7.067107
_conS//-JSG.QZOS 117.9567 3.87  0.000 -690.9721 -222.869
A2
o

N AV /
b, B, 6
Standard errors | 95% confidence intervals |
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Simple linear regression: The distribution of the estimates

5 ~N[ﬁ|,azz(xl_x)z] se(B)=6/ X (x-%)

- N| 07|~ XD 3 :A\/l _®
B, {/)’ o |:"+Z(X,—X)- se(,b’u) & n+Z(x,—Y)2

2
62 ~ no;2,1’2(n—2)

Some comments:

The precision of the estimates of S, and /3, depends on the
size of the variation around the line.

The precision of the estimate of 3, increases with the

variation of x's
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Simple linear regression: Confidence intervals
Exact 95% confidence intervals , CI's, for /3, and /3, are
found from the estimates and standard errors

95% CI for B,: p, £t -se(,é’l)

95% CI for /3,1 3, 2107 se(3,)

Where 17 is the upper 97.5 percentile in the t-
distribution n-2 degrees of freedom.

These confidence intervals are found in the output.

Note that if n is large then this percentile is close to 1.96
and one can use the approximate confidence intervals:

Approx. 95% CI for /3,1 ,+1.96-se( )
Approx. 95% CI for f3,: 3, +1.96-se(3,)
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Simple linear regression: Confidence intervals
Exact 95% confidence intervals , CI's, for o using the #?
distribution with n-2 degrees of freedom.

95% CI for o:6- 2;1;2 <0o<6- 2;1;2
72,(0.975) 72,(0.025)
Where %,(0.975) is the upper 97.5 percentile and
22,(0.025) the lower 2.5 percentile in the 42 -
distribution n-2 degrees of freedom.

This confidence interval is rarely given in the output !
Using STATA we

find: display 56.9%sqrt(99/invchi2(99,0.975))
' 49.95859
display 56.9*%sqrt(99/invchi2(99,0.025))
66.099322
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Linear and Logistic Regression: Note 1.1
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Changing the reference value and scale for x Simple linear regression: The intercept
. Let us fit the model with a meaningful intercept/constant:
PEFR = f3,+ 3 -height, +E,  E, ~N(0,0°) g P
In this model the parameter 3, does not make sense. generate height170=height-170
But if we consider the equivalent model: regress PEFR heightl70
. 5 Source | SS df MS Number of obs = 101
PEFR =a, +a, (height,—=170cm)+ E, E,~N(0,2°) | |- L FC 1, 99) - 69.90
Model | 226303.854 1 226303.854 Prob > F = 0.0000
H R H Residual| 320519.473 99 3237.57044 R-squared = 0.4139
then ¢ is the expected PEFR of a person with height 170ecm. | ~ [Residual I oA 99 32375704 A Rotovared = 0.4079
) Total | 546823.327 100 5468.23327 Root MSE = 56.9
The two other parameters are unchanged, ie. f,= 0 and =17 = |-mmmmmmmmmm e
PEFR | Coef. std. Err. t P>|t| [95% conf. Interval]
If HEIGHT denote the height inm, i.e. HEIGHT = height/100 ’,’,;}’g[,;i%]m;:}ii;’ 6831558 .36 0.000 4356 7.0671
. . _cons | 514.0477 5.906923  87.02 0.000  502.32  525.76
and we consider the equivalent model: | |
Nothing is changed except this
PEFR, =, + - HEIGHT, + E, E, ~ N(0,0") J J pt this|
The expected PEFR for a person with height=170cm is:
then 7, =100- 5, , 7, = and w=c P forap 9
514 (502;526) I/min
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Confidence interval for the estimated line
< L .
3 . The true line is given as : y=p8,+p5 x
a potez and estimated by plugging in the estimates 3= /3 + /3 - x
o
5E 700 The standard error of this estimate is given by:
o
o K 5 ~ N 1 x-%)
QE 56007 se(ﬁ’[,+ﬂl-x):6' 7+7( )72
gl § ., noY(x -%)
< /‘”"' . = with the 95% (pointwise) confidence interval
§_£ ° ‘. 1's A P 0.975 A o
L)f, ES 4007 . ‘ ﬂ[)+/B1'Xitn.—2 'Se(IB()+ﬂ|'x)
1;;0 1‘60 17( 12‘30 15‘)0
Height (cm) Many programs can make a plot with the fitted line and its
| confidence limits.
New reference for height . L
g In STATA its done by the 7f7tc7 graph command.
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Confidence interval for the estimated line Simple linear regression: Tests
8007 pigi03 . Statistical test concerning /3, and /3, can be calculated in the
standard way based on estimates, standard errors and the
7004 t-distribution:
= Hypothesis: B =By
£ 600+ .e R 5
o« . —
i e Test statistics: 2 ZLA'” P-value: 2-P(1,.,<—|2])
500 . se(ﬁl )
L[] Y L4
. 38 An example: Hypothesis /3, = 5
400
.. 5.771-5 o
‘ S ‘ ‘ z=———=0.7116 P-value 30%
150 160 170 180 190 0.6832
Height (cm)
twoway ///
(scatter PEFR height, mco(blue) msym(0)) /17 In STATA: lincom he'ightl70-5
(1fitci PEFR height,clpat(1l) cip(rline) ) ///
,legend(off) ytit("PEFR (1/min)") x1ine(170 )
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Simple linear regression: Tests/confidence intervals The example: Summarising
The p-values found in the regression output corresponds to PEFR, = 3, + 3, - (height, =170) + E, E, ~ N(0,6*)
the hypothesis that the given parameter is zero, e.g. 5, = 0 . The estimates:
i?f’;zi;:;ag\‘zﬁ r)ve find that £, is highly significant (p<0.001) B 571 (4.36;7.07) Vmin/em
That is, there is a statistical significant association between By 514 (502;526) V/min
PEFR and Height. o: 569 (50.0;66.1) /min
The estimate with cgnfidence interval does of course contain The difference in mean PEFR between two persons who differ
much more information than the p-value: one cm in height is in interval from 4.36 to 7.07 I/min - the

95% CI for /3, 5.71 (4.36;7.07) I/min/cm best guess is 5.71 I/min.

From this we can se that the difference in mean PEFR The mean PEFR for a person who is 170 cm is in the interval
between two persons, who differ one cm in height, is in 502 to 526 I/min - the best guess is 514 |/min.

interval from 4.36 to 7.07 1/min. A 95% prediction interval is given as 112 |/min.
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