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Logistic regression . ,

Morten Frydenberg © Watch out for 'small’ reference groups
Institut for Biostatistik I . .
The likelihood ratio test: comparing two nested models.

When one might use logistic regression. The logistic regression model in general

Some examples: The model and the assumptions.

One binary independent variable. (one odds ratio). The data and the assumption of independence.

Probabilities, odds and the logit function Estimation and inference

One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and continuous
independent variable no interaction.

One binary independent variable and continuous
independent variable with interaction.

Morten Frydenberg Linear and Logistic regression - Note 3 1 Morten Frydenberg Linear and Logistic regression - Note 3 2
Logistic regression models: Introduction Logistic regression models: Introduction
A logistic regression is a possible model if the dependent A logistic regression can also be used to estimate the odds
variable (the response) is dichotomous dead/alive obese/not ratios in a unmatched case-control study.
obese efc.

For such data the constant terms have no meaning.
Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

And the odds ratios comparable odds ratio from a follow-up
study.

Many other epidemiological design are analyzed by logistic

When working with binary response it is custom to code the regression models.

“positive” event (eg. dead) as 1 and a "negative" event (alive)
as 0.

A logistic regression models the probability of a "positive
event” via odds.

And the associations via odds ratio.
If the event is rare then odds ratios estimate the relative
risk.
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Estimating one odds ratio using logistic regresion Finding an odds ratio using logistic regresion
We are now considering a larger part of the Frammingham odds,,
data set, consisting of 4690 person with known BMI at the The odds ratio is defined as: OR = ——om
start. OddsMen
We will focus on the risk obesity (BMI>30 kg/m?). 5o applying the logarithm we get:
Out of the 4690 persons 601 = 12.8% were obese. In(OR)=1In (%j =1In(odds,,,,, )~ In(odds,,,
Divided into gender 0ddS )z,
Obese Not-Obese And rearranging terms :
Women | 375 (14.2%) | 2268 In(oddsy,,,, ) =n(odds,,, ) +In(OR)
Men 226 (11.0%) |1821 That is the log-odds obesity for the women can be written as

We see a higher prevalence among women: OR: 1.33 (1.12;1.59). the sum of two terms:

That is the odds of being obese is between 12 and 59 percent "The log-odds in reference group (men)

higher for women.( x2=10.2 p-value=0.001) *The log of the odds ratio
Morten Frydenberg Linear and Logistic regression - Note 3 5 Morten Frydenberg Linear and Logistic regression - Note 3 6
Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
In(odds,,,,, ) =In(odds,,,, ) +1n(OR) In(odds) = f3, + B, - woman
If we again let women be a indicator/dummy variable, then we In(odds,y,, ) In(OR)
can consider the model:
ln(OddS) = IB() —+ ﬁl -woman OI" 1'0 be more pl"eCISe: IBI = ln(ORW(an\'.\'M(’H)
So, if we can fit the model above to the data, then we can
For men we geft: In(odds) = f3, if fi

get an estimate of the log(OR) and hence of OR!
And for women: In(odds) = f, + 5,

Comparing with the equation on top we get:

ﬂ(} = ln (OddsMen )

and 5, =In(OR)
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Probabilities and odds

If p denote the probability of an event (the risk, the
prevalence proportion, or cumulated incidence proportion)
then the odds is given by :

4

odds =——
l-p

Note: odds=1 < p=0.5 < In(odds)=0

ln(odds):ln( P j

I-p
In mathematics the last function of p is called the “logit"

function.
. _ )4
loglt(p)—ln( j
lI-p

Linear and Logistic regression - Note 3

Morten Frydenberg

Probabilities and odds

Plot01

Probability
b

logit=In(odds)
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Probabilities and odds

In(odds) = 3, + /3, - woman|

So modelling the log-odds is the same as modelling logit(p)

and model from before could be written.

‘logit(p) =B,+05- woman‘

odds

Going from odds to probabilities: p=——
1+ odds

The model on probability scale is :

B exp( S, + B, - woman)
1+exp(f3, + f3, - woman)

Morten Frydenberg Linear and Logistic regression - Note 3

1

Finding an odds ratio using logistic regresion
logit(p) =In(odds) = S, + /3, - woman
Back to finding the estimates.
In STATA:

char sex[omit]1l
xi: logit obese 1i.sex

i.sex _Isex_1-2 (naturally coded;|_Isex_1 omitted)
Iteration O: log likelihood = -1795.5437
Iteration 3: log likelihood = -1790.3703
Logit estimates Number of obs = 4690 I
LR chi2 (1) = 10.35
Prob > chi2 = 0.0013
Log likelihood = -1790.3703 Pseudo R2 = 0.0029
obese | Coef. Std. Err. zZ P>|z| [95% Conf. Interval]
,,,,,,,, e
_Isex_2 | .2868784 .0898972 3.19 0.001 .1106831 .4630738
_cons | -2.086606 .070526 -29.59 0.000 -2.224835 -1.948378
Morten Frydenberg Linear and Logistic regression - Note 3 12
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Finding an odds ratio using logistic regresion
logit(p) =In(odds) = 3, + B, - woman

3 =In(OR 95% CT for In(OR)
1

obese | Coef. Std. Err. z P>|z| [95%&. Interval]
,,,,,,,, N __M__________
_Isex_2 | .2868784 .0898972 I 3.19 0.001 I |.110683l .4630738 I

.070526 -29.59 0.000 —-2.224835 -1.948378

OR = exp(0.2868784) =1.33 95% CI: (1.12;1.59).

Test for the hypothesis : In(OR)=0 < OR=1
Odds in reference group (men) = exp(-2.086606)=0.1241
95% €T :(0.1081;0.1425).
Prevalence among men: 0.1104 (0.0975;0.1247).
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Finding an odds ratio using logistic regresion
logit(p) =In(odds) = S, + B, - woman

An easier way o obtain the odds ratio.

xi: logit obese i.sex

i.sex _Isex_1-2 (naturally coded; _Isex_1 omitted)
Iteration 0: log likelihood = -1795.5437
Iteration 3: log likelihood = -1790.3703
Logit estimates Number of obs = 4690
LR chi2 (1) = 10.35
Prob > chi2 = 0.0013
Log likelihood = -1790.3703 Pseudo R2 = 0.0029
obese Odds Ratio 4 P>z [95% Conf. Interval]
,,,,,,,, B /
_Isex_ 2 1.332262 3.19 0.001 1.117041 1.588951

Note, we cannot find any information about the risk in the
reference group , i.e. the odds and prevalence among men!

Morten Frydenberg Linear and Logistic regression - Note 3 14

The obesity and age: version 1

In the previous section we saw that the prevalence of obesity
was different between men and women.

Ts it also associated with age?

The simplest model on the logit scale would be:
logit(p) =In(odds) = 3, + /3, - age
That is a linear relation on the log-odds scale.

As we have seen before using age implies that /5 references to
a hewborn (age=0).

So we will chose age=45 reference instead:

logit(p) =In(odds) = f,+ /3, - (age —45)

Morten Frydenberg Linear and Logistic regression - Note 3 15
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The obesity and age: version 1
logit(p) =1In(odds) = S, + B, - (age —45)
The interpretation of the parameters:

/5, : the log odds for 45 year old person.

f, + the log odds ratio, when comparing two persons who
differ 1year in age.

exp(f, ): the odds ratio, when comparing two persons who
differ 1 year in age.

Note, that this odds ratio is assumed to be the same no
matter what age the two persons have, as long as they differ
by one year!

The log odds ratio is proportional to the age differences,

e.g. OR increases exponentially with the age differences.

Morten Frydenberg Linear and Logistic regression - Note 3 16
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The obesity and age: version 1 The obesity and age: version 1
logit(p)=In(odds) = S, + f3, - (age —45) logit(p)=In(odds) = S, + f3, - (age —45)
Obtaining the estimates in STATA: Estimate: /3, : —1.985 (~2.0767:—1.8951)
The odds for obesity for among 45 year old:
0.1373 (0.1253;0.1503)

gene age4S5=age—-45
logit obese age4b

Iteration O: log likelihood = -1795.5437

Iteration 3: log likelihood = -1772.3839 . .

Logit estimates Number of obs - 1690 The prevalence of obesity for among 45 year old:
LR chi2 (1) = 46.32
Prob > chi2 - 0.0000 0.1207 (0.1114;0.1307)

Log likelihood = -1772.3839 Pseudo R2 = 0.0129

obese | Coef Std. Err z P>|z| [95% Conf. Intervall]

,,,,,, o

age45 | .0348023 .0051296 6.78 0.000 .0247484 .0448561

_cons | -1.985922 .0463594 -42.84 0.000 -2.076785 -1.895059

Test for no association with age
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =In(odds) = B, + B, - (age —45)
i i ip: 1 =-1. .0348- -4

Estimates: 5.+ 0.0348 (0.0247:0.0449) Estimated relationship: In(odds) 986 +0.0348 - (age —45)
The odds ratio for being obese is 1.0354 (1.0251;1.0459) N Plot02
when comparing the old person to the young person, if they
differ with one year in age.

1.54
If they differ with 4.5 years then the odds ratio is 8
1.035443 (1.025142;1.0459*5)=1.17 (1.12;1.22) g

-2
In STATA:

logit obese age45,or

will give you the OR for one year age difference directly. s
777777777777777777777777777777777777777777777777777777777777777777777 3‘0 3‘5 4‘0 45 5;0 5‘5 6‘0 6‘5 7‘0
obese | 0dds Ratio 4 P>z [95% Conf. Intervall] Agein Years
age45 | 1.035415 6.78  0.000 1.025057 1.045877
;A;;Tie;\;;;z;e;\;;;g 777777777 I:| r:e;;;;g Ii;giisi‘riicir‘ieig;eis;iio;i-il\;o;;; 777777777777777777777 1797 Morten Frydenberg Linear and Logistic regression - Note 3 20
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The obesity and age: version 1

Estimated relationship:
exp(—1.986+0.0348 - (age — 45))

1+exp(—1.986+0.0348 - (age — 45))

prevalence =

.25
Plot03

prevalence
o
f

.05

T
30 35 40 45 50 55 60 65 70

Agein Years
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The obesity and age: version 2
In(odds) = /3, + B, - (age — 45)

This model assumes that one year of age difference is
associated with the same odds ratio irrespectively of the age.

An other way to model the prevalence could be to assume a
step function that is to categorize age.

We will here look at age divided in seven five-years groups:
egen agegrp’/=cut (age), at(0,35,40,45,50,55,60,120) label

With this command the youngest age group will be number O
the second youngest: 1and the oldest: 6

Morten Frydenberg Linear and Logistic regression - Note 3 22

The obesity and age: version 2

table agegrp7 ,c(min age max age count obese sum obese)row

agegrp7 | min (age) max (age) N (obese) sum (obese)
,,,,,,,,,, e
0- | 30 34 352 23
35— | 35 39 973 105
40— | 40 44 885 93
45— | 45 49 799 95
50— | 50 54 733 115
55— | 55 59 613 95
60— | 60 66 335 75
|
Total | 30 66 4,690 601

A model that have different odds in each age group :
6
In(odds) =, +Z“1‘ -agei

i=1

Where agei is an indicator for being in the ith age group

Morten Frydenberg Linear and Logistic regression - Note 3 23

Linear and Logistic Regression: Note 3

The obesity and age: version 2
In(odds) = o, + 204 -agei

i=1
The interpretation of the parameters:

o, : the log odds in reference group=the youngest.

o : the log odds ratio, when comparing one person in age
group i with one in the reference group=the youngest.

char agegrp7[omit]0

xi: logit obese i.agegrp7 NOT G” OUTPUT

obese | Coef. Std. Err. z P>|z]| [95% Conf. Intervall]
,,,,,,,,,,,,, o
_Iagegrp7_1 | 54833 23915 2.29 0.022 .079603 1.017061
_Iagegrp7_2 | 51860 24193 2.14 0.032 .0444155 .992787
_Iagegrp7_3 | 65766 24179 2.72 0.007 .1837537 1.13157
_Tagegrp7_4 | .97900 .23839 4.11 0.000 .5117642 1.44625
_Tagegrp7_5 | .96446 .24284 3.97 0.000 .4884941 1.440436
_Iagegrp7_6 | 1.41737 .25238 5.62 0.000 .9227081 1.912032

_cons | -2.66056 .21567 -12.34 0.000 -3.083288 -2.237839
Morten Frydenberg Linear and Logistic regression - Note 3 24
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The obesity and age: version 2 The obesity and age: version 2
6
In(odds) = ct, + 3, - agei In(odds) = o, + Y e, - agei
= . . i=1 . N
xi: logit obese i.agegrp7,or NOT Cl” OUTPUT The OquuT contains six tests lof no d|ff€r‘ence n I"ISk -
****** hose 10ads matioNota. mens 2 mo1a1 (953 comt. Intereall comparing each of the six groups with the reference (the
777777777777 . youngest) group.
_Tagegrp7_1 | 1.730365 2.29 0.022 1.082857 2.765057
_Tagegrp7_2 | 1.679677 2.14 0.032 1.045417 2.698747 The Command: testparm _Iagegrp*
e v X n o e o will give a "Wald fest” of no difference between the seven
Tageqrp7 5 | 2.623384 . #370806 _ 3.97 _ 0.000 1.62986 4.222538 groups .
_Tagegrp7_6 | 4.126254 1 04139\ 5.62 0.000 2.516095 6.766825
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (1) _TIagegrp7_1 =0
(2) _TIagegrp7_.2 =0
The OR between the second oldest and the youngest: (3) _lagegrp?_3 = 0
. (4) _Tagegrp7_4 =0
2.62 (1.63,4.22) (5 _TIagegrp7_5 =0
( 6) Tagegrp/7 6 = 0 - N —
Between a 63 and 322 percent increase in odds. chiz( 6) = 55.26 Highly significant
Prob > chi2 = 0.0000 d|ff6r‘ences
Small prevalence: 63 and 322 percent increase in prevalence.
A statistical significant difference in Npr'evalence!
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The obesity and age: version 2 The obesity and age: version 2
Using the age group 45-49 as reference
1 .25
Plot04

char agegrp7[omit]3

xi: logit obese i.agegrp7,or NOT Cl|| Ou'l'pu'l'
777777777777777777777777777777777777777777777777777777777777777777777777 24

obese |0dds Ratio 4 P>z [95% Conf. Intervall]
,,,,,,,,,,,, [ e
_Tagegrp7_0 | .518061 -2.72 0.007 .3225264 .8321407 °
_Tagegrp7_1 | .896434 -0.73 0.467 .6675609 1.203778 §
_Tagegrp7_2 | .870175 -0.90  0.369 .6424561 1.17861 g 157
Iagegrp7 4 | 1.378981 36 2.15 0.031 1.029341 1.847385 s
Tagegrp7 5 | 1.359073 .1123 7 1.96 0.050 1.000625 1.845927

0.000 1.529915 2.986803

The OR between the second oldest and the 45-49 old:
1.36 (1.00;1.85) a 051

3 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70
Age in Years Age in Years

Between a no and 85 percent increase in (odds) prevalence.

Estimated relationshi
A borderline significant different in prevalencel! mated relationship
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The obesity and age: version 1 and 2 The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at
25 — modelt age.

Plot05
Let us try to look at those two at the same time

The simplest model on the logit scale would be:
In(odds) = f3, + B, - woman + f3, - (age — 45)
This is based on three assumptions:

log odds
N
prevalence
&

Additivity on logit scale: The contribution from sex and age
are added.

-25

Proportionalty on logit scale: The contribution from age is
3 o1 proportional to it is value.

3 35 40 45 50 55 60 65 70 3 3 40 45 5 55 60 65 70

Age n Years Agein vears No effectmodification on logit scale: The contribution from
one independent variable is the same whatever the value is
for the other.
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = f3, + B, - woman + f3, - (age — 45) In(odds) = f, + 3, - woman + j3, - (age - 45)
. . Obtaining the estimates in STATA:
The interpretation of the parameters: 9 m
xi:logit obese i.sex agedb
/3, : the log odds for 45 year old man. g g
. . i.sex _Isex_1-2 (naturally coded;
f, i the log odds ratio, when comparing a woman to a man of Tteration 0: log likelihood = -1795.5437
Iteration 3: log likelihood = -1767.701%
the same age' Logit estimates I Number of obs = 4690|
. . LR chi2 (2) = 55.68
5, : the log odds ratio, when comparing two persons of the ron s e e
same sex, where the first is one year older than the Log likelihood = -1767.7019 Pseudo R2 = 0.0155
ther'. obese | Coef. Std. Err. z P>z [95% Conf. Intervall]
,,,,,,,, S
B, *Aage: the log odds ratio, when comparing two persons of —sex-2 | 2743977 0903365 el ibenlil -0973375 -451458
. . aged5 | .0344723 .005135 6.71 0.000 .0244072 .0445374
the same sex, where the first is Aage years older than _cons | -2.147056 .07219}2/ =29.74  0.000 Wl ~2.00555
the other. | T —/— —— == :
Tests: | No association with sex No association with age
Prevalence is 50% among 45 year old men
Morten Frydenberg Linear and Logistic regression - Note 3 31 Morten Frydenberg —"tifear and CogisTIC Tegression - INoTe 3 32
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = B, + B, - woman + f3, - (age — 45) In(odds) = B, + B, - woman + f3, - (age — 45)
xi:logit obese i.sex aged5, or -1 .25
obese | 0Odds Ratio Std. Err. zZ P>|z| [95% Conf. Interval] - men - men
=== women ’ ===+ women
******** oo Plot06
_Isex_2 | 1.315738 .1188618 3.04 0.002 1.102232 1.5706
aged5 | 1.035073 .0053155 6.71 0.000 1.024707 1.045544

OR for women compared to men “adjusted for age” :

1.32 (1.10;1.57) 8 g
© 2 = 151
The unadjusted was 1.33 (1.12;1.59). 8 s
. " . 4
OR for one year age difference "adjusted for sex” : 7
1.04 (1.02;1.05) 29 " ,,/’
The unadjusted was 1.04 (1.03;1.05)
Not much has changed! 31 05
30 35 40 45 50 55 60 65 70 30 3 40 45 50 55 60 65 70
Age in Years . . . Age in Years
The estimated relationship
Morten Frydenberg Linear and Logistic regression - Note 3 33 Morten Frydenberg Linear and Logistic regression - Note 3 34
The obesity, sex and age: version 2 The obesity, sex and age: version 2
) ) In(odds) = f3, + B, - woman + f3, - (age —45) + 3, - woman - (age — 45)
A more complicated model on the logit scale would be: Estimates log odds:
men: ln(OddS) = a() + al . (age —45) xi: logit obese i.sex*aged5
. — . _ obese | Coef. Std. Err. z P>|z]| [95% Conf. Intervall]
women: In(odds)=y,+7,-(age-45) | | obese | Coef. std.mer. oz Belzl [99% Conf. Intervel)
. - _Isex 2 | _.116797  .095034 1.23  0.219  -.069467 _ _.303061
Thls IS based onone assump.hons. aged45 | —-.0056849 .008372 -0.68 0.497 -.022095 010725
. . ) — . _TsexXaged~2 | .065803  .01074 6.13  0.000 044747 _ _. 0868588
Proporhon_ahy on .|°.9'1' scale: The contribution age is _cons |-2.083041  .070643 -29.49  0.000  -2.22149 -1.944583
proportional to it isvalte. | | T T
. Lo L - . 7 -~ To--m=m====—="
It can be written in just one formula (with interaction): Men i Difference between women and men :

In(odds) = /3, + B, - woman + [3, - (age — 45) + B3, - woman - (age — 45)
o, = p, o =p,

Wh P>|z| [95% Conf. Interval]
ere. o H oo e b e N f
Y =08,+p V=B + B 0.219 .9328908 _ _1.353997

0.497 978147 17010783

0.000 1.045763 1.090743

Thatis: B =y,-a, Bi=r-¢ et

Morten Frydenberg Linear and Logistic regression - Note 3 35 Morten Frydenberg Linear and Logistic regression - Note 3 36
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The obesity, sex and age: version 2 The case control example
In(odds) = S, + B, - woman + f3, - (age —45) + f3, - woman - (age — 45) cabodds cancer age
PlotQ7 S — men R [ men | T o e
= =* women ,: == women age | cases controls odds [95% Conf. Interval]
s 00 *fr )= B Tt e
14 ,’ // 25-34 | 2 116 0.01724 0.00426 0.06976
/ 3 / 35-44 | 9 190 0.04737 0.02427 0.09244
,/ / 45-54 | 46 167 0.27545 0.19875 0.38175
/ / 55-64 | 76 6 0.45783 0.34899 0.60061
N 151 ,’ 2 / 65-74 | 55 106 0.51887 0.37463 0.71864
E / 5 | J >=75 | 13 31 \0&935 0.21944  0.80138
o / g 2 s 0 o\ N
2 ! s / : : ;
2] =] / Few events in reference group= wide CI's
// T ——— L7 tabodds cancer age,~oT
/ T o N e S e e
251 ,I a1 ’/’ age | Odds Ratio chi2 P>chi2 [95% Conf.|Interval]
/ /’/ 777777 +t----—-—t
/7 25-34 | 1.000000 . .
/ 35-44 | 2.747368 1.76 0.1843 0.579474 13.025660
3-' ' ' ' ' ' ' ' 0-' . . . . . . . 45-54 | 15.976048 24.18 0.0000 3.588609 71.123412
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70 55-64 | 26.554217 41.14 0.0000 5.834718 120.850133
Age in Years Age in Years 65-74 || 30.094340 43.99 0.0000 6.278745 144.243682
The eSTimC\TCd r'e'Cl'HonShip >=75 | 24.322581 29.40 0.0000 4.402342 134.380270
Morten Frydenberg Linear and Logistic regression - Note 3 37 Morten Frydenberg Linear and Logistic regression - Note 3 38
The case control example , The case control example
char age [omit]1l
xi:logit cancer i.smoker i.age,or
tabodds cancer age i.smoker _Ismoker_0-1 (naturally coded; _Ismoker_0 omitted)
777777777777777777777777777777777777777777777777 i.age _Tage_1-6 (naturally coded; _Iage_1 omitted)
age | cases controls odds [95% Conf. Interval] Tteration O: Tog likelihood = -496.55682
777777 5 1 Iteration 1: log likelihood = -437.55133
25-34 | 2 116 0.01724 0.00426  0.06976 Iteration 2: log likelihood = -429.86007 - . -
35-44 | 9 190 0.04737 0.02427 0.09244 Iteration 3: log likelihood = -428.99383 Many lTeI"GTIOhS
45-54 | 46 167 0.27545 0.19875 0.38175 Iteration 4: log likelihood = -428.94473
55-64 | 76 166 0.45783 0.34899 0.60061 Iteration 5: log likelihood = -428.94432
65-74 | 55 0.51887 0.37463  0.71864 Iteration 6: log likelihood = -428.94432
>=75 | 13 31 \% 0.21944 0.80138 Logit estimates Number of obs = 977
7777777777777777777777777777777777777777777777777777777777777777777 LR chi2 (6) = 135.23
‘Many’ events in reference group= narrow CI's Prob > chi2 - 0.0000
Log likelihood = -428.94432 Pseudo R2 = 0.1362
tabodds_cancer age, or|lbase(3)| o e
********************** I:J************************** e cancer | Odds Ratio Std. Err. zZ P>|z| [95% Conf. Intervall]
age || Odds Ratio chi2 P>chi2 [95% Conf.|Intervall | |- B T e
****** L 1 e Ismoker_1 | 2.350 .4513038 4.45 0.000 1.613342 3.424472
25-34 | 0.062594 24.18 0.0000 0.014060 0.278660 _Tage_2 | 2.832 2.24368 1.31 0.189 .5995103 13.3798
35-44 | 0.171968 25.86 0.0000 0.079661 0.371235 _Iage_3 | 16.58 12.17378 3.82 0.000 3.932286 69.91422
45-54 | 1.000000 . . T T Tage_4 | 27.89 20.32374 4.57 0.000 6.691356 116.3235
55-64 | 1.662127 5.54 0.0186 1.083844 2.548952 _Tage_5 | 34.79 25.59029 4.83 0.000 8.231516 147.0764
65-74 | 1.883716 7.32 0.0068 1.181689 3.002809 _Tage_6 | 27.71 21.89267 4.21 0.000 5.891878 130.3509
>=75 | 1.522440 1.30 0.2546 0.734799 3.154365 | | |\t i i i i i —
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The case control example

char age [omit]3
xi:logit cancer i.smoker i.age,or

Friday, 10 December 2004

i.smoker _Ismoker_0-1 (naturally coded; _Ismoker_0 omitted)
i.age Tage 1-6 (naturally coded; _Iage_3 omitted)
Iteration 0: log likelihood = -496.55682
Iteration 1: log likelihood = -437.55133
Iteration 2: log likelihood = -429.86007
Iteration 3: log likelihood = -428.99383
Iteration 4: log likelihood = -428.94473
Iteration 5: log likelihood = —-428.94432
Logit estimates Number of obs = 977
LR chi2 (6) = 135.23
Prob > chi2 = 0.0000
Log likelihood = -428.94432 Pseudo R2 = 0.1362
cancer | Odds Ratio Std. Err. 4 P>z [95% Conf. Intervall]
,,,,,,,,,,, U
_Ismoker_1 | 2.3504 .451303 4.45 0.000 1.613343 3.424469
_Tage_1 | .0603 .0442767 -3.83 0.000 .0143051 .2542718
_Tage_2 | .1708 .0652397 -4.63 0.000 .0807999 .3610977
_Tage_4 | 1.6826 .3701188 2.37 0.018 1.093327 2.58953
_TIage_5 | 2.0984 .5042862 3.08 0.002 1.31025 3.360918
_Tage_6 | 1.6713 .6277714 1.37 0.171 .8005146 3.489699
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Things to look out for in the output

In general:

Wide CT's or large standard errors in a logistic regression
indicates that at least one group has few events!

Many iterations in a logistic regression indicates that some
of the parameters are hard to estimate.
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Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald to test if several
coefficients could be zero .

An other way to “"compare” two models is by a likelihood
ratio test.

In the logistic regression output from STATA we find a
likelihood ratio test comparing the fitted model with the
model with no dependent variables the constant odds model:

LR chi2 (6) = 135.23
Prob > chi2 = 0.0000

The conclusion: The model with smoker and age is statistical
significant better, than a model assuming the same odds, risk
for everybody.
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Linear and Logistic Regression: Note 3

Comparing two models: the likelihood ratio test
One can compare two models with a likelihood ratio test if:
*The two models are fitted on exactly the same data set.

*The two models are nested, i.e. one can go from one model
to the other by setting some coefficients to zero.

In STATA the test is found in this way:
xi:logit cancer i.smoker i.age
estimates store modell

xi:logit cancer i.smoker

estimates store model2

lrtest modell model2

Output:
likelihood-ratio test LR chi2 (5) = 120.82
(Assumption: model2 nested in modell) Prob > chi2 = 0.0000

i.age adds statistical significant information to the model
only containing smoking!
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Logistic regression model in general

k
In(odds) = 3, +z,b’p ‘X,
p=1

This is based on three assumptions:

a. Additivity on log-odds scale: The contribution from each
of the independent variables are added.

b.Proportionalty: The contribution from independent variables
is proportional to it is value (with a factor f)

c. No effectmodification: The contribution from one
independent variables is the same whatever the values are
for the other.

Note a. can also be formulate as multiplicativity on odds scale
odds = odds, - OR" - OR* ---- OR}*
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Friday, 10 December 2004

Logistic regression model in general
In(odds) = 3, +Zk: X,
If one consider two persons whlz;ldiffer' with
Ax;inx;, Ax, inx,..and Ax, in x;

then difference in the log odds is :
k
2,4,
p=l

Again we see that the contribution for each of the
explanatory variables:

are added,

are proportional to the difference

and does not dependent of the difference in the other

on the log odds scale.
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Logistic regression model in general
k
In(odds) = p3, +Z,BP ‘X,
If one consider two persons wh[é)ZIdiffer' with
Ax;inx,, Ax, inx, .. and Ax, in x,
then odds ratio :
OR = OR™ -OR}™---- OR™

Note the model might also be formulated:
k
exp(ﬁo + Zﬂp ’ ‘xp)
— -1 = p=1
ln(p)—ln(Pr[Y—l])— -
1+exp(ﬁ’0 +Zﬂp -xpj
p=1
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Linear and Logistic Regression: Note 3

Logistic regression model in general
k
In(odds) = f3, +z,5p ‘X,
p=1

The data: Y =1/0 dichotomous dependent variable

X}, X, .. X, independent/explanatory variables

Like in the normal regression models it is assumed that the ¥'s
are independent given the explanatory variables.

This assumption can, in general, only be checked by
scrutinising the design.

Look out for data sampled in clusters:
Patients within the same GP
Children within the same family

Twins.
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Logistic regression model in general
Estimation:

Excepting the two by two tables, there are no closed form for
the estimates.

The distribution of the estimates are not known.
Estimates are found by the method of maximum likelihood.
Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based
on asymptotics.

That is, all statistical inference are approximate.

The more data - the more events -the better the
approximations.
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