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Simple Linear regression Simple linear regression: The model
Checking the model
Morten Frydenberg © Let Y; and x; be the data for the ith person.
Institut for Biostatistik 5
The assumptions. Y=F+pB x+E E~ N(O’G )
Independent errors? This model is based on the assumptions:
Predicted values and residuals. 1. The expected value of Y is a linear function of x.
Do the errors have the same distribution? 2. The unexplained random deviations are independent.
Normal errors? 3. The unexplained random deviations have the same
distributions.

Two examples, where the model is not valid.

. . 4. This distribution is normal.
Leverage: a measure of influence.

Standardized residuals.
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Checking the model: Independent errors ? Predicted values and residuals

Assumption no. 2: the errors should be independent, is mainly Y=8+8 -x,+E E ~N (0, 02)

checked by considering how the data was collected. Based on the estimates we can calculate the predicted (fitted)

The assumption is violated if values and the residuals:

-some of the persons are relatives (and some are not) and the

dependent variable have some genetic component. Predicted value:  §, =/ +/ x

some of the persons were measured using one instrument and Residual: L=y =9 =y, _(ﬁu +/ 'X,-)
others using another. X .
The predicted value is the best guess of y; (based on the

+in general if the persons were sampled in clusters. estimates) for the ith person

The residual is a guess of E; (based on the estimates) for the

ith person.
STATA: predict PEFR_hat if e (sample),xb
predict PEFR_res if e(sample),resid
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Checking the model: Checking the model:
Linearity and identical distributed errors Linearity and identical distributed errors

No problems! Except this outlier

10 83

Assumption no. 1:
The expected value of Y is a linear function of x.
Assumption no. 3:
The unexplained random deviations have the same
distributions.

@

S

8
i

N

S

3
T

2

3
T

.
.
.

These are checked by inspecting the following plots of: e

* Residuals versus predicted

- Residuals versus x
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Checking the model:
Linearity and identical distributed errors

No problems! Except this outlier
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Checking the model: Normal errors ?
Assumption no. 4: the errors should be normal distibuted.

This is checked by making histograms or qq-plots of the
residuals: = %o
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Assumptions violated: Example 2

The relation between GFR and Serum Creatinine

150+

1004

GFR (ml/min)

-50

Cr mg/100 ml

Clearly non-linear!
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Assumptions violated: Example 3

The relation between GFR and 1/Serum Creatinine
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A linear relation!

Increasing variation!
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Assumptions violated: Example 2
Checking the model Close to normal
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Clearly not constant mean!
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Assumptions violated: Example 3
Checking the model Close to normal
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| Increasing variation! | | Increasing variation! |
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Influential data points: Example 4 Influential data points: Leverage
Not all data points have the same influence on the estimates: Th? influence of a data point is sometime measured
by its leverage: _\2
1 (xi B x)
26 hl_ =—+

n n \2

Z(X, %)

j=1
Large values imply that the estimates and/or the standard
errors is highly influenced by this observation.

24

Fitted line with
all the points

: < h.<
22 | included 0<h;<1
F'ﬁ"-d.""e with the Notice, it is a function only of the independent variable, x and
red point excluded the sample size.
207 . . .
: : : : : The leverage for a given data point depends on how far away
4 6 ® 10 12 its independent variable is from the average value.
The data point works like a leverage (veegtstang). STATA:. predict PEFR_lev if e(sample), leverage
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Influential data points Leverage Types of residuals: Standardized residuals
A leverage versus independent variable for the The (unstandardized) residual: L=y, —( B+ B, -xi)
example on page 13.
T 0 Has mean zero but non-constant variance: sd(r)=o/1-1h
7 I. e. residuals from points with high leverage have smaller
s variance, than residuals from points with small leverage.
g B . . .
E ® Due to this one often use the standardized residual:
25 ’;
4=
oot G\J1-h,
01 T T T T T
4 6 8 10 12 . . . . .
x This will have variance 1, if the model is true.
The data point with the 'extreme’ x value has vel
X P m ry STATA: predict PEFR_zres if e(sample), rstandard
high leverage - as expected. _
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Influential data points? Example 4 Influential data points? Example 5
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Large leverage and standardized residual large! Small leverage but standardized residual large!
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Influential data points? Example 6
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Large leverage but standardized residual ok!
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Influential data points? Example 6

Results with using all data:

Root MSE = 1.0282

v oI Coef std. Err t P>t [95% Conf. Interval
,,,,,,,, o

x | .7364484  .1594519 4.62  0.002 3594045 1.113492

cons | 16.1386 1.78019 9.07  0.000 11.92912 20.34808

Results without the point with high leverage:

Root MSE = 1.1099
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
x| .8080605 .8563254 0.94 0.382 -1.287292 2.903413
-9.235928 39.83292

_cons | 15.2985 10.02669 V\153 0.178

Point estimates unchanged| Standard errors much larger.

Confidence intervals much
wider.
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The PEFR example: leverage and standardized residuals

Leverage
@
Leverage
@

The PEFR example: Excluding observation no 83
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Leverages are small, observation no. 83 has large residual
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Some comments on checking a (simple) linear regression
Always consider the design: How was the data collected?
This has implications for the validity of the statistical model.
And it has implications for the interpretation of the results.

Observations with high leverages have ‘extreme’ values of the
independent variable.

These observation will have high impact on the results, but
might not be 'representative’.

Sometimes it is best to exclude these from the analysis.

Observation with large residuals, that is observed y value far
away from expected, should be checked for errors.
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Prediction interval for future value

The true line is given as : y=B+8 x
and estimated by plugging in the estimates =/, + /3 - x
The standard deviation for a new observation is given by:

—\2
sd(f,+ 5 x+E)=6 1+l+(x_7x)2
n Z(x -X)
with the 95% (pointwise) prediction interval
B+ B -xx® -sd(,f3'lJ +4 ~x+E)
Many programs can make a plot with the fitted line and its
prediction limits.

In STATA its done by the 1fitci and graph command, the
option stdf
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Prediction interval for future value

twoway ///

(scatter PEFR height, mco(blue) msym(O)) /17
(lfitci PEFR height, stdf clpat(l) cip(rline) ) /17
,legend(off) ytit ("PEFR (1/min)")
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