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When one might use logistic regression.

Some examples:
One binary independent variable. (one odds ratio).
Probabilities, odds and the logit function
One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and continuous
independent variable no interaction.

One binary independent variable and continuous
independent variable with interaction.
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Watch out for ‘small’ reference groups
The likelihood ratio test: comparing two nested models.
The logistic regression model in general

The model and the assumptions.

The data and the assumption of independence.

Estimation and inference

Morten Frydenberg Linear and Logistic regression - Note 4

Logistic regression models: Introduction

A logistic regression is a possible model if the dependent
variable (the response) is dichotomous dead/alive obese/not
obese efc.

Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

When working with binary response it is custom to code the
“positive” event (eg. dead) as 1 and a "negative” event (alive)
as 0.

A logistic regression models the probability of a "positive
event” via odds.

And the associations via odds ratio.

If the event is rare then odds ratios estimate the relative

risk.
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Logistic regression models: Introduction

A logistic regression can also be used to estimate the odds
ratios in an unmatched case-control study.

For such data the constant terms have no meaning.

And the odds ratios is comparable to the odds ratio from a
follow-up study.

Many other epidemiological design are analyzed by logistic
regression models.
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Estimating one odds ratio using logistic regression

We are now considering a larger part of the Frammingham
data set, consisting of 4690 persons with known BMI at the
start.

We will focus on the risk obesity (BMI>30 kg/m?).

Out of the 4690 persons 601 = 12.8% were obese.
Divided into gender

Obese Not-Obese
Women |375 (14.2%) |2268
Men 226 (11.0%) |1821

We see a higher prevalence among women: OR: 1.33 (1.12;1.59).

That is the odds of being obese is between 12 and 59 percent
higher for women.( x2=10.2 p-value=0.001)
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Finding an odds ratio using logistic regression
_odds,

Women

The odds ratio is defined as: OR
odds,,,,

So applying the logarithm we get:

In(OR) = In| 2% %8wmen | ~ 11 (odds,, ) ~In(odds,,, )
odds,,,,
And rearranging terms :
In(odds,,,,, ) =In(odds,,, ) +1n(OR)

That is the log-odds obesity for the women can be written as
the sum of two terms:

+The log-odds in reference group (men)
*The log of the odds ratio
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Finding an odds ratio using logistic regression Finding an odds ratio using logistic regression
In(odds,,,,, ) =In(odds,,, ) +1n(OR) In(odds) = f3, + f3, - woman
If we again let women be an indicator/dummy variable, then In(odds,,,, ) In(OR)
we can consider the model:
In(odds) = §, + f, - woman Or to be more precise: B, =10(OR,0111)
- 0 1
For men we get: In(odds) = f, So, if we can fit the model above to the data, then we can

get an estimate of the 1o0g(OR) and hence of OR!
And for women: In(odds)= /3, + 5,

Comparing with the equation on top we get:

ﬂtl = 11'1 (Oddstx )
and
=l ( OR )
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Probabilities and odds e
Probabilities and odds
If p denotes the probability of an event (the risk, the N
prevalence proportion, or cumulated incidence proportion) o PRt
then the odds is given by : :
.87
odds =—L— .
1-p i
2z 6
Note: odds=1 < p=0.5 < In(odds)=0 3 s
& 4
In(odds) = In| —£ 3
I-p 2
. . . W on A4
In mathematics the last function of p is called the "logit |
function. o1 ‘ ; ; ; ; ; ; ; ; ;
-5 -4 -3 -2 -1 0 1 2 3 4 5
logit(p)=1In p logit=In(odds)
I-p
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Probabilities and odds Finding an odds ratio using logistic regression
logit =In(odds)= S, + 5, - woman
‘ln(odds) =5,+p5 ~woman‘ git(p) =1In( )=h+h
Back to finding the estimates.
So modelling the log-odds is the same as modelling logit(p) In Stata: 7ogit obese bl.sex,baselevel
and model from before could be written. T o0 ke hood = 170 385
Iteration 2: log 1ikelihood = -1790.3703
: — . Iteration 3: Tlog likelihood = -1790.3703
‘IOglt(p) - ﬁ() +ﬁl WOman‘ Logistic regression |Number of obs = 4690 |
R chiZ(D) = 10.35
Prob > chi2 = 0.0013
Going from odds to probabiliTieS' p= odds Log likelihood = -1790.3703 pseudo R2 = 0.0029
I+odds | | obese |  coef. std. Err. 2z eslz|  [95% Conf. Intervall

The model on probability scale is :

ex + 3, - woman
= p(f+ 5, ) = INVLOGIT (3, + /3, - woman) I
L+exp(f, + B, - woman) _cons | -2.086606 .0705261 -29.59 0.000 -2.224835 -1.948378

.0898972 3.19 0.001 .1106831 .4630738
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Finding an odds ratio using logistic regression
logit(p) =In(odds) = 3, + 3, - woman

95% CI for In(OR)

.2868784 .0898972 | 3.19  0.001 I .1106831 .4630738
.070526  -29.594 0.000 -2.224835 -1.948378

OR =exp(0.2868784) =1.33 95% CI: (1.12;1.59).

Test for the hypothesis : In(OR)=0 < OR=1
Odds in reference group (men) = exp(-2.086606)=0.1241
95% CI :(0.1081;0.1425).
Prevalence among men: 0.1104 (0.0975;0.1247).
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Finding an odds ratio using logistic regression
logit(p) =In(odds) = f3, + 3, - woman
An easier way to obtain the odds ratio.
Jogit obese bl.se «m baselevel

Iteration O: log 1ikelihood = -1795.5437
Iteration 3: log 1ikelihood = -1790.3703

Logit estimates Number of obs = 4690
LR chi2(1) = 10.35

Prob > chi2 = 0.0013

Log likelihood = -1790.3703 Pseudo R2 = 0.0029
odds Ratio [95% Conf. Interval]

1.332262 . 1.117041 1.588951

Note, we cannot find any information about the risk in the
reference group , i.e. the odds and prevalence among men!
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The obesity and age: version 1

In the previous section we saw that the prevalence of obesity
was different between men and women.

Is it also associated with age?

The simplest model on the logit scale would be:
logit(p)=In(odds)= /3, + B, - age

That is a linear relation on the log-odds scale.

As we have seen before using age implies that 4 references to
a newborn (age=0).

So we will choose age=45 reference instead:

logit(p) =In(odds) = f3, + B, - (age —45)
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The obesity and age: version 1
logit(p) =In(odds) = f3, + 5, - (age —45)
The interpretation of the parameters:

B, + the log odds for a 45 year old person.

B, : the log odds ratio, when comparing two persons who
differ 1 year in age.

exp(4, ): the odds ratio, when comparing two persons who
differ 1 year in age.

Note, that this odds ratio is assumed to be the same no
matter what age the two persons have, as long as they differ
by one year!

The log odds ratio is proportional to the age differences,

e.g. OR increases exponentially with the age differences.
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The obesity and age: version 1
logit(p) =In(odds) = f3, + B, - (age—45)
Obtaining the estimates in Stata:

generate age45=age-45
Jogit obese age45

obese | Coef.  std. Err. z P>|z| [95% conf. Interval]
______ o o e m oo
age45 | .0348023 .0051296 6.78 0.000 .0247484 .0448561
_cons | -1.985922 .0463594 -42.84 0.00 -2.076785  -1.895059

age45 1.025057 1.045877
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The obesity and age: version 1
logit(p) =In(odds) = f3, + 3, - (age —45)
Estimate: 3, : —1.985 (-2.0767;-1.8951)
The odds for obesity among 45 year old:
0.1373 (0.1253;0.1503)
The prevalence of obesity among 45 year old:
0.1207 (0.1114;0.1307)

N

odds
odds = exp (log(odds)) Prob =" s
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =In(odds) = f3, + B, - (age—45)
Estimates: B, + 0.0348 (0.0247:0.0449) Estimated relationship: In(odds)=-1.986+0.0348(age —45)
The odds ratio for being obese is 1.0354 (1.0251;1.0459) R -

when comparing the old person to the young person, if they
differ with one year in age.

If they differ with 4.5 years then the odds ratio is 2
1.035443 (1.025143;1.045945)= 1.17 (1.12;1.22) g
2
In Stata: Tincom age45*4.5,0R
(1) 4.5 aged45 =0
-2.5
3‘0 3‘5 4‘0 45 5;0 5‘5 éO 6‘5 7‘0
Age in Years
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The obesity and age: version 1 The obesity and age: version 2
Estimated relationship: _
exp(—1.986+0.0348 - (age - 45)) In(odds) = 3, + 3, -(age —45)
prevalence = 1+exp(~1.986+0.0348 - (age — 45)) This model assumes that one year of age difference is
o associated with the same odds ratio irrespectively of the age.
Plot03 An other way to model the prevalence could be o assume a

step function that is to categorize age.

We will here look at age divided in seven five-years groups:
egen agegrp7=cut(age), at(0,35,40,45,50,55,60,120) 7abel

prevalence
o
T

With this command the youngest age group will be number O

n / the second youngest: 1and the oldest: 6

.05
30 35 40 45 50 55 60 65 70

Age in Years
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The obesity and age: version 2 The obesity and age: version 2
. 6
table agegrp7 ,c(min age max age count obese sum obese) row In(odds) =, + Y. a, - agei
agegrp7 | min(age) max(age) N(obese) sum(obese) . . i=l
__________ DT T The interpretation of the parameters:
0- | 30 34 352 23 .
35- | 35 39 973 105 o, : the log odds in reference group=the youngest.
40- | 40 44 885 93
45- | 45 49 799 95 - i i i
e - ot s R o i the Iog.oqu ra‘h?, when comparing one person in age
55- | 55 59 613 95 group i with one in the reference group=the youngest.
60- | 60 66 335 75
| Tlogit obese 1i.agegrp7,baselevel Not all output
Total | 30 66 4,690 601 | e
__________________________________________________________ obese | coef. std. Err z P>|z| [95% conf. Interval]
_____________ T T Tl
A model that have different odds in each age group : agearp? I (base)
6
_ . 1 | .5483322 .239152  2.29 0.022 0796029  1.017061
In(odds) = @, +204 -aget 2 | .5186016 .2419361 2.14 0.032 .0444155  .9927877
i=l 3 | .6576621 .2417944 2.72  0.007 .1837537 1.13157
.. . Lo . 4 | .9790072 .2383937 4.11  0.000 .5117642 1.44625
Where agei is an indicator for being in the ith age group 5 | .9644652 .2428468 3.97  0.000 .4884941  1.440436
6 | 1.41737 .2523832 5.62 0.000 9227081 1.912032
_cons |-2.660564 .2156798 -12.34 0.000  -3.083288 -2.237839
Morten Frydenberg Linear and Logistic regression - Note 4 23 Morten Frydenberg Linear and Logistic regression - Note 4 24

Linear and Logistic Regression: Note 4 4



Morten Frydenberg Version: Wednesday, 17 November 2010

The obesity and age: version 2 The obesity and age: version 2
. 6
In(odds) = c, + ), - agei In(odds) =, + - agei
i=1 . . i-1 . . .
Togit obese i.agegrp?,or baselevel Not all output The output contains six tests of no difference in risk -
“““ chese lodds racioNecd. tref 2 ezl Tosk conf. imtervall comparing each of the six groups with the reference (the
____________ O e youngest) group.
1 | 1.730365 . 29 0.022 1.082857 2.765057 .
2 | 1.679677 14 0.032 1.045417  2.698747 The command: testparm i.agegrp7
| e R R A Yt will give a "Wald test” of no difference between the seven
5 | 2.623384 . .97___0.000 1.62986___ 4.222538 groups .
6 | 4.126254 .0413 .62 0.000 2.516095 6.766825
______________________________________________________________________ (1) [obesell.agegrp7 = 0
( 2) [obesel2.agegrp7 = 0
The OR between the second oldest and the youngest: (3) [obese]3.agegrp? = 0
. ( 4) [obesel4.agegrp? = 0
262 (163,422) ( 5) [obese]l5.agegrp7 = 0
( 6) [obesel6.agegrp7 =
Between a 63 and 322 percent increase in odds. chi2( 6) = 55.26 Highly significant

Prob > chi2 0.0000 differences
Small prevalence: 63 and 322 percent increase in prevalence.
A statistical significant difference in prevalence!
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The obesity and age: version 2 The obesity and age: version 2
Using the age group 45-49 as reference
1 .25
Togit obese b3.agegrp7,or baselevel Not all output Plot04
obese |o0dds Ratio std. Err z P>|z| [95% conf. Interval]
———————————— e e .24
agegrp7 |
0 | .5180611 -2.72 0.007 .3225264  .8321407
1 | .8964346 -0.73  0.467 .6675609  1.203778 3
2 | .8701754 -0.90  0.369 .6424561 1.17861 5
3 | (base) e
4 ]1.3789 &
5 | 1.359073_/ 1.96__0.050 1.000625___ 1.845927
6 | 2.137652 7 .3648206 4.45 0.000 1.529915  2.986803 N
The OR between the second oldest and the 45-49 old:
1.36 (1.00;1.85) s o5
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
Age in Years Age in Years

Between a no and 85 percent increase in (odds) prevalence.

. d relationshi
A borderline significant different in prevalence! Estimated relationship
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The obesity and age: version 1 and 2 The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at
T — modelt 251 — modelt age.
Plot05 - :mzwz - ::azlz 9

Let us try to look at those two at the same time
The simplest model on the logit scale would be:

In(odds) = /3, + f,- woman + 3, - (age — 45)
This is based on three assumptions:

log odds
prevalence

Additivity on logit scale: The contribution from sex and age
are added.

Proportionalty on logit scale: The contribution from age is
3 051 proportional fo its value.

30 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70

Agen Years Agen Years No effectmodification on logit scale: The contribution from
one independent variable is the same whatever the value is
for the other.
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds)=f3,+ /3, - woman + f3, - (age —45) In(odds) = 3, + 3, - woman + 3, - (age —45)
Obtaining the estimates in Stata:

The interpretation of the parameters: Jogit obese bI.sex ageds

f, + the log odds for a 45 year old man.

Iteration O: Tlog 1ikelihood = -1795.5437

. . Iteration 3: log likelihood = -1767.7019
p, : the log odds ratio, when comparing a woman to a man of Logistic regression [ Number of obs = 4690]
LR ch12(2) = 55.68
the same age. prob > chi2 = 0.0000
. . Log Tikelihood = -1767.7019 Pseudo R2 = 0.0155

B, : the log odds ratio, when comparing two persons of the o e s ] e
same sex, where the first is one year older than the obese | coef. std. Err. z ez [95% conf. Interval]
other. | 77 s | T
. 1 | (base)

B, *Aage: the log odds ratio, when comparing two persons of 2 | .2743976  .0903385 AdelldemellaOll -0973374 4514579
. . age45 | .0344723 .0051354/ | .0244072 .0445374
the same sex, where the first is Aage years older than “cons |-2.147056 0721981 |20.74 0.000 ] 748561  -2.00555

the other. Tests: [No association with sex l No association with age

Prevalence is 50% among 45 year old men
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = f3, + 5, - woman + 3, - (age — 45) In(odds) = /3, + f,- woman + 3, - (age — 45)
Togit obese bl.sex age45, or -1 .25
obese | odds Ratio Std. Err. z P>|z| [95% conf. Interval] . VT;:‘E" , . VT;:‘E"
-------- i et Plot06
2.sex | 1.315738  .1188618 3.04  0.002 1.102232 1.5706
age45 | 1.035073  .0053155 6.71  0.000 1.024707  1.045544

OR for women compared to men “adjusted for age" :

1.32 (1.10;1.57) 8 &
° 2 ® 157
The unadjusted was 1.33 (1.12;1.59). 8 g
OR for one year age difference "adjusted for sex” : /’J
1.04 (1.02;1.05) 25 " /,,
The unadjusted was 1.04 (1.03;1.05)
Not much has changed! s 05
30 35 40 :Sge ‘g[)ye:ri 50. 65 70 3f) 35 4.0 -'Xze igOYeafi 60 65 70
The estimated relationship
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The obesity, sex and age: version 2 The obesity, sex and age: version 2

In(odds) =S, + j3,- woman + f3, - (age — 45) + /3, - woman - (age — 45)

A more complicated model on the logit scale would be: Estimates log odds:

men: ln(odds) =o,+a, - ([lge—45) Togit obese bl.sex##c.age45
. - . — obese | Coef. std. Err. z P>|z| [95% Conf. Interval]
women: In(odds)=7y,+7,-(age-45) | | obese | Coef. std. Err. z  Pelzl  [95% conf. Interval)
e ion: 2.sex | 116797 .0950345 1.23 0.219  -.0694672 _ _.3030611
This is based on one assumption age45 | —,005684 .0083728 -0.68 0.497  -.0220953 _ _.0107255

. X — . #c.ageds

Proportionalty on the logit scale: The contribution age is e L 065803 010743  6.13  0.000 0447472 _ _.0868588
proportional to its value. _cons [-2.083041 .0706433 -29.49 0.000  -2.221499 _ -1.944583

It can be written in just one formula (with interaction): Men

In(odds) = f, + j3,- woman + f3, - (age —45) + /3, - woman - (age — 45) Estimates odds ratios:

Wh a, = ﬂ() [24 ::BZ obese | odds Ratio P>|z|  [95% conf. Intervall
(A A A Y T e N e e R
n=6+6  n=p5+p 2.sex | 1.123891 . 0.219  .9328907 _ _1.353997
age4s 29943312 0.497 .978147 1.010783
. sex#c.age45 |
Thatis: B=y,-a, B=1-¢ _2_ _1.068016 0.000 1.045763 _ _1,090743
Morten Frydenberg Linear and Logistic regression - Note 4 35 A_I\BFT_an_F;';d_e_n_bgl:g _________ Linear and [Egﬁs_ﬁc_;eal:e_s_s@;_-_ﬁo}gz _____________________ 36
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The obesity, sex and age: version 2 A small case-control example
In(odds) = f,+ j3,- woman + f3, - (age — 45) + /3, - woman - (age — 45) tabodds cancer age
Ploto7 ~° men 4 mn [ | 1 |- p——————————————————y oo e

—=—" women J == women age | cases controls odds [95% Conf. Interval]
2 e N R EEEee St R e e
1 Vi I/ 25-34 | 2 116 0.01724 0.00426 0.06976
/ 3 / 35-44 | 9 190 0.04737 0.02427 0.09244
/ ,/ 45-54 | 46 167 0.27545 0.19875 0.38175
/ / 55-64 | 76 0.45783 0.34899 0.60061
P / 3 /I 65-74 | 55 106 0.51887 0.37463 0.71864
§ // % » / >=75 | 13 31 41935 0.21944  0.80138

g / S S

& . .
2] ~——— ] / | Few events in reference group= wide CI's
Vv [ — / tabodds cancer age,~or
/ "—""“’7-4-—-._._,___-_ ———————————————————————————————————————————————————————
25 ,l 1 ,/’ age || odds Ratio chi2 P>chi2 [95% conf.|Interval]
/ S R IR IR bbb B i it Sttt
/ - 25-34 || 1.000000 ) )

/ 35-44 | 2.747368 1.76 0.1843 0.579474 13.025660
S I I ol R 45-54 || 15.976048 24.18 0.0000 3.588609 71.123412
3 3 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70 55-64 | 26.554217 41.14 0.0000 5.834718 120.850133
Age in Years Agein Years 65-74 | 30.094340 43.99 0.0000 6.278745 144.243682
The eSTimaTed r‘elaTionship >=75 | 24.322581 29.40 0.0000 4.402342 134.380270
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A small case-control example ) A small case-control example
logit cancer b0.smoker bl.age,or
Iteration 0: Tlog likelihood = -496.55682
tabodds cancer age Iteration 1: Tlog likelihood = -437.36405
________________________________________ Iteration 2: log likelihood = -429.36499 . P .
age | cases controls odds [95% conf. Interval] Iteration 3: Tlog Tikelihood = -428.94718 quy iterations
""" e e Iteration 4: log likelihood = -428.94432
25-34 | 2 116 0.01724 0.00426 0.06976 Iteration 5: Tlog Tikelihood = -428.94432
35-44 | 9 190 0.04737 0.02427 0.09244 Logistic regression Nbmber of obs = 977
45-54 | 46 167 | 0.27545 0.19875  0.38175 LR chi2(6) _ 135.23
55-64 | 76 166 | 0.45783 0.34899  0.60061 prob > chi2 _ 0.0000
65-74 | 55 0.51887 0.37463  0.71864 I _ B )
5275 | 13 31T~ 0.21944  0.80138 tog likelihood = ~428.94%32 Psewdo R2 T .13
Tttt """‘"‘ ‘‘‘‘‘ '_ ‘‘‘‘‘‘‘‘ T " cancer | odds Ratio  Std. Err z P>|z| [95% conf. Interval]
| Many' events in reference group= narrow CI'sf |----—-- R
smoker
tabodds_cancer age r| base(3)| 0 | (base)
----------------------------------------------------------------------- 1 | 2.350498 .4513038 4.45  0.000 1.613342 3.424472
age || odds Ratio chi2 P>chi2 [95% Conf.|Interval] age |
------ B ity i I 1 | (base)
25-34 | 0.062594 24.18 0.0000 0.014060 | 0.278660 2 | 2.832192 2.243677 1.31 0.189 .5995101 13.37978
35-44 | 0.171968 25.86 0.0000 0.079661 ¥ 0.371235 3 | 16.58078 12.17376 3.82  0.000 3.932284  69.91412
45-54 | 1.000000 . . T T 4 | 27.89911  20.32372 4.57 0.000 6.691354 116.3233
55-64 | 1.662127 5.54 0.0186 1.083844  2.548952 5 | 34.79453  25.59025 4.83 0.000 8.231513 147.0761
65-74 | 1.883716 7.32 0.0068 1.181689  3.002809 6 | 27.713 21.89264 4.21 0.000 5.891876 130.3507
>=75 | 1.522440 1.30 0.2546 0.734799 3.154365 | | @ |---mmmmmmmmmmmm e ————
I_V\EFT_eE_F_r'ycI&l_);r‘_g _________ Linear and Eggﬁs_ﬁc_l:e_g;;e_s_siv;n_-_l\l_o}; T 39 Morten Frydenberg Linear and Logistic regression - Note 4 40
A small case-control example Things to look out for in the output
Togit cancer b0.smoker b3.age,or baselev
Iteration O: Tog TikeTThood = -496.55682 In genera];
Iteration 1 log Tikelihood = -437.36405
Iteration 2: Tlog Tikelihood = -429.36499 : J H fati H
Tteration 3. oy Tikelihood = -428.94718 Wu.:le CI's or large standard errors in a logistic regression
Tteration 4:  Tog Tikelihood = -428.94432 indicates that at least one group has few events!
Iteration 5: log 1ikelihood = -428.94432
Logistic regression Number of obs = 977 Many iterations in a logistic regression indicates that some
LR chi2(6) = 135.23 f Th + h d + +i +
Prob > chi2 - 0.0000 (0] € parameters are har 0 estTimate.
Log Tikelihood = -428.94432 Pseudo R2 = 0.1362
cancer | odds Ratio std. Err z P>|z| [95% conf. Interval]
__________ S
smoker |
0 | (base)
1 | 2.350498 .4513038 4.45 0.000 1.613342 3.424472
age |
1 | .0603108 .0442807 -3.82 0.000 .014303 .254305
2 | .1708118 .0652397 -4.63 0.000 .080800 .361098
3 | (base)
4 ] 1.682618 .3701188 2.37 0.018 1.093327 2.58953
5 | 2.098486 .5042862 3.08 0.002 1.31025 3.360918
6 | 1.671393 .6277714 1.37  0.171 .800514 3.489699
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several coefficients could be zero .

ratio test.

LR chi2(6)
Prob > chi2

135.23
0.0000

for everybody.
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Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald test to test if
An other way to "compare” two models is by a likelihood

In the logistic regression output from Stata we find a
likelihood ratio test comparing the fitted model with the
model with no dependent variables the constant odds model:

The conclusion: The model with smoker and age is statistical
significant better, than a model assuming the same odds, risk
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Comparing two models: the likelihood ratio test
One can compare two models with a likelihood ratio test if:
*The two models are fitted on exactly the same data set.

*The two models are nested, i.e. one can go from one model
to the other by setting some coefficients to zero.

In Stata the test is found in this way:
logit cancer i.smoker 1i.age
estimates store modell

Togit cancer 1i.smoker

estimates store model2

Trtest modell model2

Output:
T1ikelihood-ratio test LR chi2(5) = 120.82
(Assumption: model2 nested in modell) Prob > chi2 = 0.0000

i.age adds statistical significant information to the model
only containing smoking!
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Logistic regression model in general

In(odds) = 5, +Zﬂp x,

This is based on three assumptions:

of the independent variables are added.

is proportional to its value (with a factor )

for the other.
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c. No effectmodification: The contribution from one
independent variable is the same whatever the values are

a. Additivity on log-odds scale: The contribution from each

b.Proportionalty: The contribution from independent variables

Note a. can also be formulate as multiplicativity on odds scale
odds = odds, - OR" - ORy* -+-- OR*
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Logistic regression model in general

In(odds) = f3, + z X,
If one consider two persons who drffer with
Ax;inx;, Ax, inx, .. and Axy in x;
the difference in the Ic‘acg odds is :

E:fzf'Axp
p=1

Again we see that the contribution from each of the
explanatory variables:

are added,

are proportional to the difference

and does not depend on the difference in the other

on the log odds scale.
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Logistic regression model in general

In(odds) ,B[)+z X,

If one consider two persons who differ with
Ax;inx;, Ax, inx, .. and Ax; in x;
the odds ratio :
" OR=O0R™.OR:....OR™

Note the model might also be formulated:

exp[ﬁo+zk_:ﬁp~xpj
1+exp[ﬁ0 +i,6’p ~xpj

p=1

p=Pr[Y=1]=

Morten Frydenberg Linear and Logistic regression - Note 4
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Logistic regression model in general
k
In(odds) = S, + Z X,
p=l1

The data: Y =1/0 dichotomous dependent variable

X| , X, ... X independent/explanatory variables

Like in the normal regression models it is assumed that the Y's
are independent given the explanatory variables.

This assumption can, in general, only be checked by
scrutinising the design.

Look out for data sampled in clusters:
Patients within the same GP
Children within the same family

Twins.
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Logistic regression model in general

Estimation:

Excepting the two by two tables, there are no closed form for
the estimates.

The distribution of the estimates are not known.
Estimates are found by the method of maximum likelihood.
Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based
on asymptotics.

That is, all statistical inference are approximate.

The more data - the more events -the better the
approximations.
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