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When one might use logistic regression.

Some examples:
One binary independent variable. (one odds ratio).
Probabilities, odds and the logit function
One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and continuous
independent variable no interaction.

One binary independent variable and continuous
independent variable with interaction.
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Watch out for ‘small’ reference groups
The likelihood ratio test: comparing two nested models.
The logistic regression model in general

The model and the assumptions.

The data and the assumption of independence.

Estimation and inference
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Logistic regression models: Introduction

A logistic regression is a possible model if the dependent
variable (the response) is dichotomous dead/alive obese/not
obese efc.

Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

When working with binary response it is custom to code the
“positive” event (eg. dead) as 1 and a "negative” event (alive)
as 0.

A logistic regression models the probability of a "positive
event” via odds.

And the associations via odds ratio.

If the event is rare then odds ratios estimate the relative

risk.
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Logistic regression models: Introduction

A logistic regression can also be used to estimate the odds
ratios in a unmatched case-control study.

For such data the constant terms have no meaning.

And the odds ratios comparable odds ratio from a follow-up
study.

Many other epidemiological design are analyzed by logistic
regression models.
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Estimating one odds ratio using logistic regresion

We are now considering a larger part of the Frammingham
data set, consisting of 4690 person with known BMI at the
start.

We will focus on the risk obesity (BMI>30 kg/m?).

Out of the 4690 persons 601 = 12.8% were obese.
Divided into gender

Obese Not-Obese
Women |375 (14.2%) |2268
Men 226 (11.0%) |1821

We see a higher prevalence among women: OR: 1.33 (1.12;1.59).

That is the odds of being obese is between 12 and 59 percent
higher for women.( x2=10.2 p-value=0.001)
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Finding an odds ratio using logistic regresion
_odds,

Women

The odds ratio is defined as: OR
odds,,,,

So applying the logarithm we get:

In(OR) = In| 2% %8wmen | ~ 11 (odds,, ) ~In(odds,,, )
odds,,,,
And rearranging terms :
In(odds,,,,, ) =In(odds,,, ) +1n(OR)

That is the log-odds obesity for the women can be written as
the sum of two terms:

+The log-odds in reference group (men)
*The log of the odds ratio
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Finding an odds ratio using logistic regresion
In(odds, =In(odds,,,, ) +1n(OR)

Women ) Men )

If we again let women be a indicator/dummy variable, then we
can consider the model:

In(odds) = /3, + B, - woman
In(odds) = 3,
In(odds)= /3, + 5,

Comparing with the equation on top we get:

For men we get:
And for women:

ﬂtl = 11'1 (Oddstx )
and
=l ( OR )
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Finding an odds ratio using logistic regresion
In(odds) = f3, + B, - woman

ln(oddv

S pren ) In(OR)
B =1n(0Ry.000)

So, if we can fit the model above to the data, then we can
get an estimate of the 1o0g(OR) and hence of OR!

Or to be more precise:
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Probabilities and odds

If p denote the probability of an event (the risk, the
prevalence proportion, or cumulated incidence proportion)
then the odds is given by :

oddszL
I-p

Note: odds=1 < p=0.5 < In(odds)=0

In (odds) =1n[1 d ]

P
In mathematics the last function of p is called the “"logit"

function.
logit(p)=In| -2
ogit(p)= ln£—j
1-p
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Probabilities and odds

Plot01

Probability
b

logit=In(odds)

Morten Frydenberg Linear and Logistic regression - Note 4 10

Probabilities and odds

‘ln(odds) =p+05- woman‘

So modelling the log-odds is the same as modelling logit(p)

and model from before could be written.

‘logit(p) =4,+pB- woman‘

Going from odds to probabilities: p = _odds_
1+ odds

The model on probability scale is :

B exp(ﬂo +5 ~w0man)
B L+exp(f, + B, - woman)

= INVLOGIT (3, + /3, - woman)
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Finding an odds ratio using logistic regresion
logit( p) =In(odds) = f3, + f, - woman
Back to finding the estimates.
In Stata:

char sex[omit]l
xi: Jogit obese 7.sex

i.sex _Isex_1-2 (naturally coded;
Iteration 0: Tlog 1ikelihood -1795.5437

Iteration 3: log 1ikelihood -1790.3703

Logit estimates |Number of obs = 4690 |
LR chi2(1) = 10.35
Prob > chi2 = 0.0013
Log likelihood = -1790.3703 Pseudo R2 = 0.0029
obese | Coef. std. Err. z P>|z]| [95% Conf. Interval]

________ S
_Isex_2 | .2868784 .0898972 3.19 0.001 .1106831 .4630738
_cons | -2.086606 .070526  -29.59 0.000 -2.224835 -1.948378
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Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
logit(p) =In(odds) = 3, + 3, - woman logit(p) =In(odds) = f3, + 3, - woman
N — An easier way to obtain the odds ratio
— o, .
By =n OR) 95% CI for In(OR) x7: logit obese 7.sex
obese | coef. std. Err. z P>|z| [95% cdpf. Interval] i.sex _Isex_1-2 (naturally coded; _Isex_1 omitted)
________ S, | W Iteration 0: log likelihood = -1795.5437
_Tsex_2 | .0898972 | 3.19  0.001 | [1106831 _ .4630738 Iteration 3: Tog 1ikelihood = -1790.3703
_cons .070526  -29.594 0.000  -2.224835 1048378 Logit estimates Number of obs = 4690
__________________________________________________________________ LR chi2(D) - 10.35
Prob > chi2 =  0.0013
— Log likelihood = -1790.3703 Pseudo R2 = 0.0029
OR =exp(0.2868784) =1.33 95% CL: (1.12;1.59). || |- e
obese odds Ratio z P>|z]| [95% Conf. Interval]
Test for the hypothesis : In(OR)=0 < OR=1 _1sex_2 | 1.332262 319 0.001 | 1.117041  1.588951

Odds in reference group (men) = exp(-2.086606)=0.1241
95% CT :(0.1081:0.1425). Note, we cannot ffnd any information about the risk in the

reference group , i.e. the odds and prevalence among men!
Prevalence among men: 0.1104 (0.0975;0.1247).
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The obesity and age: version 1 The obesity and age: version 1
In the previous section we saw that the prevalence of obesity logit(p) =In(odds) = 5, + - (age —45)

was different between men and women. ) )
The interpretation of the parameters:

Is it also associated with age?
T also assaciated with age B, + the log odds for 45 year old person.

The simplest model on the logit scale would be:
P 9 B, : the log odds ratio, when comparing two persons who

logit(p)=In(odds)= /3, + B, - age differ 1 year in age.

That is a linear relation on the log-odds scale. exp(f, ): the odds ratio, when comparing two persons who

As we have seen before using age implies that 4 references to differ 1 year in age.

a newborn (age=0). Note, that this odds ratio is assumed to be the same no
matter what age the two persons have, as long as they differ
So we will chose age=45 reference instead: by one year!

logit(p) = In(odds) = /4, + /- (age—45) The log odds ratio is proportional to the age differences,
e.g. OR increases exponentially with the age differences.
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =In(odds) = f3, + B, - (age—45) logit(p) =In(odds) = f3, + 3, - (age —45)

Obtaining the estimates in Stata: Estimate: /3, : —1.985 (—2.0767;-1.8951)

generate ageds-age-45 The odds for obesity for among 45 year old:

Jogit obese age45
obece 1 coet. Tard. mer T T T iosk cont. intervall 0.1373 (0.1253;0.1503)

obese | Coef. std. Err z P>|z| [95% conf. Interval]
—————— e et e e R S e e e L e .
ageds | .0348023  .0051296 .0247484  .0448561 The prevalence of obesity for among 45 year old:
_cons | -1.985922 .0463594 -42.84 0.00 -2.076785 -1.895059
““““““““““““““““““““““““““““““““““““ 0.1207 (0.1114;0.1307)

Test for no association with age \
Jogit obese age45,0R odds

odds = exp(log(odds Prob =

____________________________________________________________________ p( &( )) 1+ odds
obese | 0odds Ratio [95% conf. Interval]
age45 1.025057 1.045877
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =In(odds) = f3, + B, - (age—45)
Estimates: B, + 0.0348 (0.0247:0.0449) Estimated relationship: In(odds)=-1.986+0.0348(age —45)
The odds ratio for being obese is 1.0354 (1.0251;1.0459) R -

when comparing the old person to the young person, if they
differ with one year in age.

If they differ with 4.5 years then the odds ratio is 2
1.035443 (1.025143;1.045945)= 1.17 (1.12;1.22) g
2
In Stata:  Tincom age45%*4.5,0R
(1) 4.5 aged45 =0
z P>|z| [95% conf. Interval] -2‘573‘0 3‘5 4‘0 45 5‘0 5‘5 6‘0 6‘5 7‘0
""""""""""""""""""""""" Age in Years
6.78 0.000 1.117806 1.223668
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The obesity and age: version 1 The obesity and age: version 2
Estimated relationship: _
exp(—1.986+0.0348 - (age - 45)) In(odds) = 3, + 3, -(age —45)
prevalence = 1+exp(~1.986+0.0348 - (age — 45)) This model assumes that one year of age difference is
. associated with the same odds ratio irrespectively of the age.
Plot03 An other way to model the prevalence could be o assume a

step function that is to categorize age.

We will here look at age divided in seven five-years groups:
egen agegrp7=cut(age), at(0,35,40,45,50,55,60,120) 7abel

prevalence
o
T

With this command the youngest age group will be number O
n / the second youngest: 1and the oldest: 6

30 35 40 45 50 55 60 65 70

Age in Years
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The obesity and age: version 2 The obesity and age: version 2
6
table agegrp7 ,c(min age max age count obese sum obese) row _ .
__________________________________________________________ ln(odds) =q, +ZUQ -agei
agegrp7 | min(age) max(age) N(obese) sum(obese) . . i=1
---------- oo The interpretation of the parameters:
0- | 30 34 352 23
35- | 35 39 973 105 . H =
oo | b a i 03 o, : the log odds in reference group=the youngest.
45- 45 49 799 95 . . .
50— l 50 54 733 115 o : the log odds ratio, when comparing one person in age
55- | 55 59 613 95 Wi i =
o | X P o % group i with one in the reference group=the youngest.
| char agegrp7[omit]0
Total | 30 66 4,690 601 xi: logit obese i.agegrp7 Not all output

A model that have different odds in each age group :

|

_____________ e e e
J . _Tagegrp7_1 | 54833 .23915 2.29 0.022 .079603 1.017061
In(odds) = o, + - agei tagegrp7_2 |  .51860 .24193  2.14 0.032  .0444155  .992787

i=1 _TIagegrp7_3 | 65766  .24179 2.72  0.007 .1837537 1.13157

. Lo . . . _Tagegrp7_4 | .97900  .23839 4.11  0.000 .5117642 1.44625
Where agei is an indicator for being in the ith age group _Tagegrp7_5 |  .96446  .24284  3.97 0.000  .4884941  1.440436
_Tagegrp7_6 | 1.41737  .25238 5.62 0.000 .9227081 1.912032
_cons | -2.66056  .21567 -12.34 0.000 -3.083288 -2.237839
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The obesity and age: version 2 The obesity and age: version 2
. 6
ln(odds)=a0+§ﬁ, -agel ln(odds):a()+‘204~agei
xi: Togit obese i.agegrp7,or Not all output The output contains six tests of no difference in risk -

T T T """_? ____________________________________________ compar‘ing each of the six groups with the reference (‘rhe

obese |0dds Ratio z P>|z]| [95% Conf. Interval]
____________ O e youngest) group.
_Tagegrp7_1 | 1.730365 .X g .29 0.022 .082857  2.765057 )
_Tagegrp7_2 | 1.679677 .045417  2.698747 The command: testparm _Iagegrp*
I 1.930274 3.100522 PN “ " :
| 2o 124 will give a "Wald test” of no difference between the seven
2.623384 .97 0.000 1.62986 4.222538 groups .
_Tagegrp7_6 | 4.126254 62 0.000 2.516095  6.766825

______________________________________________________________________ (1) _Tagegrp7_1
2) _Iagegrp7_2

The OR between the second oldest and the youngest: 3) _Tagegrp7_3
4) _Iagegrp7_4

2.62 (163,422) 5) _Iagegrp7_5

6) _Iagegrp7_6 i - —
Between a 63 and 322 percent increase in odds. | chi2( ) = 55.26 | Highly significant
Prob > chi?2 0.0000 differ‘ences

Small prevalence: 63 and 322 percent increase in prevalence.

~AA~AAA

A statistical significant difference in prevalence!
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The obesity and age: version 2 The obesity and age: version 2
Using the age group 45-49 as reference
1 .25
char agegrp7[omit]3 Plot04
xi: logit obese i.agegrp7,or Not all output
obese |0odds Ratio z P>|z| [95% conf. Interval] ]
____________ S N
_Tagegrp7_0 | .518061 -2.72 0.007 .3225264 .8321407 °
_Tagegrp7_1 | .896434 -0.73 0.467 .6675609 1.203778 H
_Tagegrp7_2 | .870175 -0.90 0.369 .6424561 1.17861 T 157
agearp7 4 378981 2.15 0.031 1.0293471 1.847385 3
Iageqrp7_5 1.359073 2123097 1.96___0.050 1.000625 1.845927
_Tagegrp7_6 | 2.137652 36482 4.45 0.000 1.529915 2.986803
_________________________________________________________________________ -
The OR between the second oldest and the 45-49 old:
1.36 (1.00;1.85) 3 05
30 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70
Age in Years Age in Years

Between a no and 85 percent increase in (odds) prevalence.

. d relationshi
A borderline significant different in prevalence! Estimated relationship
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The obesity and age: version 1 and 2 The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at
T — modelt 251 — modelt age.
Plot05 - :mzwz - ::azlz 9

Let us try to look at those two at the same time
The simplest model on the logit scale would be:

In(odds) = /3, + f,- woman + 3, - (age — 45)
This is based on three assumptions:

log odds
prevalence

Additivity on logit scale: The contribution from sex and age
are added.

Proportionalty on logit scale: The contribution from age is
3 051 proportional fo it is value.

30 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70

Agen Years Agen Years No effectmodification on logit scale: The contribution from
one independent variable is the same whatever the value is
for the other.
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The obesity, sex and age : version 1
In(odds)=f3,+ /3, - woman + f3, - (age —45)

The interpretation of the parameters:
£, : the log odds for 45 year old man.

p, : the log odds ratio, when comparing a woman to a man of
the same age.

S, : the log odds ratio, when comparing two persons of the
same sex, where the first is one year older than the
other.

/3, *Aage: the log odds ratio, when comparing two persons of
the same sex, where the first is Aage years older than
the other.
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The obesity, sex and age : version 1
In(odds) =S, + j3,- woman + /3, - (age — 45)
Obtaining the estimates in Stata:

x7:7og7it obese 7.sex age45

i.sex _Isex_1-2 (naturally coded;

Iteration O: log Tlikelihood = -1795.5437

Iteration 3: log 1ikelihood -1767.701%
Logit estimates | Number of obs = 4690|
LR chi2(2) = 55.68
Prob > chi2 = 0.0000
Log likelihood = -1767.7019 Pseudo R2 =
obese | Coef. std. Err. z P>|z]| [95% Conf. Interval]
________ o e e
_Isex_2 | .2743977  .0903385 S 0.002 .0973375 .451458
age45 | .0344723  .005135 6.71 __0.000 .0244072 .0445374
_cons | -2.147056  .07219 -29.74 Wl -2.00555

7
Tests: | No association with sex | No association with age

Prevalence is 50% among 45 year old men
Morten Frydenberg = 32

The obesity, sex and age : version 1
In(odds) = f3, + 5, - woman + 3, - (age — 45)
x7:1ogit obese 7.sex age45, or
obese | 0dds Ratio std. Err. z P>|z| [95% conf. Interval]
________ e e e

_Isex_2 | 1.315738 .1188618 3.04 0.002 1.102232 1.5706
age45 | 1.035073 .0053155 6.71  0.000 1.024707 1.045544

OR for women compared to men “adjusted for age" :
1.32 (1.10;1.57)

1.33 (1.12;1.59).

OR for one year age difference "adjusted for sex” :
1.04 (1.02;1.05)
1.04 (1.03;1.05)

The unadjusted was

The unadjusted was

Not much has changed!
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The obesity, sex and age : version 1
In(odds) = /3, + f,- woman + 3, - (age — 45)

men men
—=—- women , —=—- women

Plot06

log odds
9
prevalence
g

-25

3 3 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70
Age in Years Age in Years

The estimated relationship
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The obesity, sex and age: version 2

A more complicated model on the logit scale would be:
men: In(odds) = ¢, + o, - (age —45)
women: In(odds) =7y, +7,-(age—45)

This is based on one assumptions:

Proportionalty on logit scale: The contribution age is
proportional fo it is value.

It can be written in just one formula (with interaction):
In(odds) = f, + j3,- woman + f3, - (age —45) + /3, - woman - (age — 45)
Wh . o, =5 o =p5
ere: 7/(1=:30+13| % =132+133

That is: ﬁl =N % ,33=}/|—C¥|
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The obesity, sex and age: version 2
In(odds) =S, + j3,- woman + f3, - (age — 45) + /3, - woman - (age — 45)
Estimates log odds:

xi: logit obese 1i.sex*age45

obese | Ccoef. std. Err. z P>|z| [95% Conf. Interval]
_____________ S
_Isex 2 | 116797 .095034  1.23 0.219  -.069467 _ _.303061
age4s -.0056849 .008372 -0.68 0.497 -.022095 .010725
_Isexxage4~2 | .065803  .01074 6.13  0.000 .044747 _ _.0868588
_cons .070643 -29.49 0.000 -2.22149 -1.944583

T R

Men | Difference between women and men |

P>|z| [95% Conf. Interval]

0.219 .9328908 1.353997

0.497 .978147 1.010783
0.000 1.045763 1.090743
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The obesity, sex and age: version 2 A small case-control example
In(odds) = f,+ j3,- woman + f3, - (age — 45) + /3, - woman - (age — 45) tabodds cancer age
Ploto7 ~° men 4 mn [ | 1 |- p——————————————————y oo e
—=—" women J == women age | cases controls odds [95% Conf. Interval]
2 e N R EEEee St R e e
4 Vi I/ 25-34 | 2 116 0.01724 0.00426 0.06976
/ 3 / 35-44 | 9 190 0.04737 0.02427  0.09244
/ ,/ 45-54 | 46 167 0.27545 0.19875 0.38175
s / 55-64 | 76 0.45783 0.34899  0.60061
P / 3 /I 65-74 | 55 106 0.51887 0.37463 0.71864
§ // % » / >=75 | 13 31 41935 0.21944  0.80138
g / S S
& . .
2] ~——— ] / | Few events in reference group= wide CI's
ST — / tabodds cancer age,=oT
/ "—""“’7-4-—-._._,___-_ ———————————————————————————————————————————————————————
25 ,l 1 ,/’ age || odds Ratio chi2 P>chi2 [95% conf.|Interval]
/ S N B e ittt
/ - 25-34 || 1.000000 ) )
/ 35-44 | 2.747368 1.76 0.1843 0.579474 13.025660
B I — ol — 45-54 || 15.976048 24.18 0.0000 3.588609 71.123412
3 3 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70 55-64 | 26.554217 41.14 0.0000 5.834718 120.850133
Age in Years Agein Years 65-74 | 30.094340 43.99 0.0000 6.278745 144.243682
The estimated relationship sl e | w0 v e s |
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A small case-control example ... A small case-control example
char age [omit]l
xi:logit cancer i.smoker i.age,or
tabodds cancer age i.smoker _Ismoker_0-1 (naturally coded; _Ismoker_0 omitted)
""""""""""""""""""""""""" i.age Tage_1-6 naturally coded; _Iage_1 omitted)
age | cases controls odds [95% conf. Interval] Tteration O: Tog 1ikelihood = -496.55682
""" e Iteration 1: log likelihood = -437.55133
25-34 | 2 116 | 0.01724 0.00426  0.06976 Iteration 2: log likelihood = -429.86007 . o -
35-44 | 9 190 | 0.04737 0.02427  0.09244 Iteration 3: Tog likelihood = -428.99383 Many" iterations
45-54 | 46 167 | 0.27545 0.19875  0.38175 Iteration 4: Tog likelihood = -428.94473
55-64 | 76 166 0.45783 0.34899 0.60061 Iteration 5: Tlog Tikelihood = -428.94432
65';‘5‘ : i; e 0‘5&32; ggiggi g;éigg Iteration 6: Jog likelihood = -428.94432
>= . - Logit estimates Number of obs = 977
Tttt """"" """ " """ k """""""""""""" - LR chi2(6) = 135.23
| Many' events in reference group= narrow CI's prob > chi2 = 0.0000
bodd . o) Log likelihood = -428.94432 Pseudo R2 = 0.1362
tabo cancer age rl ase(3 I _________________________________________________________________________
——————————————————————————————————————————————————————————————————————— cancer | odds Ratio std. Err. z P>|z| [95% conf. Intervall
age || odds Ratio chi2 P>chi2 [95% conf.|Intervall | = |---mmmm——- o o
—————— e B B _Ismoker_1 |  2.350  .4513038 4.45  0.000 1.613342  3.424472
25-34 | 0.062594 24.18 0.0000 0.014060 | 0.278660 _Tage_2 | 2.832 2.24368 1.31 0.189 .5995103 13.3798
35-44 | 0.171968 25.86 0.0000 0.079661 v 0.371235 _Iage_3 | 16.58 12.17378 3.82 0.000 3.932286 69.91422
45-54 | 1.000000 . . T T _Tage_4 | 27.89  20.32374 4.57 0.000 6.691356 116.3235
55-64 | 1.662127 5.54 0.0186 1.083844  2.548952 _Tage_5 | 34.79  25.59029 4.83 0.000 8.231516 147.0764
65-74 | 1.883716 7.32 0.0068 1.181689  3.002809 _Tage_6 | 27.71  21.89267 4.21 0.000 5.891878 130.3509
>=75 | 1.522440 1.30 0.2546 0.734799  3.154365 | | 0 |ee-cm i l——
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A small case-control example Things to look out for in the output
char age [omit]3
xi:logit cancer i.smoker i.age,or In genera];
i.smoker _Ismoker_0-1 (naturally coded; _Ismoker_0 omitted)
i.age Iage_1-6 (naturally coded; _Iage_3 omitted) : J H fati H
10— Too Tt nood =736 c5ets i -fage_3 omitted) Wu.:le CI's or large standard errors in a logistic regression
Tteration 1: log Tikelihood = -437.55133 indicates that at least one group has few events!
Iteration 2: Tlog Tikelihood = -429.86007
Iteration 3: Tog likelihood = -428.99383 Many iterations in a logistic regression indicates that some
Iteration 4: Tlog Tikelihood = -428.94473 f h h d .
Iteration 5: log 1ikelihood = -428,94432 of the par‘ame‘ter‘s are hard to estimate.
Logit estimates Number of obs = 977
LR chi2(6) = 135.23
Prob > chi2 = 0.0000
Log Tikelihood = -428.94432 Pseudo R2 = .
|
+
_Ismoker_1 | 2.3504 .451303 4.45 0.000 1.613343 3,424469
_Iage_1 | .0603 .0442767 -3.83 0.000 .0143051 .2542718
_Tage_2 | .1708 .0652397 -4.63 0.000 .0807999 .3610977
_Tage_4 | 1.6826 .3701188 2.37 0.018 1.093327 2.58953
_Tage_5 | 2.0984 .5042862 3.08 0.002 1.31025 3.360918
_Tage 6 | 1.6713 .6277714 1.37  0.171 .8005146 3.489699
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Comparing two models: the likelihood ratio test Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald to test if several One can compare two models with a likelihood ratio test if:

coefficients could be zero . *The two models are fitted on exactly the same data set.

An other way to "compare” two models is by a likelihood

N *The dels are nested, i.e. one e model
ratio test. he two models are nested, i.e. one can go from one mo

to the other by setting some coefficients to zero.
In the logistic regression output from Stata we find a

likelihood ratio test comparing the fitted model with the In Stata the test is found in this way:

xi:logit cancer i.smoker 1i.age

model with no dependent variables the constant odds model: estimates store modell
LR chi2(6) = 135.23 xi:logit cancer i.smoker
pProb > chi2 - 0.0000 estimates store model2
Trtest modell model2
The conclusion: The model with smoker and age is statistical Output:
significant better, than a model assuming the same odds, risk 1ikelihood-ratio test LR chi2(s) =  120.82
for everybody. (Assumption: model2 nested in modell) Prob > chi2 = 0.0000

i.age adds statistical significant information to the model
only containing smoking!
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Logistic regression model in general Logistic regression model in general
In(odds) = f3, + z ‘X,
0 2
In(odds) ﬂ0+2ﬂp x, ;

If one consider two persons who drffer with

This is based on three assumptions: Ax, inx,, Ax, inx, .. and Ax, in x,
a. Additivity on log-odds scale: The contribution from each di . loa odds is :
of the independent variables are added. then difference in the log odds is :

b.Proportionalty: The contribution from independent variables Zﬂ,, Ax,

is proportional to it is value (with a factor
prop ¢ & Again we see that the contribution for each of the

c. No effectmodification: The contribution from one explanatory variables:
independent variables is the same whatever the values are are added,
for the other. are proportional fo the difference
Note a. can also be formulate as multiplicativity on odds scale and does not dependent of the difference in the other
odds = odds, - OR" - OR}* -++- OR}* on the log odds scale.
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Logistic regression model in general Logistic regression model in general
k
In(odds) = 5, +z X, In(odds) = S, + Z X,
p=1

If one consider two persons who differ with
Ax;inx;, Ax, inx, .. and Ax; in x;
then odds ratio :

The data: Y =1/0 dichotomous dependent variable

X| , X, ... X independent/explanatory variables

OR =OR™ -OR}™---- OR™ Like in the normal regression models it is assumed that the Y's
are independent given the explanatory variables.
Note the model might also be formulated: This assumption can, in general, only be checked by
scrutinising the design.
k
exp[ﬁo + Zﬁp .xpj Look out for data sampled in clusters:
p=Pr[Y=1]= Patients within the same GP
k
1+ exp[ﬁ(] +> 8, .xpj Children within the same family
! Twins.
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Logistic regression model in general

Estimation:

Excepting the two by two tables, there are no closed form for
the estimates.

The distribution of the estimates are not known.
Estimates are found by the method of maximum likelihood.
Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based
on asymptotics.

That is, all statistical inference are approximate.

The more data - the more events -the better the
approximations.
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