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Linear regression, collinerarity, splines and extensions Collinearity

Morten Frydenberg © .
Department of Biostatistics, Aarhus Univ, Denmark Consider a subsample of the serum cholesterol data set
and the three models:

General things for regression models:

) model O: regress logscl sex sbp dbp
Collinearity - correlated explanatory variables model 1: regress logscl sex dbp
Flexible modelling af response curves - Cubic splines model 2:  regress Tlogscl sex sbp
Normal regression models - an extension variable |  model0 modeTl mode12 - Estimate
. sbp | .00126448 .0014988:
Clustered data / data with several random components | .00087992 .0005548 +—— Se

| 0.1524¢—————— " 0.0075
dbp | .00056517  .00239702 —
| 00164485  .0010424
0.7315+—>  0.0226
| .02080574  .02446746  .0197773 .
| loze3sis  .oze3mnl  .o2613048 Each BP-measure is
| 0.4310 0.3536 0.4501 isti
| 5.1444085  5.1555212  5.1615877 STGT.'ST'CGI
| .0091223¢  .09909537  .08539118 Sighificant, when the
| 0.0000 0.0000 0.0000
+
|

other is removed!
N 194 194 194
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Collinearity Collinearity
250 This can be seen by listing the correlation between the
Plotol estimates.
R . -* In Stata by the command: vce, cor
5 .
g 200 °® o regress logscl sbp dbp sex
o L] “ ® 0 vce,cor
3 ® . ° - . | shp dbp sex cons
o .
@ U T A I B o o T
o ° . sbp
s 15070 ° o° '.:"-;Z'. o® dbp \ 1.0000
& . H :-...-;., sex | -0.0967 0.1135  1.0000
° l'}.ii'r l: _cons -0.0780 -0.5044 -0.4665 1.0000
L M N B . . N o
L .g!-‘g:-' . If two estimates are highly correlated, it indicates that it is
e LT S ‘ ‘ ‘ very difficult fo estimate the “independent effect” of the
60 80 100 120 140 each of the two variables.
Diastolic Blood Pressure
SBP and DBP are highly positively correlated, that will lead Often it is even nonsense fo try to do it!
. . ; Ml o
to highly negatively correlated estimatesl! Often it is better to try to reformulate the problem.
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Collinearity Collinearity
. L avebp=(sbp+dbp) /2 and bpratio=(sbp/dbp)
One way to work around the problem of collinearity is —
to ‘ortogonalize’ it: 251 Plot02
Create two new variable: Only weakly -,
associated
one measures the blood pressure g . -
and another that measure the difference in L.
systolic and diastolic blood pressure.
Some candidates: i
(pr+dbp)/2 Gnd (pr—dbp) ' 80 100 120 avetp 140 160 180
regress logscl avebp bpratio sex
vce,cor
| (pr+dbp)/2 and (pr/dbp) | | avebp bpratio sex _cons
AR AN /Y mnd TVmleblm SR ) e e
In(sbp*dbp)/2 and  Tn(sbp/dbp) avebp | 000
. . . bpratio | 1.0000
We will here consider the second pair. sex | 0.0382 -0.1041  1.0000
_cons | -0.4542 -0.6874 -0.2585 1.0000
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Linear and Logistic Regression: Note 3
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Collinearity Collinearity
The serum cholesterol data set and the three models: Look out for it:
+systolic and diastolic blood pressure

model O: regress logscl sex avebp bpratio
model I:  regress logscl sex avebp +24 hour blood pressure and ‘clinical’ blood pressure
model 2: regress logscl sex bpratio . .
‘weight and height
variable |  model0 mode1l model12 'age cnd par‘ITy

Blood pressure

avebp | .00198973 00206564 age and time since menopause
| .0007887  .00076285 seems to play arole, 9 P
Il 0.0125 0.0074 H
: *BMI and skinfold measure
bpratio | .02769662 .07148118 .
| .07067134 “ogoa24s | | The ratio between birth cohort and calendar i
| 0.6956 0.3048 i +age , birth cohort and calendar time
sex | .02060675 .02168128 .01806662 SBP Gnd DBP mlghT 9 ! m
| o294 026128 02667689 | nof. -volume and concentration
_cons | 5.1003417 5.1351912 5.2485724
| .12936418 .09374803 .11685799 .
| 0.0000 0.0000 0.0 0
N1 194 194 194 Remember you will need a huge amount of data to disentangle
Tegend: b/se the effects of correlated explanatory variables
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Flexible modelling of response curves - cubic splines Flexible modelling of response curves - cubic splines
Log SBP against age for 2650 women with fitted straight line. We want to model the relationship between SBP and age

more flexible.

There are several ways to do this, including fractional
polynomial, splines and cubic splines.

We will here look at restricted cubic splines as they are
implemented in Stata.

If one want to use the restricted cubic splines you start
by generating a set of new independent variables:

mkspline sage=age, cubic nk(6) disp

| knotl knot2 knot3 knot4 knot5 knot6
age | 34 38 43 48 54 61
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Flexible modelling of response curves - cubic splines Flexible modelling of response curves - cubic splines
The mksp1ine command will generate 5 new variables knots:  a,,a,,...,a,
named sagel to sage5, which are functions of age.
o sage, = age
Where sagel=age.
f o —
sage2=0 if age<34 @] _ 3 3 4 —4a;
. g4 sage;,, _(age_aj)+ _(age_ak 1)+ —
sage3=0 if age<38 _ A =y
e
=0 1 34, ,—a;
sage4=0 if age<43 | +(age—a,), 1
sage5=0 if age<48 g- A — iy
vo_,
-
o]
0O 10 20 30 40 50 60 70
Age in Years
sagel sage2
sage3 sage4
sage5
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drop sagel
regress 1sbp age sage?

Flexible modelling of response curves - cubic splines

Version date:12 May 2011

Flexible modelling of response

curves - cubic splines

Tsbp | Coef. std. Err. t P>t [95% Conf. Interval]

age | .0067837  .0035322 1.92  0.055 -.0001425 .0137099
sage2 | -.0005598 .0525269 -0.01 0.991 -.1035577 .1024381
sage3 | .0553357  .1336906 0.41  0.679 -.2068131 .3174845
sage4 | -.1398205 .1547781 -0.90 0.366 -.4433189 .1636778
sage5 | .0932052  .1207685 0.77  0.440 -.1436051 3300155
_cons | 4.527844 .1253021 36.14 0.000 4.282144 4.773544

testparm sage?

(1) sage2 =0 . .
(2) sage3 = 0 Test of Imear‘ﬁy .
(€ 3) saged - 0 The hypothesis is rejected
( 4) sage5 =0
FC 4, 2644) = 3.81
Prob > F = 0.0043

The relationship is not linear, but how does it look ?
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predict fit if e(sample) /// fit values
predict fitsd if e(sample),stdp /// standard error
generate low=fit-1.96*fitsd /// lower ci-limit
generate hig=fit+1.96*fitsd /// upper ci-limit
Tine fit low hig age /// plot
b
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Flexible modelling of response curves - cubic splines
Compare with the straight line model:

50 60 70
Agein Years

Although, there is 'statistical significant’ non-linearity, it
has no practical implications- the straight line model is a
valid approximation.
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Clustered data / data with several random components

120 measurements of FEV:
6
Plot02
° .
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Some variation in the data.
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Clustered data / data with several random components
But it is on only 30 persons:

6] PoTO3
H
5 X :
Personpo2 , 8.
s 8 *0,
. e . L.
o 44 PR | : o o6 ° . . s
HPSC RS . '
g/sonnoit s . 8. °* °
H i LI
34 . . s N .
L .
[ L]
27\ T T T T T T
0 5 10 15 20 25 30

Person
Some of the variation is due to variation between persons
and some within person.
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Linear and Logistic Regression: Note 3

Clustered data / data with several random components

From 10 families:
° Plot04
H
5 e Familygilo 4
v, , T
E 4 ':. :n: 5 .. ':
. . LN ': '.
s N .
e °
Family no 1
0 2 4 6 8 10

Family

Some of the variation between persons is due to
variation between families and some within family.
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Clustered data / data with several random components Clustered data / data with several random components

Structure of the data: FEV d Factors of interest:

household Income Constant within family

Family Person Bay Urbanization Constant within family
Age Constant within person; varies within family
Three sources of random variation: Sex Constant within person; varies within famil
Variation between families 6rass pollen Constant within day: varies within person
Variation between persons (variation within family)
A model:

Variation between days (variation within person)
FEV=B+p, -1+, U+p,-A+ S-S+ 5,-G
+random variation
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Clustered data / data with several random components Clustered data / data with several random components
FEV=B+p,-1+8, U+p,-A+pB;,-S+5,-G FEV=p+p, -1+, -U+p,-A+[;-S+ 5, G
+random variation th 4P, +E,,
If the three levels/sources of random variation are variance
not taken into account : F, : Random family contribution o2
* The precision of 3, and f3, are highly overestimated Py, |+ Random person contribution oy’
- The precision of 3, and f are overestimated £y, |+ Random day contribution o
+ The estimates of 3, and /5, will be biased if the not all s .,
families are represented by the same number of persons var(FEV,,,,) = 07 + 0} +0;
and each person is measured the same number of times.
* The estimates of 5, and S will be !?iqsed if not all persons Variance components
are measured the same number of times.

Assumed fo be normal distributed
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Clustered data / data with several random components
Systematic part

FEV={,+5,-1+5, - U+p,-A+f,-S+5,G |

H +P/I, +E/Iu

Random part

BoB3y. By By Bs and B, Quantify the systematic variation

o;,0; and o} Quantify the random variation
This is a:
*Variance component model
*Mixed model (both systematic and random variation)
*Multilevel model

The theory behind and the understanding of such models is
well established!l!
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