

Linear regression, collinearity, splines and extensions
Morten Frydenberg ©
Department of Biostatistics, Aarhus Univ, Denmark

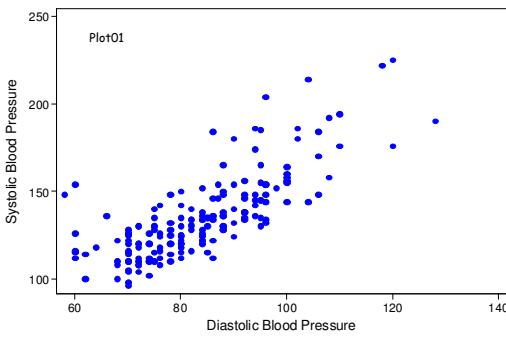
General things for regression models:

- Collinearity** - correlated explanatory variables
- Flexible modelling of response curves** - Cubic splines
- Normal regression models** - an extension
- Clustered data** / data with several random components

Morten Frydenberg Linear and Logistic regression - Note 3

1

Collinearity



SBP and DBP are highly **positively correlated**, that will lead to highly **negatively correlated estimates!!!**

Morten Frydenberg Linear and Logistic regression - Note 3

3

Collinearity

Consider a subsample of the serum cholesterol data set and the **three** models:

variable	model0	model1	model2
sbp	.00126448 .00087992 .0.1524	.0014988 .0005548 .0.0075	Estimate Se p
dbp	.00056517 .00164485 .0.7315	.00239702 .0010424 .0.0226	
sex	.02080574 .02636149 .0.4310	.02446746 .02631111 .0.3536	.0197773 .02613048 .0.4501
_cons	5.1444085 .09912234 0.0000	5.155212 .09090537 .0.0000	5.1615877 .08539118 .0.0000
N	194	194	194

Morten Frydenberg Linear and Logistic regression - Note 3

Legend: b/se/p

2

Collinearity

One way to work around the problem of collinearity is to **'orthogonalize'** it:

Create two new variables:

- one measures the **blood pressure**
- and another that measure the **difference** in systolic and diastolic blood pressure.

Some **candidates**:

- $(\text{sbp}+\text{dbp})/2$ and $(\text{sbp}-\text{dbp})$
- $(\text{sbp}+\text{dbp})/2$ and (sbp/dbp)
- $\ln(\text{sbp} \cdot \text{dbp})/2$ and $\ln(\text{sbp}/\text{dbp})$

We will here consider the second pair.

Morten Frydenberg Linear and Logistic regression - Note 3

5

Collinearity

This can be seen by listing the **correlation between the estimates**.

In Stata by the command: `vce, cor`

	sbp	dbp	sex	_cons
sbp	1.0000			
dbp	-0.7750	1.0000		
sex	-0.0967	0.1135	1.0000	
_cons	-0.0780	-0.5044	-0.4665	1.0000

If two estimates are highly correlated, it indicates that it is very difficult to estimate the "**independent effect**" of the each of the two variables.

Often it is even **nonsense** to try to do it!

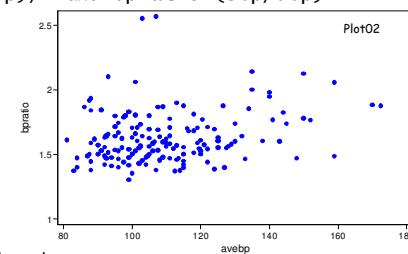
Often it is better to try to **reformulate the problem**.

Morten Frydenberg Linear and Logistic regression - Note 3

4

Collinearity

$\text{avebp} = (\text{sbp} + \text{dbp})/2$ and $\text{bpratio} = (\text{sbp}/\text{dbp})$



Only weakly associated

	avebp	bpratio	sex	_cons
avebp	1.0000			
bpratio	-0.2456	1.0000		
sex	0.0382	-0.1041	1.0000	
_cons	-0.4542	-0.6874	-0.2585	1.0000

Morten Frydenberg Linear and Logistic regression - Note 3

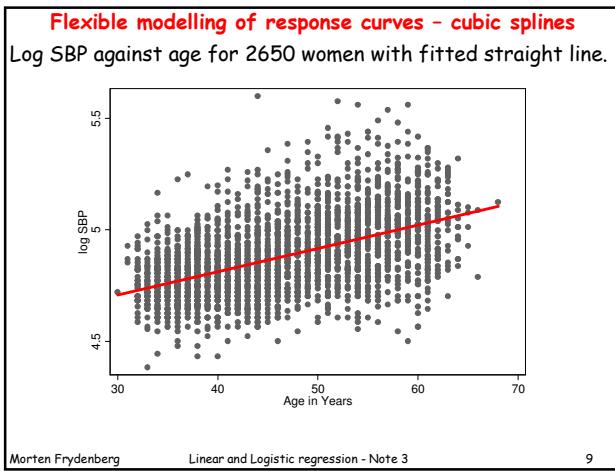
6

Collinearity			
The serum cholesterol data set and the three models:			
model 0: regress logscl sex avebp bpratio			
model 1: regress logscl sex avebp			
model 2: regress logscl sex		bpratio	
variable	model0	model1	model2
avebp	.00198973 .0007887 .0125	.00206564 .00076285 .0074	.07148118 .06946246 .03048
bpratio	.02769662 .07067134 .6956	.02168128 .026128 .4077	.01806662 .02667689 .4991
sex	.02060675 .02632924 .4348	.01351912 .09374803 .0000	.5.2485724 .11685799 .0000
_cons	5.1003417 .12936418	5.1351912 .09374803	5.2485724 .11685799 .0000
N	194	194	194

Morten Frydenberg Linear and Logistic regression - Note 3 7

Collinearity			
Look out for it:			
• systolic and diastolic blood pressure			
• 24 hour blood pressure and 'clinical' blood pressure			
• weight and height			
• age and parity			
• age and time since menopause			
• BMI and skinfold measure			
• age, birth cohort and calendar time			
• volume and concentration			
•			
Remember you will need a huge amount of data to disentangle the effects of correlated explanatory variables			

Morten Frydenberg Linear and Logistic regression - Note 3 8



Flexible modelling of response curves - cubic splines

We want to model the relationship between SBP and age more flexible.

There are several ways to do this, including fractional polynomial, splines and cubic splines.

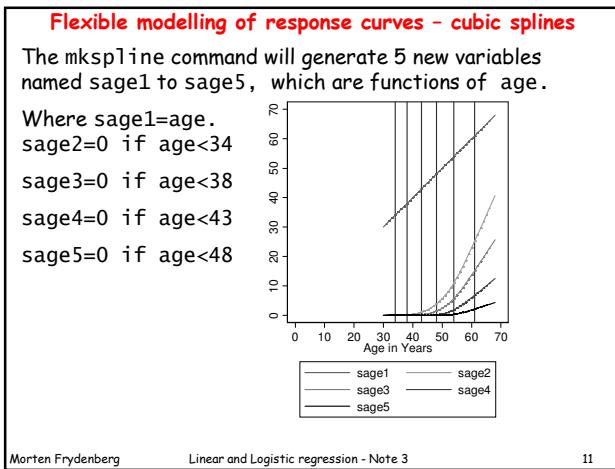
We will here look at restricted cubic splines as they are implemented in Stata.

If one want to use the restricted cubic splines you start by generating a set of new independent variables:

```
mkspline sage=age, cubic nk(6) disp
```

age	knot1	knot2	knot3	knot4	knot5	knot6
30	34	38	43	48	54	61

Morten Frydenberg Linear and Logistic regression - Note 3 10



Flexible modelling of response curves - cubic splines

knots: a_1, a_2, \dots, a_k

$sage_i = age$

$$sage_{j+1} = (age - a_j)^3_+ - (age - a_{k-1})^3_+ \frac{a_k - a_j}{a_k - a_{k-1}}$$

$$+ (age - a_j)^3_+ \frac{a_{k-1} - a_j}{a_k - a_{k-1}}$$

Morten Frydenberg Linear and Logistic regression - Note 3 12

Flexible modelling of response curves - cubic splines

```
drop sage1
regress lsbp age sage*
```

lsbp	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
age	.0067837	.0035322	1.92	0.055	-.0001425 .0137099
sage2	-.0005598	.0525269	-0.01	0.991	-.1035577 .1024381
sage3	.0553357	.1336906	0.41	0.679	-.2068131 .3174845
sage4	-.1398205	.1547781	-0.90	0.366	-.4433189 .1636778
sage5	.0932052	.1207685	0.77	0.440	-.1436051 .3300155
_cons	4.527844	.1253021	36.14	0.000	4.282144 4.773544

```
testparm sage?
( 1) sage2 = 0
( 2) sage3 = 0
( 3) sage4 = 0
( 4) sage5 = 0
F( 4, 2644) = 3.81
Prob > F = 0.0043
```

Test of linearity
The hypothesis is rejected

The relationship is not linear, but how does it look?

Morten Frydenberg Linear and Logistic regression - Note 3 13

Flexible modelling of response curves - cubic splines

```
predict fit if e(sample)
predict fitsd if e(sample), stdp
generate low=fit-1.96*fitsd
generate high=fit+1.96*fitsd
line fit low high age
```

/// fit values
/// standard error
/// lower ci-limit
/// upper ci-limit
/// plot

Age in Years

Morten Frydenberg Linear and Logistic regression - Note 3 14

Flexible modelling of response curves - cubic splines

Compare with the straight line model:

Although, there is 'statistical significant' non-linearity, it has no practical implications- the straight line model is a valid approximation.

Morten Frydenberg Linear and Logistic regression - Note 3 15

Clustered data / data with several random components

120 measurements of FEV:

FEV

Some variation in the data.

Morten Frydenberg Linear and Logistic regression - Note 3 16

Clustered data / data with several random components

But it is on only 30 persons:

FEV

Person

Plot03

Person no 2

Person no 1

Some of the variation is due to variation between persons and some within person.

Morten Frydenberg Linear and Logistic regression - Note 3 17

Clustered data / data with several random components

From 10 families:

FEV

Family

Plot04

Family no 1

Family no 2

Family no 4

Some of the variation between persons is due to variation between families and some within family.

Morten Frydenberg Linear and Logistic regression - Note 3 18

Clustered data / data with several random components

Structure of the data:

Three sources of random variation:

- Variation between families
- Variation between persons (variation within family)
- Variation between days (variation within person)

Morten Frydenberg

Linear and Logistic regression - Note 3

19

Clustered data / data with several random components

Factors of interest:

household Income	Constant within family
Urbanization	Constant within family
Age	Constant within person; varies within family
Sex	Constant within person; varies within family
Grass pollen	Constant within day; varies within person

A model:

$$FEV = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + \text{random variation}$$

Morten Frydenberg

Linear and Logistic regression - Note 3

20

Clustered data / data with several random components

$$FEV = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + \text{random variation}$$

If the **three** levels/sources of random variation are not taken into account :

- The precision of β_I and β_U are highly overestimated
- The precision of β_A and β_S are overestimated
- The estimates of β_I and β_U will be biased if the not all families are represented by the same number of persons and each person is measured the same number of times.
- The estimates of β_A and β_S will be biased if not all persons are measured the same number of times.

Morten Frydenberg

Linear and Logistic regression - Note 3

21

Clustered data / data with several random components

$$FEV = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + F_f + P_{fp} + E_{fpd}$$

variance

F_f	: Random family contribution	σ_F^2
P_{fp}	: Random person contribution	σ_P^2
E_{fpd}	: Random day contribution	σ_E^2

$$\text{var}(FEV_{fpd}) = \sigma_F^2 + \sigma_P^2 + \sigma_E^2$$

Variance components

Assumed to be normal distributed

Morten Frydenberg

Linear and Logistic regression - Note 3

22

Clustered data / data with several random components

Systematic part

$$FEV = [\beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + F_f + P_{fp} + E_{fpd}]$$

Random part

$\beta_0, \beta_I, \beta_U, \beta_A, \beta_S$ and β_G Quantify the **systematic** variation

σ_F^2, σ_P^2 and σ_E^2 Quantify the **random** variation

This is a:

- Variance component model
- Mixed model (both systematic and random variation)
- Multilevel model

The theory behind and the understanding of such models is well established!!!

Morten Frydenberg

Linear and Logistic regression - Note 3

23