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Why do we need a multiple regression

The simple linear regression model only models how the
dependent variable, y, depend on one independent variable
(covariate) , x;.

We are often interested in how several independent variables,
X, , X3 ... X, influence the dependent variable , y.

Sometimes we want to adjust the influence of some of the
information, such as age and sex, before we look at the
‘effect’ of other variables.
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A multiple linear regression model

We will here start by considering a random subsample
consisting of 200 persons from the Frammingham data set
used in the book.

A multiple linear regression model:

In(sbp) =3, + B, - age+ f3, - woman + J3, - In(bmi) + E

Where the errors, E, are assumed to be independent and
normal with mean zero and standard deviation .

Note, that the variable woman is a dummy/indicator
variable, that it is

one if the person is a woman and

zero if it is a man.
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Interpretation of the coefficients O - the constant

In(sbp) B, -age+ f3, - woman+ B, -In(bmi)+ E
The first coefficient (the constant term) is the expected
In(sbp) for

aman (that is ok!)

age=0 277777

bmi=1 kg/m? 222222 (In(1)=0).
As in the simple linear regression this is not of any interest.

But again we can control the interpretation, by choosing
relevant reference values for age and bmi. E.g.

In(sbp) = @, + 3, - (age —45)+ B, - woman + Jj, ~1n(b7";lj+’5

4
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Interpretation of the coefficients 1
In(sbp) = f3, age+ [, -woman + f3, - In(bmi)+ E
The expected In(sbp) for a man with bmi=27 kg/m? is:
B, + B, -age+ f3,-1n(27)
The expected In(sbp) for another man with the same bmi, but
I-7year older: ; \ 5 (age+1.7)+ 5, -In(27)
The difference is: 1.75,
We see that this difference

-does not depend on the age of the first man.

-does not depend on the bmi as long as it is the same for the
two men.

would be the same if the two persons were women.
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Interpretation of the coefficients 2
In(sbp)=p,+ 5, age woman+ 3, -In(bmi)+ E

The expected In(sbp) for a 50 year old man with bmi=27
kg/m? is: B+ 3, -50 +4, -n(27)
The expected In(sbp) for woman with the same age and bmi

B+ 5-50+ 8,  +f,-In(27)
The difference is: £,
We see that this difference

+does not depend on the age as long as it is the same for the
two persons.

+does not depend on the bmi as long as it is the same for the
two persons.
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Interpretation of the coefficients 3
In(sbp) = f3, + B, - age + f3, - woman In(bmi)+E
The expected In(sbp) for a woman who is 50 year old:
B+ B,-50 + 3, + B, - In(bmi)
The expected In(sbp) for another woman with the same age,
but with a bmi which is 10% higher:

B+ 5,50+ B, + B, In(1.1-bmi)
The difference  f3,-[In(1.1-bmi)—In(bmi) | = 5, -In(1.1)
We see that this difference
-does not depend on the bmi of the first woman.

-does not depend on the age as long as it is the same for the
two women.

would be the same if the fwo persons were men.
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Interpretation of the coefficients 4

In(sbp) =, + B, -age+ 3, - Womanﬂln(bmi)+ E
B, -[In(1.1-bmi)—In(bmi) | = B, -In(1.1)

As the bmi is introduced on the log-scale, then "differences *
of this variable is measured relatively.

So comparing a pair of persons who only differ in bmi .
One having bmi=25 kg/m? and the other bmi=27 kg/m? .

Then the expected difference in In(sbp) is:
B, .h{ﬁj = 4,-0.077

If the bmi's were 21 kg/m? and 25

23 kg/m? , then the expected

difference in In(sbp) would be: B, -ln(23

— |=/4,-0.091
s
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Interpretation of the coefficients 5
= B, + B, -age+ B, -woman+ B, -In(bmi)+ E
Taking the exponential we get:
sbp =7, 1, 1, - bmi” -exp(E)
where 7, =exp(/). 7, =exp(/) and 7, =exp(/3,)

That is a non-linear model on the sbp scale!
The error is multiplicative.

As medians are preserved by the exponential transformation
then the estimates are measuring the effects on the median
sbp.

An example: The age and bmi adjusted median sbp is a factor
7% higher for men compared to women.
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The multiple linear regression in general
Y the dependent variable

(X1, Xy 50 Xy) the independent variables.

Y=,6’U+iﬁp~xp+E E~N(0,0%)

p=1
This model is based on the assumptions:
k
1. The expected value of Yis /3 + Z,b’” ‘X,
p=l
2. The unexplained random deviations are independent.

3. The unexplained random deviations have the same
distributions.

4. This distribution is normal.
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The multiple linear regression in general

Y:,b1,+i,b’,, x,+E E~N(0,0)

p=l
We see that the assumptions fall in two parts:

The first concerning the systematic part

and the three other which focus on the error, the unexplained
random variation.

Before we turn to how one can check some of the assumptions
we will take a closer look at the first assumption.

k
The expected value of Yis /3 + Z,b’” ‘X,

p=l
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The assumption of linearity

k

The expected value of Yis 5, + Zﬁp X,
p=1

This is based on three (sub) assumptions:

a. Additivity: The contribution from each of the independent
variables are added.

b.Proportionality: The contribution from independent
variables is proportional to its value (with a factor )

c. No effectmodification: The contribution from one
independent variables is the same whatever the values are
for the other.
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The assumption of linearity Estimation
k
The expected value of Yis /3, + Z X, It is almost impossible to find the estimates by hand, but easy
=l if you use a computer.
If one consider two persons who differ with In Stata: regress 1nSBP age45 woman 1nBMI25
Ax, inx,, Ax, inx, .. and Ax, in x, (Note first we have to generate 1nSBP, age45, woman and
TnBMI25)
then the difference in the expected value of Yis : source | ss df ms Number of obs = 200
777777777 o FC 3, 196) = 16.46
L Model | 1.05572698 3 .351908994 Prob > F = 0.0000
Zﬂ AX Residual | 4.18969066 196 .021375973 R-squared = 0.2013
- 7 |- i Adj R-squared = 0.1890
p= Total | 5.24541764 199 .026358883 Root MSE = .14621
Again we see that the contribution for each of the - P — e [95% Cont. tntervall
explanatory variables: | T e
woman | .0036329 .0208905 0.862 -.0375662 .0448319
are added, . . age45 | .0065384 .0012844 0.000 .0040053 .0090715
are proportional to the difference TnBMI25 |  .2583399  .0758295 0.001  .1087934  .4078864
and does not dependent of the differences in the other —cons | 4.856592  .0154266 0.000  4.826169  4.887016
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Estimation Estimated systematic part
The last part of the output: |No CI for o! bmi
" " In(sbp)=4.8566+0.0065-(age —45)+0.0036 - woman +0.2583 - In| —
It can be calculated "by hand (sbp) (ag ) 25
5 5.1 5.1
PlotO1
| Root mse = 14621
TnsBP | Coef std. Err [95% conf. Interval] 5 51 /
woman T .0036329 .0208905 -.0375662 .0448319 _ ? _ /
age45 | .0065384 .0012844 .0040053 .0090715 % a9 & 40q
Tnem25 | | .2583399 ||.0758295 . . 1087934 .4078864 g Agg ,/)/) ¢ “"pmI /
_cons | 4.856592 .0154266 . . 4.826169 4.887016 B / d B 99
e T M7 ZBR B
the f's  these's The CL's Lt / ¢ /
40 25 1
4.7 35 4.7 20
Test for S, =0 30
The hypothesis: “no difference in In(sbp) between men and " L
women od‘ius'fed fOI" age Clnd bmi" 15 20 25 30 35 4o 25 30 35 40 45 50 55 60
BMI . Age
096245 bmi=25 qge:50 bmi=35
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Stata special - plotting response curves Stata special - plotting “response” curves
regress 1nSBP age45 woman InBMIZ2S T have made a Stata command that extracts the estimated
P Coof.  std. Err © et [95% conf. Intervall equations and the coefficients for later use.
““““ T o oy o oaer lovess Lowsins The command file
woman . . . . - .
aged5 |  .0065384  .0012844 5.09  0.000 .0040053  .0090715 regeq.ado
nBMI25 | .2583399  .0758295 3.41  0.001 .1087934  .4078864 and the small help file
_cons I 4856592 0154266 31482 0.000  4.826169  4.887016 regeq.sthlp
After a regression commando, Stata leaves several should be place in your ado folder typically
information in the memory of the computer for later use. c:\ado\personal.
You can get a list by writing "ereturn 1ist®. You can run the regeq command after any linear or logistic
We have already used this feature in the calculation of the regression estimation.
confidence interval for o. Here you get the output :
estimated equation
Anofher‘ example: 4.85659 +0.003632 * woman +0.006538 * age45 +0.25834* TnBMI25
equation
display %12.7f _b[woman] %12.7f _se[woman] b0 + bl * woman + b2 * aged5 + b3 * TnBMI2S

0.0036329  0.0208305 That is, the estimated equation and the formula.
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Stata special - plotting “response” curves

global macros":

Furthermore the estimated coefficients are stored as "
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Stata special - plotting “response” curves
The expected log(SBP) for a 30 year old man with BMI=27
remember: v= bo + bl * woman + b2 * age45 + b3 * TnBMI25

. macro Tist

bO0: 4.856592269392944 . o

b3+ ©2583398993331004 :T§§;§;3§b0+$bl 0+3b2*(30-45) +$b3*1n(27/25)

b2: .0065383788673611

bl: -0036328605876014 You could also get this (with CT) using the lincom command:
S_E_depv TnsBp

s_E_cmd regress

display 1n(27/25)
.07696104

. lincom -15*age45 + .07696104*1nBMI25+_cons

( 1) - 15 age45 + .076961 TnBMI25 + _cons = 0
The global macros b0 to b4 contains the coefficients
and can be used in calculations. Tnsep | coef. std. Err. t Pt [95% conf. Intervall
If you want to use the estimated coefficient to age45, () | 4.778399 .0266891 179.04 0.000  4.725764  4.831033
then you just write $b0.
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Stata special - plotting response curves
The expected log(SBP) for a 30 year old man and a 50 year
old woman as a function of the BMI is given as:

Remember: v = bo+ b2 * woman + b2 * agedS + b3 * InaMI25
The expected log(SBP) for a 30 year old man as a function
of the BMI is given as:

Y = b0 + bl *0 +b2 * (30-45) + b3 * In(BMI/25) twoway 11/

( function Y=S$b0 + Sbl * 0 + $b2 * (30-45) + $b3 * 1n(x/25) i

R . Lo . , range(bmi) Tco(blue) ) ///

We can plot this by using the plot function in Stata: ( function Y=S$b0 + Sbl * 1 + $b2 * (50-45) + $b3 * In(x/25) 11/

, range(bmi) Tco(red) ) ///
ytit("expected Tn(SBP)") xtit("BMI") xlab( 15(5)40) vz
legend(1abel(1 "30 year old man") Tabel(2 "50 year old woman'"))

5

‘twoway /17
( function v=$b0 + $bl * O +$b2 * (30-45) + $b3 * 1n(x/25), range(bmi) ) ///
, legend(off) ytit("expected 1n(SBP)") xtit("BMI") xlab( 15(5)40)

4.9

4.85

IS
©

5
b
expected In(SBP)
.
b

expected In(SBP)

—— 30 year old man
~=~ 50 year old woman

15 20 25 30 35 40 15 20 25 30 35 40
BMI BMI
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The distribution of the estimates Confidence intervals
It can be shown that the estimates of the coefficients have

- STOWT ! Just like in the simple regression we get :
normal distributions, with means equal to the true values.

(except we have n-k-1 degrees of freedom).
The formulas for the standard deviation of the estimates
are complicated, but they are estimated by the standard
errors given in the output.

Exact 95% confidence infervals , CT's, for /3, is found from
the estimates and standard errors

C B 440975 A
The estimated standard deviation of the errors is given by: 95% CI for B, B, 2000 Se(ﬂ')

2
2 fo 2 The number of
- n—k-—1 < (n @) parameters are k+1
Which gives the confidence in‘re}ial:'
_nok-l
Z2.1.(0975)

Where %7 is the upper 97.5 percentile in the -
distribution n-k-1 degrees of freedom.

These confidence intervals are found in the output.

n—k-1

Note that if n-k-1 is large then this percentile is close to
Z,-4(0.025)

1.96 and one can use the approximate confidence intervals:

Approx. 95% CI for 3 : j3, i1.96-se(Bl)

95% CI for o:6- <0<6-

You can use the Stata command cisd
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The ANOVA table and the F-test The F-test and R-squared
The first part of the output: The F- test calculated as: F= 0.35519 =16.46
: : o o 0.02138
An analysis of variance table dividing the variation iny
in two components: explained by the model (i.e. the 3 _ source | ss df v /\ Number of °b§ -
variables) and the residual (the rest del | 1.05572698 3] [351908994 ) =
) j ( ) Res?gu:‘l | 4.18969066 =
source | s aF s Number of obs Total T 5.24541764/199 .026358883 TS — T
Model 1 1.05572698 3 .35190899 A And under the hypothesis it follows an F-distribution
Residual | 4:18969066 196 021375973 / e e red with 3 and 196 degrees of freedom.
Total | 5.24541764 199 .026358883 Root MSE
The R-squared is the amount of the total variation explained
A F-test testing the hypothesis: “all (except £) is zero.“l by the model(=1.0557/5.2454).
Here the tfest is highly significant: The model explains a As this will increase, if we include more variables in the model,
statistically significant part of the variation in y! one can look at the adjusted R-squared.
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Predicted valuei, residuals and leverages Leverage
Y=4+ Zﬁ,, x,+E E-~ N(O,Gz) Although the formula for the leverage is complicated, the
p=l interpretation of leverage is the same:

A high leverage indicates that the data point has extreme
values of the explanatory variables and hence a high influence
on the estimates.

As in the simple linear regression one can find predicted
values, residuals, leverages and standardized residuals:

k
Predicted value: S=B+2.8,x,
p=1
k N
Residual : L=y, —Y; :yi_z b X
p=1
Leverage : h, = a complicated formula
. . I
Standardized-Residual: 7z, =—F——
O\J1-h
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Checking the model 1: ~F
plot ,name(pl,replace) . .
. . . . rvpplot age45 ,name(p2,replace) residual versus fitted
As the rpodel is much more com.pllccfed Thap the simple linear :zgmz Jv?,ﬁﬁﬁ” :gmigg“zngg residual versus predictor
regression checking the model is also complicated oraph combine pl p2 3 ph
Again assumption no. 2: the errors should be independent, is . g o s
X R X Plot02 R : e
mainly checked by considering how the data was collected. P o 4 ..
L . 2 e 2el LR BTRe oo
The distribution of the error is checked by the same type of g o i %!%;gj e
plot as for the simple linear regression. 2 2 LSIETe e
4 4
‘Plots of residuals versus fitted T s "
*Plots of residuals versus each of the explanatory variables. s

+Histogram and QQ-plot of the residuals.

Residuals
o s B
Residuals
F O R

[

-4 0 4 0 2 I 4 6 8 1
InBMI25
| Not informative se next page
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Diaghostic plots for categorical variables - here woman Diagnostic plots for continuous variables - dividing into groups
predict res if e(sample),res xtile age6=age,nq(6)
gnorm res if woman==0, title(woman==0) name(pl,replace) graph box res,over(age6) name(pl,replace) nodraw
gnorm res if woman==1, title(woman==1) name(p2,replace) dotplot res,over(age6) yline(0) name(p2,replace) nodraw
graph combine pl p2 , row(l) name(p3, replace) graph combine pl p2 ,col(1)
graph box res , over(woman) name(p4,replace) graph export Reg2_1_plot04.wmf, replace
graph combine p3 p4,col(1)
by woman: sum res .

om0 e .
) . ) . . ?2?2? g s — T T o
Plot03 - - T - . - T " Plot04 - - 2 S - > S
. 5
: o . .
. : R O i 5 e s
s —— & QWE-EEEN §3822 CE] 398 $aoee
 —— — NI e s N
€  —— — m— » ° 8
‘lﬁ ! : ° equanmeso:age ° ¢
5d=0.131 5d=0.157
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Identifying special points Checking the model 2: Independent errors ?
i leverage vs. normed . i . .
leverage vs. residuals 9 Assumption no. 2: the errors should be independent, is mainly

i ##
residuals squared checked by considering how the data was collected.

[ statter Tev red The assumption is violated if

" " some of the persons are relatives (and some are not) and the
dependent variable have some genetic component.

1 1

N

Leverage
Leverage

-some of the persons were measured using one instrument and
Plot05 others with another.

+in general if the persons were sampled in clusters.

5
o w% o5 2167 Oms_'m'
0

2 6

o 2 4 05
Standardized residuals Normalized residual squared

1017, 2337, 2187 have relative large residuals

# T s
r.

Morten Frydenberg J Linear and Logistic regression - Note 2.1 33 Morten Frydenberg Linear and Logistic regression - Note 2.1 34

Checking the model 3: Extending the model

One should also try to check the validity of the linearity
assumption that is the assumption of additivity,
proportionality and no effect modification (no interaction).

Tt can be done by:
1. Introducing the explanatory variable in a different scale,
e.g. adding age? or log(age) ....

2. Introducing the explanatory variable as a categorical
variable instead e.g. use age divided into agegroups instead
as age in years.

3. Introducing interactions between some of the eplanatory
variables.

4. ..
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