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Example: Post term delivery and parity Example: Post term delivery and parity
Question: How does the risk of post term delivery depend The assumptions behind the model was discussed on day 4.
ity?

on parity? On that day we also looked at three different measures of
Data: Parity and gestational age for 12,311 women in the age associations: Risk Difference, Relative Risk and Odds Ratio.
of 20 to 39. Post term delivery defined as a gestational age And the chi-squared test for no association.

larger than 40 weeks. Today we will look closer at the Odds Ratio.

Parity N Postterm Risk Risk difference -2.7 (-4.3;-1.1)%

First child 5,938 1,722 29.0 (28.8; 30.2)% Relative risk 0.91 (0.86; 0.96)

Not first child 6,373 1,677 26.3(25.2; 27.4)% Odds ratio 0.87 (0.81; 0.95)

Total 12,311 3,399 27.6 (26.8; 28.4)% X?=11.09 p=0.001

Model: Independent samples from two binomial distributions. In the table above we compare 7; to 7, i.e. women giving

Let 7, and 7, be the probability (risk) of post term delivery birth to their first child is the reference group.

among women giving birth to their first child or not, We see that the risk is (statistically significant) smaller if
respectively. the woman already had a child.
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Odds and risk Odds and odds ratios
The odds is defined as 7/(1-7) , i.e. the probability of post The odds ratio comparing parity>0 to the reference is given by
Iz:m gz::zzz divided by the probability of not having a post oR, - odds, ”1/(1— ”1) K ,(1_7[0)
. 0= = =
. odds, 72'0/(1—72'0) 7y (1-7,)
odds =——

1-7 It is easily seen that 7, =7, < 0dds, =odds, & OR=1
If the odds is equal to 0.5=1/2, then the risk of post term OR has nice properties:
delivery is only half of the risk of not having a post term Switching reference group or event will just lead to 1/0R, e.g.
delivery.
We can also go from odds to risk: o, odds OR. = odds, _ 1

1+ odds ® odds, OR,
We see that And of course the estimates and confidence intervals will
odds=05 gives 7= 05/(1+0.5)=0.3333. fransform similarly. ——
, OR,, :—(—;—j=1.14(1.06;1.24)
odds =1 gives 7=1/(1+1)=0.5. 0.8710.95 0.81
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Odds ratios and relative risks
The odds ratio is related to the relative risk:

v (1—72’0) (1—7ro)
O = 7y (1= 7,) =RRy - (1-m)

. . . Event
We can see that if the event is rare, i.e. both 7, and 7, are ve
L Exposed Yes No
small, then the last ratio is close to 1/1=1. ~ a-d
Yes a b ORyp =——
So for a rare event we have: No c d b-c
Post term
OR=RR Parity>0 Yes No
Yes 1677 4,69 1,677-4,216 0.8
10=——""—""-"—-=0.8743
No 1722 4216 1722.4.696
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Estimating the odds ratios
The odds ratio is of course estimated by:
7 -(1-7,)
Ty (1-17,)
Another way to find the estimate is o make the ‘classical’
2x2 table:

ORuw =

Odds ratios - why inference on the log-scale
The odds ratio is limited to be positive.

A value in the interval O to 1 corresponds to lower risk
among the Parity>0.

A value from 1 to infinity corresponds to higher risk among
the Parity>0

| lrjli"sv;:e" | Higher risk OR,
0025 1
If we switch "exposed” and “unexposed” we get

Higher Lower risk OR
| risk | I ot
0] 1 4.0
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Odds ratios - why inference on the log-scale
The log-odds ratio is not limited.

A value in the interval -infinity to O corresponds to lower
risk among the Parity>0.

A value from O to infinity to higher risk among the Parity>0

Lower risk | Higher risk

[ T
log(0. 25)=-log(4.0) 0 log(OR,, )
If we switch "exposed” and "unexposed” we get

Lower risk |Og|(OR01

Higher risk |
!

0 Iog(|4 .0)

Symmetry on the log scalelll
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Odds ratios - Approx. CI (Woolf/Wald )

So on the log scale we have a symmetric measure of
association.

On the log scale it makes sense to find the CI as 'usual’,
i.e. as estimatetl.96*se .

Using the notation from page 8 we have:

se(ln(éﬁ)): §+%+%+%

se(ln(éT?)): Lt Y 60403
1677 4696 1711 4,216
CT In(OR) = In(0.8743) +1.96 - 0.0403 = (~0.2134;-0.0552)

CI OR = (exp(-0.2134);exp(-0.0552)) = (0.81;0.95)
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Odds ratios - Testing
If one wants to test a hypothesis that the odds ratio has a
specific value: OR=0R,,
then this is also done on the log-scale:
In((ﬁ) -In(OR,)

Could the odds be reduced by 10%, i.e. H: OR=0.9 ?
. _In(08743)-In(0.9)
o 0.0403
P=2-Pr(z>|z2,])=2-Pr(z <—|z,,]) =047
The hypothesis cannot be rejected.

disp ( In(0.8743)-In(0.9) )/ 0.0403
disp 2*normal( abs(-0.719) )
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=-0.719
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Odds ratios - logistic regression

Here we will see how one can find the odds ratio by logistic
regression.

Let Parl be an indicator variable for Parity>0 ,
i.e. Parl=1if parity>0 and Parl=0 if Parity==0.

Now we will look at the (logistic regression) model:
log(odds) = 4, + 4, - Parl

This is equivalent to:

odds =exp( /3, + 3, - Parl) =exp(3,)- eXp(ﬂl)Parl

Odds ratios - logistic regression
log(odds)= 4, + j, - Parl odds =exp(/3,)-exp(4.)™"

We see that if Parity=0 then we have:
log(odds) = 4, odds =exp( /3, )
and if Parity>0 then we have

log(odds) =4, + 4, odds=exp(/,)-exp(5,)
Combining we have

odds(if parity >0) ex -ex
oR,, = 0dds(if parity >0) _ exp(/3,) p(ﬂl):exp(ﬁl)
and exp(f, + /3 - Parl) odds(if parity ==0) exp( /%)
T1+ exp(f3, + /3, - Parl)
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Odds ratios - logistic regression

log(odds) = 3, + /3, - Parl odds =exp( /3, )-exp (A,

In summary we have that in the model:

)Parl

The “intercept” /3 is the log odds in the “reference group”.
The "slope” f, is the log OR.

That is, we can find the odds ratio from before by what is
called a logistic regression model.

So the computer will give us estimates and confidence
intervals for the odds in the reference group and the odds
ratio comparing the 'exposed’ to the reference.
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Post term delivery and age

We know that the age distribution among the two groups of
women is different - the women giving birth for the first time
will on average be younger!

It might be relevant to compare the two groups after
“adjustment for age".

We will start by modeling the association between post term
delivery and age among the women with Parity==

The simplest logistic regression model is:
log(odds) = &, + &, - Age  odds = exp(«, )-exp(e, )™
To get a sensible reference age:

Age-30

log(odds) =, +, -(Age—30)  odds =exp(, )-exp(e,)

Morten Frydenberg Basic Biostatistics - Day 7 16

Post term delivery and age (Parity==0)
log (odds) =, +, -(Age~30)  odds =exp(a, )-exp(a, )™

Age =30: log(odds) = odds = exp(«,)

Age =31: log(odds)=ca, + odds = exp(a, )-exp(,)
Age=18: log(odds) =, ~12-c,  odds =exp(a,)-exp(es)
Age=19: log(odds)=c, ~11-@,  odds =exp(a,)-exp(c)
Age=25: log(odds) =, ~5-c,  odds =exp(c,)-exp()

OR;; .30 = €XP(,)-exp(a,)/exp(a,) = exp(a,)
ORjg 518 = exp(a0)~exp(al)iu/(exp(ao)‘eXp(al)flz) = exp(al)

OstAvs 9= exp(an)-exp(al)’s/(exp(an)-exp(al)’“) =exp(a, )Y
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Post term delivery and age (Parity==0)
log(odds) = ez, + e, -(Age —30)  odds = exp(«, )-exp (&, )"
We saw: Age =30: odds =exp(«,)

OR3; s 30 = €Xp ()
ORyg 515 = €XP ()
ORys vs 19 = XP (e, )

That is,
exp(«) is the odds in the reference (Age==30)

exp(e,) is the OR for 1year difference.

and

O 6 years O Rlyear
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Post term delivery and age (Parity==0)

Using a computer we get:

log odds scale CIL H=0
est se lower upper z

P
Const  -0.8446 00332 -09096 -0.7795 -2544 <0.0001
Age-30 00207 00071 00069 00345 293 0003

Exp
odds scale CL H=1
est se lower upper z p
Const 0.4297 0.4027 04586 -25.44 <0.0001
Age-30 1.0209 1.0069 10351 2.93 0.003

Note, only the estimates and the confidence intervals
should be transformed!
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Post term delivery and age (Parity==0)

CcIL H=1
est lower upper z p
Odds if Age=30 0.4297 04027 04586 -25.44 <0.0001
One years age dif. 10209 10069 10351 2.93 0.003

From odds to probability:

Pr(post term if Age==30) = 0.4297 ( 0.4027  0.4586 j
P 1+0.4297 \ 1+ 0.4027 1+ 0.4586

=30.1(28.7;31.4)%
Five years age difference:

ORgyears =1.0209° (1.0069;1.0351)°
=1.11(1.031.19)
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Post term delivery and age (Parity==0) - Formulations

Methods

The risk of post term delivery among women giving birth for
the first time was described by a logistic regression model
with age as a continuous variable. ...

Results

We found that five year age difference corresponds to an
odds ratio of 1.11(1.03; 1.19). A 30 year old woman giving birth
for the first time has 30(29;31)% risk of post term delivery.

Conclusion
The risk of post delivery among women giving birth for the
first time increases with the age of the woman....
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Logistic regression checking the model

It is outside the scope of this course to go into details on
how to check the model, so we will just state the assumptions
behind the model:

1. All the observations should be independent.

2. There is exactly the same two possible outcomes for
each observation.

3. The log odds is a linear function of age.

The last assumption can to some extend be checked by
plotting the fitted regression line and the observed odds
(with 95% CT) for each distinct age.
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Post term delivery and age (Parity==0)
log(odds) = a, + c, - (Age —30)

log odds
in
—e—
—io—i
—o—i
—o—
e
—ot—
—e—
—e—
——i

T T T

T
20 25 30 35 40
Maternal age in years
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Post term delivery and age (Parity==0)
exp(a, +, -(Age—30))

risk = 1+exp(a, +a, - (Age -30))

Maternal age in years
Not linear! But almost

Morten Frydenberg Basic Biostatistics - Day 7 24

Basic Biostatistics - Day 7 - 25 March 2009




Morten Frydenberg

version date: 23 March 2009

Post term delivery and age (Parity==0)
. . exp(a, +a, -(Age—30
Extrapolating we see the  risk= (20 ( ))
. . 1+exp(a, + o, - (Age—30))
non-linearity.
1
8
~ 67
[
4+
o-
T T T T T T
-50 0 50 100 150 200
Age
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Post term delivery parity adjusting for age
We now know that

+ The risk of post term delivery increases with age
(among women with parity==0).

* The risk of post term delivery is smaller for Parity>O0.
Women with Parity>0 are older.

From this we can deduce that adjusting for age ( if
reasonable) will increase the difference between the two
parity groups.

We now show how to find an age adjusted estimate, when we
assume a linear “effect” of age on log odds.
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Post term delivery and age

We fit the same model to the Parity>0 group
and then look at the difference:

log odds Slope log odds Age==30

est se lower upper est se lower upper

Parity>0 0025 0.007 0.012 0039 -1037 0.029 -1.093 -0.981
Parity==0 0.021 0.007 0.007 0.035 -0.845 0.033 -0.910 -0.780

Difference 0.005 0.010 -0.015 0.024 -0.193 0.044 -0.279 -0.107

The standard errors of the differences are found as usual:

se?  +se?

est parity==0 ) - parity>0 parity=—0

5e (€5t o0

We see that we can assume the slopes to be identical, we
could also test the hypothesis:

7= 0005-0_ 45 p = 64%
0.010
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Post term delivery and age - assuming identical slopes

If we assume identical the slopes, then we can write the

model: log(odds) =y, + 7, -(Age—30) + 7, - Parl
e-30 ar
OddS=eXp(7o)'eXp(]/1)(Ag ) .eXp(]/z)P 1
We see that
exp(7) is the odds among 30-year old with Parity==0.

exp(7,)-exp(,) is the odds among 30-year old with Parity>0.

exp(y)A is the odds ratio for the age difference A
years among women in the same Parity group.

exp(7) is the odds ratio comparing Parity>0 to
Parity==0, at the same age.
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Post term delivery and age - assuming identical slopes

The model is easily fitted by a computer:

log odds Slope log odds Age==30

est se  lower upper est se lower upper
Parity>0 -1036 0.029 -1.092 -0.981
Parity==0 0.023 0005 0013 0.033 -0.839  0.031 -0.900 -0.778

Difference 0 -0.197 0.043 -0.281 -0.114

The age adjusted OR comparing Parity>0 to Parity==0:
OR| ) :exp(-0.197) (exp(-0.281);exp(~0.114)) = 0.821(0.755,0.892)

and if we compare Parity==0 to Parity>0:

OR. it (71 ;LJ=1.22(1.12;1.32)
010,821 0.892'0.755
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Post term delivery and Parity - Formulations

Methods
The risk of post term delivery among women was modeled by
a logistic regression model with age as a continuous variable....

Results versionl

Comparing Parity >0 to Parity==0 the crude odds ratio was
0.87(0.81;0.95). The age adjusted odds ratio was
0.82(0.76;0.89).

Results version2

Comparing Parity==0 to Parity>0 the crude odds ratio was
1.14(1.06.1.24). The age adjusted odds ratio was
1.22(1.12;1.32).

Conclusion ??
Women giving birth for the first time have up to 32% higher
odds (risk) of post term delivery compared to other women

of the same age. .....

Morten Frydenberg Basic Biostatistics - Day 7 30

Basic Biostatistics - Day 7 - 25 March 2009




Morten Frydenberg

version date: 23 March 2009

log(odds) =, + 7, - (Age —30) + 7, - Parl

Post term delivery and age - assuming identical slopes

0

-5

R

log odds

-2.57
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20 25 30 35 40

31

Post term delivery and age - assuming identical slopes
exp(7, + 7, - (Age—30) +, - Parl)

risk =
1+exp(y, + 7, - (Age —30) + 7, - Parl)
5]
4
@
(]
2
1
20 25 30 35 40
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Post term delivery and age - assuming identical slopes
o exp(7, +7, - (Age—30)+y, - Parl)
FISK = .
1+exp(7, +7,-(Age—30)+y, - Parl)
19 =
87 s =
277
////

3 ° ya

o 2 //f/
2 s

=
o-
-50 0 50 100 150 200
Age
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Why use logistic regression

There is a long tradition for using logistic regression when
considering binary outcome. Some of the reasons are:

It is the mathematical nicest model for binary outcome, and
hence the first type of models that was included in the
statistical software.

If you have a case-control design, then you want to work
with odds ratios.

If the event is rare, then it will give you relative risk
estimates.

It is one of the few models for binary data that ensures that
the estimated probability is between zero and one.
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Linear and logistic regression - a comparison
In alinear regression the outcome is continuous:
Lung function, Blood pressure, BMI, concentrations...

In alogistic regression the outcome is binary:

explanatory variable!!

observations.

In both models we assume linearity -
of expected value or the log odds.

Both models are readily fitted by standard statistical
packages.
Morten Frydenberg
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Neither of the models make any assumptions about the

In both models we have to assume independence between

Post term delivery, gender, dead/alive, sick/ well, BMI>30..

In both models they can be continuous, binary or categorical.

35

Regression models in general - why? Adjustment

You have now looked at two of the most commonly used
regression models in their most simple forms, involving one
continuous and one binary explanatory variable.

You have seen how one can use such models for adjustment:
What is the 'effect’ of the binary 'exposure’ when adjusting
for the continuous variable?

Exactly the same models could answer the question:

What is the 'effect’ (slope) of the continuous ‘exposure’ when
adjusting for the binary variable?

E.g. what is the increase in risk of post term delivery
associated with age when we adjust for parity?

Often one has several explanatory variables, a mixture of
continuous, binary and categorical and the purpose is to
adjust for more than one.

In such case one might aEply a mulhple regression model
Morten Frydenberg Basic Biostatistics - Day
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Regression models in general - why? Effect modification

We have also seen how we could compare the ‘effect’ of one
explanatory variable for subgroups described by another
explanatory variable (effect modification):

What is the difference in the PEFR-height relationship for
men and women?

What is the difference in the Risk-age relationship for the
two parity groups?

Typically by comparing the slopes.

Often one has several explanatory variables, a mixture of
continuous, binary and categorical and the purpose is to model

effect modification between explanatory variables.
In such case one might apply a multiple regression model.
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Regression models in general - why? Prediction

We could also have used exactly the same models for
prediction/prognosis:

What is the expected PEFR for a person with a given sex and
a given height?

What is the risk of post term delivery for women of a given
age having her first child?

Often one has several explanatory variables, a mixture of
continuous, binary and categorical and the purpose is to make
prediction for a person with a given set of characteristics.
In such a case one might apply a multiple regression model.
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