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Example: Post term delivery and parity
Question: How does the risk of post term delivery depend 
on parity?

Data: Parity and gestational age for 12,311 women in the age 
of 20 to 39. Post term delivery defined as a gestational age 
larger than 40 weeks.

Parity N Postterm Risk

First child 5,938 1,722 29.0 (28.8; 30.2)%

Not first child 6,373 1,677 26.3 (25.2; 27.4)%

Total 12,311 3,399 27.6 (26.8; 28.4)%

Model: Independent samples from two binomial distributions.

Let 0 and 1 be the probability (risk) of post term delivery 
among women giving birth to their first child or not, 
respectively.
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Example: Post term delivery and parity
The assumptions behind the model was discussed on day 4.

On that day we also looked at three different measures of 
associations: Risk Difference, Relative Risk and Odds Ratio.
And the chi-squared test for no association.

Today we will look closer at the Odds Ratio.

In the table above we compare 1 to 0, i.e. women giving 
birth to their first child is the reference group.

We see that the risk is (statistically significant) smaller if 
the woman already had a child.

Risk difference -2.7 (-4.3; -1.1)%

Relative risk 0.91 (0.86; 0.96)

Odds ratio 0.87 (0.81; 0.95)

X2=11.09  p=0.001
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Odds and risk
The odds is defined as /(1-) , i.e. the probability of post 
term delivery divided by the probability of not having a post 
term delivery.

1
odds







If the odds is equal to 0.5=1/2, then the risk of post term 
delivery is only half of the risk of not having a post term 
delivery. 
We can also go from odds to risk:

1

odds

odds
 


We see that 

odds = 0.5 gives   = 0.5/(1+0.5)=0.3333.

odds = 1 gives    = 1/(1+1)=0.5.
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Odds and odds ratios

 
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OR has nice properties: 
Switching reference group or event will just lead to 1/OR, e.g.

The odds ratio comparing parity>0 to the reference is given by

0
01

1 10

1odds
OR

odds OR
 

And of course the estimates and confidence intervals will 
transform similarly.

It is easily seen that 1 0 1 0 1odds odds OR     

 01

1 1 1
: ; 1.14 1.06;1.24

0.87 0.95 0.81
OR

   
 
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Odds ratios and relative risks
The odds ratio is related to the relative risk: 

 
 

 
 

1 0 0
10 10

0 1 1

1 1

1 1
OR RR

  
  

  
  

  

We can see that if the event is rare, i.e. both 1 and 0 are 
small, then the last ratio is close to 1/1=1.

So for a rare event we have:

OR RR
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Estimating the odds ratios
The odds ratio is of course estimated by: 

  
 

1 0
10

0 1

ˆ ˆ1

1ˆ ˆ
OR

 
 

 


 

Another way to find the estimate is to make the ‘classical’
2x2 table: 

Exposed Yes No
Yes a b
No c d

Event


10

a d
OR

b c






Parity>0 Yes No
Yes 1,677 4,696
No 1,722 4,216

Post term


10

1,677 4,216
0.8743

1,722 4,696
OR


 


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Odds ratios – why inference on the log-scale
The odds ratio is limited to be positive.

A value in the interval 0 to 1 corresponds to lower risk 
among the Parity>0.

A value from 1 to infinity corresponds to higher risk among 
the Parity>0

0 1

If we switch “exposed” and “unexposed” we get

0 1

Lower riskHigher 
risk

0.25

4.0

Lower 
risk

Higher risk
10OR

01OR
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Odds ratios – why inference on the log-scale
The log-odds ratio is not limited.

A value in the interval -infinity to 0 corresponds to lower 
risk among the Parity>0.

A value from 0 to infinity to higher risk among the Parity>0

If we switch “exposed” and “unexposed” we get

log(0.25)=-log(4.0) 0

Lower risk Higher risk

 10log OR

log(4.0)

Higher risk Lower risk  01log OR

0

Symmetry on the log scale!!!

Morten Frydenberg Basic Biostatistics - Day 7 11

Odds ratios – Approx. CI (Woolf/Wald )
So on the log scale we have a symmetric measure of 
association.

On the log scale it makes sense to find the CI as ‘usual’,
i.e. as  estimate1.96*se .

Using the notation from page 8 we have:

   1 1 1 1
se ln OR

a b c d
   

  
     

      

1 1 1 1
se ln 0.0403

1,677 4,696 1,711 4,216

ln ln 0.8743 1.96 0.0403 0.2134; 0.0552

exp 0.2134 ;exp 0.0552 0.81;0.95

CI 

CI 

OR

OR

OR

    

     

   
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Odds ratios – Testing
If one wants to test a hypothesis that the odds ratio has a 
specific value: OR=OR0,

then this is also done on the log-scale:
   

  
0ln ln

se ln
obs

OR

R
z

OR

O




   

   

ln 0.8743 ln 0.9
0.719

0.0403

2 Pr 2 Pr 0.47

obs

obs obs

z

p z z z z


  

       

Could the odds be reduced by 10%, i.e. H: OR=0.9 ?

The hypothesis cannot be rejected.
disp (  ln(0.8743)-ln(0.9)  )/ 0.0403
disp 2*normal(  abs(-0.719)  )
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Odds ratios – logistic regression
Here we will see how one can find the odds ratio by logistic 
regression.

Let Par1 be an indicator variable for Parity>0 ,
i.e.  Par1=1 if parity>0  and  Par1=0 if Parity==0.

Now we will look at the (logistic regression) model:

  0 1log 1o Pd rd as    
This is equivalent to:

     0

1

1 0 11exp exp exp
Par

Pao rdds        

and  
 

0 1

0 1

exp

1 exp

1

1

Par

Par

 





 


  
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Odds ratios – logistic regression

      1

0 1 0 11log exp exp
Par

odds odPa dsr       

We see that if Parity=0 then we have:

   0 0log expodds odds  

and if Parity>0 then we have

     0 1 0 1log exp expodds odds      

 
 

   
   0 1

10 1
0

exp exp0
exp

0 exp

odds if parity
OR

odds if parity

 





  


Combining we have
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Odds ratios – logistic regression

      1

0 1 0 11log exp exp
Par

odds odPa dsr       

In summary we have that in the model:

The “intercept”  is the log odds in the “reference group”.

The “slope”  is the log OR.

That is, we can find the odds ratio from before by what is 
called a logistic regression model.

So the computer will give us estimates and confidence 
intervals for the odds in the reference group and the odds 
ratio comparing the ‘exposed’ to the reference.
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Post term delivery and age

     0 1 0 1log exp exp
Age

odds odAg dse       

We know that the age distribution among the two groups of 
women is different – the women giving birth for the first time 
will on average be younger!

It might be relevant to compare the two groups after 
“adjustment for age”.

We will start by modeling the association between post term 
delivery and age among the women with Parity==0. 

The simplest logistic regression model is:

To get a sensible reference age:

       0 1

0

1

3

0log 30 exp exp
Age

odds odA sg de         
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       0 1

0

1

3

0log 30 exp exp
Age

odds odA sg de         

   
     
     
     
     

0 0

0 1 0 1

0 1 0 1

0 1

1

0 1

0 1 0 1

2

11

5

log exp

log exp exp

log 12 exp

30 :

31:

18 :

19 :

25

exp

log 11 exp exp

log 5 exp exp:

odds odds

odds odds

odds odds

od

Age

Age

Age

Age

Age

ds odds

odds odds

 

   

   

   

   







 

   

    













   

    

       
          

          

0 1 0 1

0 1

11 12

5

0 1 1

0 1 0 1 1

11 6

exp exp exp exp

exp exp exp exp exp

exp exp exp exp exp

OR

OR

OR

   

    

    

 

 

  

   

   

31 vs 30

19 vs 18

25 vs 19

Post term delivery and age (Parity==0)
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Post term delivery and age (Parity==0)

       0 1

0

1

3

0log 30 exp exp
Age

odds odA sg de         

 
 
 1

6

1

1

exp

exp

exp

31 vs 30

19 vs 18

25 vs 19

OR

OR

OR













 030 : expoddsAge  We saw:

That is, 
exp( is the odds in the reference (Age==30)

exp( is the OR for 1 year difference.

and
6

6 1years yearOR OR
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log odds scale
est se lower upper z p

Const -0.8446 0.0332 -0.9096 -0.7795 -25.44 <0.0001
Age-30 0.0207 0.0071 0.0069 0.0345 2.93 0.003

CI H = 0

Exp
odds scale

est se lower upper z p
Const 0.4297 0.4027 0.4586 -25.44 <0.0001
Age-30 1.0209 1.0069 1.0351 2.93 0.003

CI H = 1

Post term delivery and age (Parity==0)

Using a computer we get:

Note, only the estimates and the confidence intervals 
should be transformed!
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est lower upper z p
Odds if Age=30 0.4297 0.4027 0.4586 -25.44 <0.0001
One years age dif. 1.0209 1.0069 1.0351 2.93 0.003

CI H = 1

From odds to probability:

  0.4297 0.4027 0.4586
Pr ;

1 0.4297 1 0.4027 1 0.4586

30.1(28.7;31.4)%

post term if ==30Age
      


Five years age difference:

 
 

55
5 1.0209 1.0069;1.0351

1.11 1.03;1.19

yearsOR 



Post term delivery and age (Parity==0)
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Post term delivery and age (Parity==0) - Formulations

Methods
The risk of post term delivery among women giving birth for 
the first time was described by a logistic regression model 
with age as a continuous variable. …

Results
We found that five year age difference corresponds to an 
odds ratio of 1.11(1.03; 1.19). A 30 year old woman giving birth
for the first time has 30(29;31)% risk of post term delivery.

Conclusion
The risk of post delivery among women giving birth for the 
first time increases with the age of the woman….  
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Logistic regression checking the model

It is outside the scope of this course to go into details on 
how to check the model, so we will just state the assumptions 
behind the model:

1. All the observations should be independent.

2. There is exactly the same two possible outcomes for
each observation.

3. The log odds is a linear function of age.

The last assumption can to some extend be checked by 
plotting the fitted regression line and the observed odds 
(with 95% CI) for each distinct age.
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   0 1log 30odds Age    
Post term delivery and age (Parity==0)
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 

 

  


   

Post term delivery and age (Parity==0)
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Not linear! But almost
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   

Post term delivery and age (Parity==0)

Extrapolating we see the 
non-linearity.
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Post term delivery parity adjusting for age

We now know that 

• The risk of post term delivery increases with age
(among women with parity==0).

• The risk of post term delivery is smaller for Parity>0.

• Women with Parity>0 are older.

From this we can deduce that adjusting for age ( if 
reasonable) will increase the difference between the two 
parity groups.

We now show how to find an age adjusted estimate, when we 
assume a linear “effect” of age on log odds.
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Post term delivery and age

We fit the same model to the Parity>0 group
and then look at the difference:

 
0 0

2 2
0 0se se se

parity parityparity parityest est
    

log odds
est se lower upper est se lower upper

Parity>0 0.025 0.007 0.012 0.039 -1.037 0.029 -1.093 -0.981
Parity==0 0.021 0.007 0.007 0.035 -0.845 0.033 -0.910 -0.780
Difference 0.005 0.010 -0.015 0.024 -0.193 0.044 -0.279 -0.107

Slope log odds Age==30

The standard errors of the differences are found as usual:

We see that we can assume the slopes to be identical, we 
could also test the hypothesis:

0.005 0
0.5 64%

0.010
z p


  
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We see that

exp() is the odds among 30-year old with Parity==0.

exp()exp() is the odds among 30-year old with Parity>0.

exp()A is the odds ratio for the age difference A
years among women in the same Parity group.

exp() is the odds ratio comparing Parity>0 to 
Parity==0 , at the same age.

Post term delivery and age – assuming identical slopes 

If we assume identical the slopes, then we can write the 
model:    

      3

0 1

1

2

1

0

20

log 30

exp exp exp

1
Age Par

odds

odd

Age Par

s

  

  

     

  
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log odds
est se lower upper est se lower upper

Parity>0 -1.036 0.029 -1.092 -0.981
Parity==0 -0.839 0.031 -0.900 -0.778
Difference 0 -0.197 0.043 -0.281 -0.114

0.033

Slope log odds Age==30

0.023 0.005 0.013

The age adjusted OR comparing Parity>0 to Parity==0:

        exp 0.197 exp 0.281 ;exp 0.114 0.821 0.755;0.892:
10

OR    

and if we compare Parity==0 to Parity>0:

 1 1 1
; 1.22 1.12;1.32

0.821 0.892 0.755
:

01
OR    

 

Post term delivery and age – assuming identical slopes 

The model is easily fitted by a computer:
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Post term delivery and Parity - Formulations
Methods
The risk of post term delivery among women was modeled by 
a logistic regression model with age as a continuous variable.…

Results version1
Comparing Parity >0 to Parity==0 the  crude odds ratio was 
0.87(0.81;0.95). The age adjusted odds ratio was 
0.82(0.76;0.89).

Results version2
Comparing Parity==0 to Parity>0 the crude odds ratio was 
1.14(1.06;1.24). The age adjusted odds ratio was 
1.22(1.12;1.32).

Conclusion ??
Women giving birth for the first time have up to 32% higher 
odds (risk) of post term delivery compared to other women 
of the same age. …..
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Post term delivery and age – assuming identical slopes 
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Post term delivery and age – assuming identical slopes 
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  
  

0 1 2

0 1 2

1exp 30
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Post term delivery and age – assuming identical slopes 
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Why use logistic regression

There is a long tradition for using logistic regression when 
considering binary outcome. Some of the reasons are:

It is the mathematical nicest model for binary outcome, and 
hence the first type of models that was included in the 
statistical software.

If you have a case-control design, then you want to work 
with odds ratios.

If the event is rare, then it will give you relative risk
estimates.

It is one of the few models for binary data that ensures that 
the estimated probability is between zero and one.
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Linear and logistic regression – a comparison

In a linear regression the outcome is continuous: 
Lung function, Blood pressure, BMI, concentrations…

In a logistic regression the outcome is binary:
Post term delivery, gender, dead/alive, sick/ well, BMI>30..

Neither of the models make any assumptions about the 
explanatory variable!!
In both models they can be continuous, binary or categorical.

In both models we have to assume independence between 
observations.

In both models we assume linearity –
of expected value or the log odds.

Both models are readily fitted by standard statistical 
packages. 
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Regression models in general – why? Adjustment 

You have now looked at two of the most commonly used 
regression models in their most simple forms, involving one 
continuous and one binary explanatory variable.

You have seen how one can use such models for adjustment: 
What is the ‘effect’ of the binary ‘exposure’ when adjusting
for the continuous variable?

Exactly the same models could answer the question: 
What is the ‘effect’ (slope) of the continuous ‘exposure’ when 
adjusting for the binary variable?
E.g. what is the increase in risk of post term delivery 
associated with age when we adjust for parity?

Often one has several explanatory variables, a mixture of 
continuous, binary and categorical and the purpose is to 
adjust for more than one. 
In such case one might apply a multiple regression model.
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Regression models in general – why? Effect modification 

We have also seen how we could compare the ‘effect’ of one 
explanatory variable for subgroups described by another 
explanatory variable (effect modification):

What is the difference in the PEFR-height relationship for 
men and women?
What is the difference in the Risk-age relationship for the 
two parity groups?

Typically by comparing the slopes.

Often one has several explanatory variables, a mixture of 
continuous, binary and categorical and the purpose is to model 
effect modification between explanatory variables. 
In such case one might apply a multiple regression model.
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Regression models in general – why?  Prediction

We could also have used exactly the same models for 
prediction/prognosis:

What is the expected PEFR for a person with a given sex and 
a given height?
What is the risk of post term delivery for women of a given 
age having her first child?

Often one has several explanatory variables, a mixture of 
continuous, binary and categorical and the purpose is to make 
prediction for a person with a given set of characteristics.
In such a case one might apply a multiple regression model.


