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The lincom command after logit or regress

Data with several random components: Binary outcome Consider the model:

Clustered binary data with one random components logit(Pr(obese)) = 3, + 3, - woman + B, - (age —45)
ROC-curves and the area under the ROC-curve obese | coef.  std. Err. z Pz [95% conf. Intervall
________ e TR T T e
_Isex_2 | .2743977 .0903385 3.04 0.002 .0973375 .451458
age4s | .0344723 .0051354 6.71 0.000 .0244072 .0445374
_cons | -2.147056 .0721981  -29.74  0.000 -2.288561 -2.00555

Here men are reference.

If we want to find the log odds for a 45 year old women
we can calculate by hand —2.147+0.274=—1.873

But what about confidence interval?

We could change the reference to women and fit the
model once more.

But.......
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The lincom command after logit or regress The lincom command after logit or regress

logit(Pr(obese)) = 3, + 3, - woman + 3, - (age — 45) logit(Pr(obese)) = 3, + 3, - woman + 3, - (age — 45)
Stata has a command that can be used for this: "lincom” Some examples:
Tincom _cons+_Tsex Log Odds for a 42 year old woman:

Tincom _cons+_Isex-age45+*3

(1) _Isex 2 + _cons =0 (1) _TIsex_2 - 3 age45 + _cons = 0
obese | coef.  std. Err z  Pelzl  [95% Conf. Interval] " obese | coef. std. Err.  z  P>lzl  [95% conf. Interval]
—————— b S

| -1.8726  .05813 -32.21 0.000  -1.986602 -1.758714 (1 | -1.976075 .0639755 -30.89 0.000  -2.101465 -1.850685
To get to risk/probability with confidence interval: Odds ratio for 4.5 age difference:
dlzgzgzxéomt(r(est1mate)) Tincom age45%4.5,o0r
- (1) 4.5 age45 =0
disp invlogit(r(estimate)-1.96*r(se)) ";“ /// T T T e g T T T T

inviogi t(r(estinate)+1.96%r (se)) _Obese | odds Ratio Qud. Jr. 2 Plzl  [95% conf. intervall

-12061656 ;  .1469518 MW | 1.167804 6.71 0.000  1.116091  1.221914
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Logistic regression models: Do you have enough data?

All inference in logistic regression models are based on
asymptotics , i.e. assuming that you have a lot of data!

Rule of thumb:
You should have at least 10 events per variable
(parameter) in the model.

A large standard error typical indicates that you have to
little information concerning the variable and that the
estimate and standard error are not valid.

Lower your ambitions or get more data !

A exact methods exists, but only one (expensive) program
can do it.

And it will give also wide confidence intervals.
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Logistic regression models: Diagnostics
In the linear regression we saw some example of statistics:
residuals, standardized residuals and leverage

which can be used in the model checking and search for
strange or influential data points.

Such statistics can also be defined for the logistic regression
model.

But they are much more difficult to interpret and cannot in
general be recommended.

Checking the validity of a logistic regression model will mainly
be based on comparing it with other models.
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Logistic regression models: Test of fit

A common, and to some extend informative, test of fit is the
Hosmer-Lemeshow test.

Consider the model for obesity from Monday
logit(Pr(obese)) = 3, + 3, - woman + 3, - (age —45)

Logit estimates Nl £ ob = 4690
LR chi2(2) = 55.68
Prob > chi2 = 0.0000
Log Tikelihood = -1767.7019 Seudo K. = U. 0155

obese | coef. std. Err. z P>|z| % Conf. Interval]

_Isex_2 | .2743977 .0903385 3.04 0.002
age45 | .0344723 .0051354 6.71  0.000 .0244072 .0445374
_cons | -2.147056 .0721981  -29.74  0.000 -2.288561 -2.00555

/0973375 .451458

Significantly better than nothing - but is it good?
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Logistic regression models: Test of fit

What about comparing the estimated prevalence with the
observed prevalence?

In the Hosmer-Lemeshow test the data is divided into groups
(traditionally 10) according to the estimated probabilities

and the observed and expected counts are compared in these
groups by a chi-square test.

Most programs, that can fit a l&gistic regression model, can
calculate this test.

In Stata it is done by (after fitting the model):
estat gof, group(10) table

The data is divided into deciles after the estimated
probabilities.
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Logistic regression models: Test of fit

OUTPUT

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

e o +

| Group | Prob | Exp_0 | Total |

——————— Bt & e it |

| 1] 0.0841 | .1 526 |

| 2 ] 0.0953 | . 51 49 |

| 3 | 0.1045 | .6 | L4 | 442 |

| 4] 0.1112 | .30 71 464 |

| 5 | 0.1217 | .4 | .6 | 438 |

| 6 | 0.1332 | .0 | .0 | 493 |

| 7 | 0.1456 | 7 L3 442 |

| 8 | 0.1592 | 62 69.8 | 2 | 454 |

| 9 | 0.1834 | 98 89.9 1 | 522 |

| 10 | 0.2407 | 13 |

B e 1-OA .
number of observations = One pr‘oblem

number of groups = Too many n
Hosmer-Lemeshow chi2(8) = The TG”S
Prob > chi2 =

| Significant difference between observed and expected!
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Logistic regression models: Test of fit
xi: logit obese 1i.sex*age45
estat gof, group(10) table
Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

e +
| Group |  Prob | obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-====-=- +mmmmm - +mmmmm e o o o o |
| 1] 0.0796 | 36 | 35.9 | 466 | 466.1 | 502 |
| 2 | 0.1011 | 42 | 41.1 | 406 | 406.9 | 448 |
| 3 | 0.1053 | 49 | 49.6 | 429 | 428.4 | 478 |
| 4 | 0.1096 | 50 | 54.8 | 458 | 453.2 | 508 |
| 5 | 0.1124 | 52 | 54.2 | 436 | 433.8 | 488 |
| 6 | 0.1153 | 51| 46.4 | 355 | 359.6 | 406 |
| 7 | 0.1182 | 52 | 53.9 | 410 | 408.1 | 462 |
| 8 | 0.1590 | 76 | 70.3 | 428 | 433.7 | 504 |
| 9 | 0.2133 | 96 | 91.8 | 391 | 395.2 | 487 |
| 10 | 0.3310 | 97 | 103.0 | 310 | 304.0 | 407 |
o +
number of observations = 4690
number of groups = 10
Hosmer-Lemeshow chi2(8) = 2.43
Prob > chi2 = 0.9650
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Conditional logistic regression
When

Used in two situations:
1.Matched studies (binary response).

2.Unmatched studies with a confounder with many
distinct values.

In 2. the method adjust for a 'mathematical’ flaw in the
unconditional method.

An example of situation 2. the confounder is * kommune”
having 275 distinct values.

In 1. the models correspond to the way data was collected.

Conditional logistic regression
What
The logistic regression model (outcome disease yes/no):

ln(ndds)=a+§(ﬁi'xi)
RN

In(odds) in reference In(odds ratios)

Suppose the model above hold in each strata:

In(odds) =z, + (/)
VAN
In(odds) in reference In(odds ratios)
different in each strata the same in each strata

In(odds) different in each strata
We are not interested in these !
In a matched study these are ‘controlled'.

In a conditional logistic regression one ‘condition on the
odds in each strata’, i.e. these case/control ratio.

In the conditional model the o's disappear !

The B's , the log OR's, are still in and can be estimated.

Morten Frydenberg Linear and Logistic regression - Note 6 15

Morten Frydenberg Linear and Logistic regression - Note 6 13 Morten Frydenberg Linear and Logistic regression - Note 6 14
Conditional logistic regression Conditional logistic regression
What How
k . |
In(odds)=c,+> (5 - x;) It is easy !
i=1

You heed a statistical software package.

A package made for research in epidemiology
Not in social science

Not SPsS

But Stata, EPICURE, EPILOG, EGRET,
EPIINFO(2000) and SAS can do it.
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Conditional logistic regression
How

An example using Stata
A study of cancer in the oral cavity
Matched on gender and 10 years age groups
Ten strata (genage)
Here we focus on
textile-worker and

Tife time consumption of alcohol (three groups)
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Conditional logistic regression
How

logistic regression in Stata
x7:1ogit cancer textile i.alkcon i.genage

Part of the output:

cancer | Coef. std. Err. z P>|z]| CcI
_________ S

textile | .5022  .4141 1.213  0.225 -.3094 1.3139
_Ialkcon_1 | .4628  .2823 1.639 0.101 -.0905 1.0163
_Ialkcon_2

N
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w
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o
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_Igenage_4 1.4353
_Igenage_5 | -.2 -1.3644 .7844
_Igenage_6 | . -1.0147 1.4401
_Igenage_7 | -1.2802 .8190
_Igenage_8 | 1.5825
_Igenage_ 9 | 1.1847
_Igenage_10 1.6539
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Conditional logistic regression in Stata

The syntax:
x7:clogit cancer textile i.alkcon,group(genage)
Part of the output:

cancer | coef. std. Err. z P>|z| CcI
___________ S

textile | .4929 .4103 1.201 0.230 -.3112  1.2971
_Talkcon_1 | .452  .27923 1.621 0.105 -.094 .9999
_Talkcon_2 | 2.660 .31936 8.332 0.000 2.034 3.2868

cases | odds Ratio std. Err. z P>|z| [95% conf. Interval]
___________ o o o
textile | 1.63708 .6717022 1.20 0.230 .732517 3.658661
_Ialkcon_1 | 1.572508 .4390957 1.62 0.105 .909724 2.718168
_Talkcon_2 | 14.30908 4.569879 8.33  0.000 7.651811 26.75835
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Other methods to analysis of binary response data
Relative Risk models

Logistic regression model focus on the Odds Ratios

This is the correct thing to do in case-control
studies.

In follow-up studies Relative Risk is often the
appropriate measure of association, (personal risk).

I.e. a model like this might be more relevant:

Pr(event) = p,x RR X RR, X RR,

In{Pr(event)} =In(p,)+In(RR,)+In(RR,)+In(RR,)
In{Pr(event given the covariates)} = o+ Zp:(ﬁ -x,)

i=1
That is linear on log-probability scale
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Other methods to analysis of binary response data
Relative Risk models

In{Pr(event given the covariates)} =+ Zp:(ﬁ -x;)

i=1

Such a model modelling the relative risk can easily be
fitted by many programs (not SPSS5??).

Logistic regression in Stata:

x7: Jlogit obese age i.sex

or

x7: glm obese age i.sex, fam(bin) 1ink(logit)
Relative risk model:

x7: glm obese age 1i.sex, fam(bin) 1ink(1og)
The 77nk is log instead of logit

Morten Frydenberg Linear and Logistic regression - Note 6 21

Other methods to analysis of binary response data
Risk difference models

Logistic regression model focus on the Odds Ratios

This is the correct thing to do in case-control
studies.

In follow-up studies Risk Difference is often the
appropriate measure of association, (community
effect).

I.e. a model like this might be more relevant:
Pr(event)= p,+RD, + RD, + RD,
Pr(event given the covariates)=a+ i(ﬁ -x;)
i=1
That is linear on probability scale
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Other methods to analysis of binary response data
Risk difference models

P
Pr(event given the covariates)=a+Y (/- x,)
i=1

Such a model modelling the risk difference can easily
be fitted by many programs (not SPSS).

Logistic regression in Stata:

xi: logit obese age i.sex

or

x7: glm obese age 1i.sex, fam(bin) 1ink(logit)
Risk difference model:

x7: glm obese age i.sex, fam(bin) 1ink(id)
The 77nk is identity instead of logit
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Other methods to analysis of binary response data

Three different links for Obese "=" sex "+" age

| == logit men === logit women Vs
=== logmen === logwomen
«=== identmen === ident women

-

prevalence
@

Plot01

.05

T T T T T T T T T
30 35 40 45 50 55 60 65 70

Agein Years
Morten Frydenberg Linear and Logistic regression - Note 6 24

Linear and Logistic Regression: Note 6




Morten Frydenberg

Version date:Monday, 10 May 2010

Problems

Pr(event) = p, X RR X RR, X RR,

As the relative risk can be larger than one
the product might be larger than one !

Pr(event)= p,+RD, + RD, + RD,

The sum might negative and be larger than one !

Other methods to analysis of binary response data

Missing data - example 1

Consider the Frammingham study and imagine, that (due fo a
limited budget) only 500 measurements of SBP were allowed.

Tt was decided to take SBP measurements on 100 random
participants in each of the age groups -40 and 60+ and 150 in
each of the age groups 40-50 and 50-60.

That is we have missing SBP on 4190 of the 4690 participants!
A short description of the data:

. . agegrp | Freq N(sbp) mean (sbp) sd(sbp)

Here/in Stata g1mis an acronym for | | I 1

H i 0- | 1,325 100 122.18 15.43273

gener‘allzed Imeqr‘ mOdel 40- | 1,684 150 130.8467 22.2366

not 50- | 1,346 150 140.9267 22.48194

gener‘al linear model 60- : 335 100 149.51 26.92507

. Total 4,690 500 135.87 24.0783

Note: In Stata you can also use the binreg command | [ T otal | 4% %00 13587 24.0783

with option rr or rd
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Missing data - example 1

agegrp | Freq N(sbp)  mean(sbp) sd(sbp)
__________ e o

0- | 1,325 100 122.18 15.43273

40- | 1,684 150 130.8467 22.2366

50- | 1,346 150 140.9267 22.48194

60- | 335 100 149.51 26.92507

|
Total | 4,690 500 135.87 24.0783
We note:

This is not a completely random sample
- the chance of being sample depends on age group!

analysis) will be biased.

Morten Frydenberg Linear and Logistic regression - Note 6

I.e. an analysis of the 500 participants (a complete data

The overall (total) average SBP is a biased estimate of the
mean SBP among participants in the Frammingham study!
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Missing data - example 1

agegrp | Freq N(sbp)  mean(sbp) sd(sbp)
__________ e
0- | 1,325 100 122.18 15.43273
40- | 1,684 150 130.8467 22.2366
50- | 1,346 150 140.9267 22.48194
60- | 335 100 149.51 26.92507
|
Total | 4,690 500 135.87 24.0783

We also note:
Within each age group the sample is completely random.

Within each age group the average SBP is an unbiased
estimate of the mean SBP in the age group.

We know the size of each age group.

We can calculate an unbiased estimate of the total mean
by weighing the group averages.
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Missing data - example 1

agegrp | Freq N(sbp) mean (sbp) sd(sbp)
__________ S
0- | 1,325 100 122.18 15.43273
40- | 1,684 150 130.8467 22.2366
50- | 1,346 150 140.9267 22.48194
60- | 335 100 149.51 26.92507
|
Total | 4,690 500 135.87 24.0783

of the group averages using the group sizes as weights:

122.18-1325+130.85-1684 +140.93-1346 +149.51-335
4690

estimatellll
(Assuming completely random sample within age group!)
Morten Frydenberg
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An unbiased estimate can be found as the weighted average

=132.62

Conclusion: Although this is not a completely random sample,
we have enough information in the data to find an unbiased
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Assuming that SBP is related to age:
Being missing is not independent of the unobserved SBP.
but

Being missing is independent of the unobserved SBP,
when we know the age group of the individual.

The first statement means that the data is not missing
completely at random (MCAR).

The second statement correspond to missing at random
(MAR), i.e. that given all what we have observed (including
age group), then the missingness is (completely) random, i.e.
independent of the unobserved data.

Mathematically missing at random implies that one (in
theory) has enough information in the observed data to
correct for the missing data.
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Missing data: Standard terminology

Missing completely at random (MCAR).
The observed data is a (completely) random sample:
A complete data analysis will be unbiased

Missing at random (MAR)

Given all what we have observed, then the missingness
is (completely) random (independent of the unobserved
data):

The biased sampling can be adjusted for.

Missing not at random (MNAR)

Non of the two above apply:

We will need further assumptions in order to analyse
the data.

Morten Frydenberg Linear and Logistic regression - Note 6
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Missing at random

When the data is missing at random, then one can, in theory,
make unbiased inference based on the observed data.

In the SBP example such an analysis could be to use the
weighted average SBP in stead of the biased unweighted
average.

In general

If the sampled persons are not a completely random sample,
but the ith person is sampled with a know probability, p, ,
then we can obtain unbiased estimates by weighting the ith
person with 1/p, .

The methods is called Inverse Probability Weighing.
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Inverse probability weighting
The SBP data:
Four different sampling probabilities and weights:

Missing values - not by design
Most often the missing is not per design
and both in the outcome and in the covariates:

it is in theory possible to make an
unbiased analysis of all the data.

Morten Frydenberg Linear and Logistic regression - Note 6
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P50/ 160400831 4/ 1123 Losr

= =0. w, = = .

P : P Tlojojojo 0 observed
p,=150/1346=0.1114 w,=1/p, =8.97 210lmlolo M observed
p;=100/335 =0.2985 w,=1/p,=3.35 3mlolol|o

That is information from each of the youngest should 4|mimlolo

weigh by 13.25 and information from the each of the

oldest should weigh by 3.35. 5|0jo0jo]o0

Sampling weights can be used in many Stata commands: 6lolm|/m|o

mean sbp [pw= sampw]

i — e of s T Here we have only complete data on 2 persons, but partial

| Mean  std. Err. [95% conf. Interval] . .

_____________ e 2P T N TR information on 4 persons.
sbp | 132.6242 1.032943 130.5947 134.6536
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Missing values - not by design Imputation ao T T
If the missing is completely at random, — One way to try solve the problem with 12 °lo oo
then the analysis of the complete cases ’1‘1 Yn 0 L missing is Yo fill in the data for the missing |-~
will be unbiased. oo et values and then make the analysis on the TR PR
Tf this is not the case, then complete s Tml ool o whole data set with the ‘imputed’ values. 5 Tolololo
data analysis can give biased estimates. 4/mimjojo The imputation can be done in many ways. Slolalalo

5|o|lojo]|o

If the data is missing at random, then 6lo|m[mlo One way is to fill in an “"average" value.

This could be the total average of the
observed values for the specific variable or
the average in a relevant subgroup.

This method will not in general solve the bias problem.

And of course the standard error stated in the output,
when you analyse the imputed data set is wrong.
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The missing SBP example
Imputation by observed mean in age group:
bysort agegrp: egen msbp=mean(sbp)
generate isbp=sbp
replace isbp=msbp if missing(sbp)

mean isbp
Mean estimation

Correct mean, but a much to small standard error -
incorrectly assuming 4690 independent observations.
Correct analysis using sampling weights:
mean sbp [pw=sampw]
Mean estimation Number of obs = 500

Imputation - random multiple

A fixed imputation will not take into account
the random variation of the unobserved
observation.

Imputation methods should add some random
variation to the imputed data.

olo|s|lw|N| =S
olo|3[3|o|o =
3|o|3|o|3 |0
S |o|lo|o|o |o
o |o|o|o|o |O |2

For that we need a statistical model for the
missing data.

In multiple imputations one generates several imputed data
sets.

For each imputed data set one fit the model of interest.

The point estimates are, then the average across the imputed.

sbp | 132.6242  1.032043 130 5947 134 6536 One tricky thing is calculation of the standard errors.
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Multiple imputations MR The missing SBP example
X | X
Quesﬂons: 1]ojojo]o use sbpdata,clear
2lo|lm|o|o mi set mlong
H H mi register imputed sbp
How to find the models from which to 3 m[ofo]o 4190 med obs. now marked as incomplete)
generate the missing data? 4 mimjolo
. . 5/0|lo|o]|o mi impute regress sbp i.agegrp, add(20)
Who should you handle missing data in this [T o TmTm o o ) )
> Univariate imputation Imputations = 20
process. Linear regression added = 20
. . Imputed: m=1 through m=20 updated = 0
How to find the uncertainty (standard errors) of the | observations per m
. o) | =
estimates: variable | complete incomplete imputed | total
S N e e e T ettt e
Bookkeeping. sbp | 500 4190 4190 | 4690
(complete + incomplete = total; imputed is the minimum across m
of the number of filled in observations.)
Most important: Missing at random is required!
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The missing SBP example The missing SBP example
codebook, comp . table agegrp if _mi_m>0, c(count sbp mean sbp sd sbp)
variable obs unique Mean Min  Max Label | e
———————————————————————————————————————————————————————————————————————————————— N(sbp)  mean(sbp) sd(sbp)
sbp 84300 83383 132.3204 44.52609 270 sSystolic Blood Pressure
id 88490 4690 2352.429 1 4699 24,500 121.5843 22.32535 20%*1225=24500
agegrp 88490 4 1.107481 0 3 30,680 131.1271 22.37045
_mi_id 88490 4690 2357.795 1 4690 23,920 141.2539 22.4434
_mi_miss 4690 2 .8933902 0 1 4,700 22.19089 20*235=4700
_mi_m 88490 21 9.943496 0 20 -
. table agegrp if _mi_m==0,c(count sbp mean sbp sd sbp)
sum if _mi_m==1
variable | Obs Mean Std. Dev. Min Max agegrp | N(sbp) mean(sbp) sd(sbp)
+ +
sbp | 4190 131.2507 21.65931  59.92363  209.6556 0- | 100 122.18 15.43273
id | 4190 2352.611 1359.59 2 4699 40- | 150 130.8467 22.2366
agegrp | 4190 1.105251 . 8895275 0 3 50- | 150 140.9267 22.48194
_mi_id | 4190 2358.483 1331.661 101 4690 60- | 100 149.51 26.92507
_mi_miss | o e o
_mi_m | 4190 1 0 1 1
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The missing SBP example

mi estimate: mean sbp

Multiple-imputation estimates Imputations 20
Mean estimation Number of obs 4690
Average RVI = 7.4275

Complete DF = 4689

DF adjustment: small sample DF: min = 23.43
avg 23.43

within VCE type: ANALYTIC max = 23.43
Mean | Coef.  std. Err. t P>|t| [95% conf. Interval]

+
sbp | 132.6799 1.017506 130.40 0.000 130.5772 134.7826

Correct analysis using sampling weights:
mean sbp [pw=sampw]

Mean estimation Number of obs = 500
| Mean std. Err [95% conf. Interval]
sbp | 132.6242 1.032943 130.5947 134.6536
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A more complicated example

use sbp2data,clear

codebook , comp

variable Obs unique Mean Min  Max Label

sex 4188 2 1.566141 1 2 sex

sbp 4216 112 132.6945 80 270 systolic Blood Pressure
dbp 4281 67 82.62766 40 148 Diastolic Blood Pressure
scl 4192 244 228.2011 115 568 sSerum Cholesterol

age 4245 37 46.0636 30 66 Age in Years

bmi 4218 245 25.63148 16.2 57.6 Body Mass Index

id 4690 4690 2349.172 1 4699

xi:regress sbp age i.sex

i.sex _Isex_1-2 (naturally coded; _Isex_1 omitted)

source | ss df S Number of obs = 3406
————————————— B FC 2, 3403) = 320.62
Model | 281261.425 2 140630.713 Prob > F = 0.0000
Residual | 1492627.36 3403 438.621029 R-squared = 0.1586
————————————— e e e L L e e Tt Adj R-squared = 0.1581
Total | 1773888.79 3405 520.96587 Root MSE = 20.943
sbp | Ccoef. std. Err. t P>t [95% conf. Interval]

+
age | 1.072026 .0423621 25.31 0.000 .9889686 1.155084
Isex_2 | .2701054 .7247534 0.37 0.709 -1.150891 1.691101

|

83.39557  2.017962 41.33  0.000 79.43903 87.35211
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A more complicated example
misstable pattern sbp age sex,freq

Missing-value patterns
(1 means complete)

Pattern

Frequency 2

[
[
[

|
|
+
3,406 |
|

407 |
386 |
359 |
|

|

|

+

|

variables are (1) age (2) sbp (3) sex

Morten Frydenberg Linear and Logistic regression - Note 6 45

A more complicated example

mi set mlong

mi ice sbp age o.sex bmi dbp scl , add(20)
#missing |
values | Freq. Percent cum.
+
0| 2,489 53.07 53.07
1] 1,670 35.61 88.68
2| 467 9.96 98.64
3| 60 1.28 99.91
4| 4 0.09 100.00
+
Total | 4,690 100.00
variable | command prediction equation

| |

+ +

| regress | age _Isex_2 bmi dbp scl
age | regress | sbp _Isex_2 bmi dbp scl

| |

| |

| |

| |

| |

sex | ologit sbp age bmi dbp scl
_Isex_2 [Passively imputed from (sex==2)]
bmi regress | sbp age _Isex_2 dbp scl
dbp | regress | sbp age _Isex_2 bmi scl
scl regress | sbp age _Isex_2 bmi dbp
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A more complicated example

codebook, comp

variable Obs unique Mean Min Max Label

48208 2 1.568682 1 2 sex
48236 9585 132.3171 55.04445 270 sSystolic Blood Pressure
48301 8239 82.44462 39.00607 148 Diastolic Blood Pressure
48212 10200 227.2202 71.84563 568 Serum Cholesterol
48265 8932 45.94714 14.28921 83.50232 Age in Years
48238 9679 25.52701 10.58046 57.6 Body Mass Index
48710 4690 2348.166 1 4699
48710 4690 2330.321 1 4690
4690 2 .4692964 0 1
48710 21 9.489017 0 20
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A more complicated example

mi estimate: regress sbp age sex

Multiple-imputation estimates Imputations 20
Linear regression Number of obs 4690
Average RVI 0.1115

Complete DF 4687

DF adjustment: Small sample DF: min 784.98
avg 982.49

max 1366.36

Model F test: Equal FMI F( 2, 1480.0) 397.31
within VCE type: oLs Prob > F 0.0000
sbp | std. Err t P>|t]| [95% conf. Interval]

age | 1.074694 .0376721 28.53  0.000 1.000792 1.148595
sex | .2725589  .6618376 0.41 0.681 -1.026622 1.57174
| 82.8989 2.061978 40.20 0.000 78.85135 86.94646
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Clustered data / data with several random components
Dichotomous outcome

A different outcome:
rerent otifco eH _ |1 if the person has hayfewer

P00 else

A statistical model:

Systematic part

logit(H g =1) B+ B, -1+ B, -U+B,-A+Bs-S+f3,-G

F;+ Py, +X;

This is nhot needed
Random part

due to the binomial

Clustered data / data with several random components
Dichotomous outcome

logit(H g =1)= Sy + B, - 1+f, -U+B,-A+Bs-S+ ;-G
+F, + P,
That is, an ordinary logistic regression + random components.
+A generalized linear mixed model
+A multilevel model for dichotomous outcome
Comments 1:

+It is important to include the relevant random
components in the model.

error 'Multilevel models' is essential in medical/epidemiological
research.
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Clustered data / data with several random components
Comments 2: Dichotomous outcome
*The theory and insight into the models for non-normal
data are not yet fully developed.

The main problem being that it is very difficult find valid
(unbiased) estimates.

-Several software programs falsely claim to estimate the
models.

*Some programs like Stata and NLwin can give you valid
estimates if you take care and have a lot of data.

Advice:
Do not fry to estimate this kind of models without consulting
a specialist.
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Clustered data / data with one random components
Dichotomous outcome

If the models only involves one random components, e.g.
variation between families or between GP's,

then methods exists which can adjust the standards errors.

Remember that if the data contains clusters, then the
precision of the estimates overestimated, that is the
reported standard errors is too small.

So called robust methods or sandwich estimates of the
standard errors will (try) adjust for this problem.

Only a few programs have this option - Stata does!
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ROC curves - sensitivity and specificity

generate over45=(age>45) if age!=.
diagt obese over45

obese | Pos. Neg. | Total
+ +
Abnormal | 361 240 | 601
Normal | 1,952 2,137 | 4,089
+ +
Total | 2,313 2,377 | 4,690

True abnormal diagnosis defined as obese = 1
[95% Confidence Interval]

Prevalence Pr(a) 13% 12% 13.8%
Sensitivity Pr(+|A) 60.1% 56% 64%
specificity Pr(-IN) 52.3% 50.7% 53.8%
ROC area (Sens. + Spec.)/2 .562 .541 .583
Likelihood ratio (+) Pr(+|A)/Pr(+|N) 1.26 1.17 1.35
Likelihood ratio (-) Pr(-|A)/Pr(-|IN) .764 .69 .846
odds ratio LR(+)/LR(-) 1.65 1.38 1.96
Positive predictive value PrAl+) 15.6% 14.2% 17.2%
Negative predictive value pr(NI-) 89.9% 88.6% 91.1%
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ROC curves - sensitivity and specificity

roctab obese over45,graph tab de

| over45

obese | 0 1] Total

+ +
0| 2,137 1,952 | 4,089
1| 240 361 | 601

+ +
Total | 2,377 2,313 | 4,690
Detailed report of Sensitivi and specificity

y

corr

Cutpoint Sensitivity Specificity Classified LR+ LR-
(>=0) 100.00% 0.00% 12.81% 1.0000
(>=1) 60.07% 52.26% 53.26% 1.2583 0.7641
(> 1) 0.00% 100.00% 87.19% 1.0000
ROC -Asymptotic Normal--
obs Area std. Err. [95% conf. Interval]

4690 0.5616 0.0107 0.54061 0.58268
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ROC curves - sensitivity and specificity

roctab obese over45,graph tab de

ROC curves - sensitivity and specificity

0 0

s
g
&

o
3
2 | Non-obese
o 8
. 5. -
[l
3 8
Yol g
ST Obese
8 ° 30 40 50 60 70 30 40 50
Sl Age in Years Age in Years
T T T T Graphs by obese. Graphs by obese
0.00 0.25 0.50 0.75 1.00
1 - Specificity . .
Area under ROC curve = 0.5616 In popula‘hon Within group
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ROC curves - sensitivity and specificity

cutpoint sensitivity  specificity

(>=30) 100.00% 0.00%

(>=31) 100.00% 0.02%

(>=32) 100.00% 0.17%

(>=33) 99.33% 157% T ity | ————-
et e o ‘ 1-Specifcty Sensitivity
(>=35) 96.17% 8.05% proportion obese

(>=36) 93.01% 12.20%

(>=37) 89.35% 16.58% |

(>=38) 85.19% 20.57%

(>=139) 81.86% 25.48%

(>=40) 78.70% 29.27%

(>=41) 74.71% 33.53% o |

(>=42) 72.05% 37.00%

(>=43) 68.72% 40.99%

(>=44) 66.56% 44.53%

(>=145) 63.23% 48.64%

(>=46) 60.07% 52.26% ¥

(>=47) 56.07% 56.22%

(>=48) 53.08% 59.92%

(>=49) 50.25% 63.17%

(>=50) 47.42% 65.86% o

(>=51) 43.43% 68.77%

(>=52) 39.27% 71.90%

(>=53) 35.27% 74.57%

(>=54) 30.95% 77.67%

(>=55) 28.29% 80.97% g . . . .
(>=56) 24.79% 83.61%

(>=57) 21.63% 86.23% 30 40 Age igu‘(ears 60 o
(>=58) 18.14% 88.87%

(>=59) 15.14% 91.24%

(>= 60 ) 12.48% 93.64%

(>=61) 9.65% 95.74%

(>=62) 6.16% 97.63%

(>=63) 2.66% 98.90%

(>=64) 1.33% 99.63%

(>=65) 0.67% 99.93%

(>= 66 ) 0.00% 99.95%

(> 66) 0.00% 100.00%
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ROC curves - sensitivity and specificity

o
3
w
<
S
=
E o
%21
@
»
w
&
S
o
3
o T T T T
0.00 0.25 0.50 0.75 1.00
1 - Specificity
Area under ROC curve = 0.5832
roctab obese age, graph tab de
ROC -Asymptotic Normal--
Obs [95% conf. Interval]
4690 0.5832 0.55866 0.60779
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ROC curves - the area under the curve
The area under the ROC curve - what is it?

Note, it only depends on the sensitivity and the specificity ,
but not on the prevalencel!

The mathematical definition of the are under the ROC-curve
is:

Suppose we take one random obese person and one random
non-obese person then :

Pr(age obese > age hon-obese)
+Y2Pr(age obese = age non-obese)

Note, this is not related to the predictive values!
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Predicting dead after operation - the (additive) euroscore
Data on 8949 operations 223 deaths (2.42%)

0 0
3
k4 o
. g o]
Survived
o
s o
g o > ol
g 2
g ! 8 !
w2 o
8 N
Dead
o
g o
oL : : ol
[ 10 20 [ 10 20
Graphs by dead Graphs by

In population Within group
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ROC curves - sensitivity and specificity

cutpoint sensitivity specificity
(>=1) 100.00% 0.00%
(>=2) 95.07% 17.45%
(>=3) 89.69% 34.79%
(>=4) 81.61% 51.72%
(>=5) 74.44% 66.54%
(>=6) 64.57% 78.13% ™| oty ————e i
(>=7) 56.05% 86.18% - 1-Specificty Sensitivity
(>=8) 47.53% 91.26% t—y proportion dead
(>=9) 39.46% 94.79%
(>=10) 32.74% 96.87% on |
(>=11) 28.25% 97.78%
(>=12) 23.32% 98.51%
(>=13) 18.39% 99.03%
(>=14) 15.70% 99.24%
(>=15) 11.21% 99.48% © -
(>=16 ) 7.62% 99.59%
(>=17) 4.48% 99.71%
(>=18) 3.14% 99.83%
(>=19) 2.24% 99.84%
(>=20) 1.35% 99.95% 7
(>=22) 0.45% 99.98%
(> 22) 0.00% 100.00%

o

o

T T T T T
0 5 10 15 20
euroscore
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ROC curves - sensitivity and specificity

=y roctab obese age, graph tab de
-Asymptotic Normal--
[95% conf. Inter:
£ 8949  0.7760 0.74090  0.81105
Ze Interpretation:
5° There is 78 (74.81)% chance
that a random person, who
& died, had a higher Euroscore,
than a random person, who
R died not die.
S ] ] ! - Is this relevant ?
0.00 0.25 50 0.75 1.00

0.
1 - Specificity
Area under ROC curve = 0.7760
What about the predictive value?
If the Euroscore is 15 then 40% will die.
What is the consequence of this information?
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ROC curves - sensitivity and specificity

ROC curves - sensitivity and specificity

o
= In Stata and other programs you can plot roc curves
Looking at the ROC-curve: using on the predicted probabilities based on a logistic
e The different cut-points have regression:
o . . . .
different consequences. xi:logit obese i.sex*age45
£ Often one have to choose a jooe
23] cut-point and use that in the s o
@ decision making in the future. " -
] All other cut-point will have 2 N
© no relevance. R z
81 3 z
o T T T T B
0.00 0.25 0.50 0.75 1.00 g 37
1 - Specificity S
Area under ROC curve = 0.7760 °
44 : : : : o000 025 050 075 100
0.00 0.25 0.50 0.75 1.00 Probability cutoff
1 - Specificity
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