

### Working with logistics regression models

Morten Frydenberg ©  
Department of Biostatistics, Aarhus Univ, Denmark

#### The lincom command for logistic regression

#### Further remarks on logistic regression

Diagnostics: residuals and leverages

Enough data?

Test of fit: The Hosmer-Lemeshow test

Extensions to the ordinary logistic regression:  
Conditional logistic regression

#### Other methods for analyzing binary data

Models for relative risks

Models for risk differences

Morten Frydenberg

Linear and Logistic regression - Note 6

### Missing data

A small example - non completely random sample  
Complete data analysis - bias  
Missing at random vs missing completely at random

#### Introduction to techniques

Sampling weights

Imputation

Full modeling

#### Sensitivity analyses

Morten Frydenberg

Linear and Logistic regression - Note 6

2

Data with several random components: Binary outcome

Clustered binary data with one random components

ROC-curves and the area under the ROC-curve

Morten Frydenberg

Linear and Logistic regression - Note 6

### The lincom command after logit or regress

Consider the model:

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

|         | Coef.     | Std. Err. | z      | P> z  | [95% Conf. Interval] |
|---------|-----------|-----------|--------|-------|----------------------|
| _Isex_2 | .2743977  | .0903385  | 3.04   | 0.002 | .0973375 .451458     |
| age45   | .0344723  | .0051354  | 6.71   | 0.000 | .0244072 .0445374    |
| _cons   | -2.147056 | .0721981  | -29.74 | 0.000 | -2.288561 -2.00555   |

Here men are reference.

If we want to find the log odds for a 45 year old women  
we can calculate by hand  $-2.147 + 0.274 = -1.873$

But what about confidence interval?

We could change the reference to women and fit the  
model once more.

But.....

Morten Frydenberg

Linear and Logistic regression - Note 6

4

### The lincom command after logit or regress

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Stata has a command that can be used for this: "lincom"

```
lincom _cons+_Isex
( 1) _Isex_2 + _cons = 0
obese | Coef. Std. Err. z P>|z| [95% Conf. Interval]
(1) | -1.8726 .05813 -32.21 0.000 -1.986602 -1.758714
```

To get to risk/probability with confidence interval:

```
disp invlogit(r(estimate))
.13323448
disp invlogit(r(estimate)-1.96*r(se)) ";" ///
invlogit(r(estimate)+1.96*r(se))
.12061656 ; .1469518
```

Morten Frydenberg

Linear and Logistic regression - Note 6

### The lincom command after logit or regress

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Some examples:

Log Odds for a 42 year old woman:

```
lincom _cons+_Isex-age45*3
( 1) _Isex_2 - 3 age45 + _cons = 0
obese | Coef. Std. Err. z P>|z| [95% Conf. Interval]
(1) | -1.976075 .0639755 -30.89 0.000 -2.101465 -1.850685
```

Odds ratio for 4.5 age difference:

```
lincom age45*4.5, or
( 1) 4.5 age45 = 0
obese | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
(1) | 1.167804 .020869 6.71 0.000 1.116091 1.221914
```

Morten Frydenberg

Linear and Logistic regression - Note 6

6

### Logistic regression models: Do you have enough data?

All inference in logistic regression models are based on asymptotics, i.e. **assuming that you have a lot of data!**

#### Rule of thumb:

You should have at least **10 events** per variable (parameter) in the model.

A **large standard error** typically indicates that you have too little information concerning the variable and that the **estimate and standard error are not valid**.

**Lower your ambitions or get more data!**

A exact methods exists, but only one (**expensive**) program can do it.

And it will give also wide confidence intervals.

### Logistic regression models: Diagnostics

In the linear regression we saw some example of statistics:

**residuals, standardized residuals and leverage**

which can be used in the **model checking** and search for strange or **influential** data points.

Such statistics can also be defined for the logistic regression model.

But they are much more **difficult to interpret** and cannot in general be **recommended**.

Checking the validity of a logistic regression model will mainly be based on **comparing** it with other **models**.

### Logistic regression models: Test of fit

A common, and to some extend informative, test of fit is the **Hosmer-Lemeshow test**.

Consider the model for obesity from Monday

$$\text{logit}(\text{Pr}(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Logit estimates

| Number of obs = 4690 |           |           |        |       |                      |
|----------------------|-----------|-----------|--------|-------|----------------------|
| LR chi2(2) = 55.68   |           |           |        |       |                      |
| Prob > chi2 = 0.0000 |           |           |        |       |                      |
| Pseudo R2 = 0.0155   |           |           |        |       |                      |
| obese                | Coef.     | Std. Err. | z      | P> z  | [95% Conf. Interval] |
| _Isex_2              | .2743977  | .0903385  | 3.04   | 0.002 | .0973375 .451458     |
| age45                | .0344723  | .0051354  | 6.71   | 0.000 | .0244072 .0445374    |
| _cons                | -2.147056 | .0721981  | -29.74 | 0.000 | -2.288561 -2.00555   |

Significantly better than nothing - but is it good?

### Logistic regression models: Test of fit

What about comparing the **estimated prevalence** with the **observed prevalence**?

In the Hosmer-Lemeshow test the data is **divided** into groups (traditionally 10) according to the **estimated probabilities** and the **observed** and **expected** counts are compared in these groups by a chi-square test.

Most programs, that can fit a **logistic regression model**, can calculate this test.

In Stata it is done by (**after fitting the model**):

`estat gof, group(10) table`

The data is divided into **deciles** after the estimated probabilities.

### Logistic regression models: Test of fit

#### OUTPUT

Logistic model for obese, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

| Group | Prob   | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------|--------|-------|-------|-------|-------|-------|
| 1     | 0.0841 | 64    | 40.9  | 462   | 485.1 | 526   |
| 2     | 0.0953 | 43    | 45.5  | 453   | 450.5 | 496   |
| 3     | 0.1045 | 44    | 44.6  | 398   | 397.4 | 442   |
| 4     | 0.1112 | 42    | 50.3  | 422   | 413.7 | 464   |
| 5     | 0.1217 | 44    | 51.4  | 394   | 386.6 | 438   |
| 6     | 0.1332 | 52    | 63.0  | 441   | 430.0 | 493   |
| 7     | 0.1456 | 53    | 61.7  | 389   | 380.3 | 442   |
| 8     | 0.1592 | 62    | 69.8  | 392   | 384.2 | 454   |
| 9     | 0.1834 | 98    | 89.9  | 424   | 432.1 | 522   |
| 10    | 0.2407 | 99    | 83.8  | 314   | 329.2 | 413   |

number of observations = 4690  
number of groups = 10  
Hosmer-Lemeshow chi2(8) = 26.01  
Prob > chi2 = 0.0010

One problem:  
Too many in the tails

Significant difference between observed and expected!

### Logistic regression models: Test of fit

`xi: logit obese i.sex*age45`

`estat gof, group(10) table`

Logistic model for obese, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

| Group | Prob   | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------|--------|-------|-------|-------|-------|-------|
| 1     | 0.0796 | 36    | 35.9  | 466   | 466.1 | 502   |
| 2     | 0.1011 | 42    | 41.1  | 406   | 406.9 | 448   |
| 3     | 0.1053 | 49    | 49.6  | 429   | 428.4 | 478   |
| 4     | 0.1096 | 50    | 54.8  | 458   | 453.2 | 508   |
| 5     | 0.1124 | 52    | 54.2  | 436   | 433.8 | 488   |
| 6     | 0.1153 | 51    | 46.4  | 355   | 359.6 | 406   |
| 7     | 0.1182 | 52    | 53.9  | 410   | 408.1 | 462   |
| 8     | 0.1590 | 76    | 70.3  | 428   | 433.7 | 504   |
| 9     | 0.2133 | 96    | 91.8  | 391   | 395.2 | 487   |
| 10    | 0.3310 | 97    | 103.0 | 310   | 304.0 | 407   |

number of observations = 4690  
number of groups = 10  
Hosmer-Lemeshow chi2(8) = 2.43  
Prob > chi2 = 0.9650

The model 'fits' - when we look at in this way !!!!!!!

### Conditional logistic regression When

Used in two situations:

1. **Matched** studies (binary response).
2. **Unmatched** studies with a **confounder** with **many distinct values**.

In 1. the models correspond to the way data was collected.

In 2. the method adjust for a 'mathematical' flaw in the unconditional method.

An example of situation 2. the confounder is "komune" having 275 distinct values.

### Conditional logistic regression What

The logistic regression model (outcome disease yes/no):

$$\ln(\text{odds}) = \alpha + \sum_{i=1}^k (\beta_i \cdot x_i)$$

ln(odds) in reference

ln(odds ratios)

Suppose the model above hold in each strata:

$$\ln(\text{odds}) = \alpha_s + \sum_{i=1}^k (\beta_i \cdot x_i)$$

ln(odds) in reference

different in each strata

ln(odds ratios)

the same in each strata

### Conditional logistic regression What

$$\ln(\text{odds}) = \alpha_s + \sum_{i=1}^k (\beta_i \cdot x_i)$$

ln(odds) different in each strata

We are not interested in these !

In a **matched** study these are 'controlled'.

In a **conditional logistic regression** one 'condition on the odds in each strata', i.e. these case/control ratio.

In the conditional model the  $\alpha$ 's disappear !

The  $\beta$ 's, the log OR's, are still in and can be estimated.

### Conditional logistic regression How

It is easy !

You need a statistical software package.

A package made for **research in epidemiology**

Not in social science

Not **SPSS**

But **Stata**, **EPICURE**, **EPILOG**, **EGRET**, **EPIINFO(2000)** and **SAS** can do it.

### Conditional logistic regression How

An example using **Stata**

A study of cancer in the oral cavity

Matched on **gender** and **10 years age groups**

Ten strata (**genage**)

Here we focus on

**textile**-worker and

**life time consumption of alcohol** (three groups)

### Conditional logistic regression How

logistic regression in **Stata**

*xi:logit cancer textile i.alkcon i.genage*

Part of the output:

| cancer    | Coef.   | Std. Err. | z      | P> z  | CI             |
|-----------|---------|-----------|--------|-------|----------------|
| textile   | .5022   | .4141     | 1.213  | 0.225 | -.3094 1.3139  |
| alkcon_1  | .4628   | .2823     | 1.639  | 0.101 | -.0905 1.0163  |
| alkcon_2  | 2.7165  | .3232     | 8.404  | 0.000 | 2.0829 3.3501  |
| genage_2  | .2450   | 1.2514    | 0.196  | 0.845 | -2.2075 2.6977 |
| genage_3  | -.4940  | .5503     | -0.898 | 0.369 | -1.5726 .5846  |
| genage_4  | .1798   | .6406     | 0.281  | 0.779 | -1.0758 1.4353 |
| genage_5  | -.2899  | .5482     | -0.529 | 0.597 | -1.3644 .7844  |
| genage_6  | .2127   | .6262     | 0.340  | 0.734 | -1.0147 1.4401 |
| genage_7  | -.2305  | .5355     | -0.431 | 0.667 | -1.2802 .8190  |
| genage_8  | .5507   | .5203     | 1.046  | 0.295 | -.4809 1.5825  |
| genage_9  | .0315   | .5884     | 0.054  | 0.957 | -1.1217 1.1847 |
| genage_10 | .5572   | .5595     | 0.996  | 0.319 | -.53954 1.6539 |
| const     | -1.4692 | .4762     | -3.085 | 0.002 | -2.4027 .5356  |

### Conditional logistic regression in Stata

The syntax:

`xi:clogit cancer textile i.alkcon, group(genage)`

Part of the output:

|          | cancer | Coef. | Std. Err. | z     | P> z  | CI            |
|----------|--------|-------|-----------|-------|-------|---------------|
| textile  | 1      | .4929 | .4103     | 1.201 | 0.230 | -.3112 1.2971 |
| alkcon_1 | 1      | .452  | .27923    | 1.621 | 0.105 | -.094 .9999   |
| alkcon_2 | 1      | 2.660 | .31936    | 8.332 | 0.000 | 2.034 3.2868  |

`xi:clogit cancer textile i.alkcon, group(genage) or`

|          | cases | Odds Ratio | Std. Err. | z    | P> z  | [95% Conf. Interval] |
|----------|-------|------------|-----------|------|-------|----------------------|
| textile  | 1     | 1.63708    | .6717022  | 1.20 | 0.230 | .732517 3.658661     |
| alkcon_1 | 1     | 1.572508   | .4390957  | 1.62 | 0.105 | .909724 2.718168     |
| alkcon_2 | 1     | 14.30908   | 4.569879  | 8.33 | 0.000 | 7.651811 26.75835    |

Morten Frydenberg Linear and Logistic regression - Note 6

19

### Other methods to analysis of binary response data Relative Risk models

Logistic regression model focus on the Odds Ratios

This is the correct thing to do in **case-control** studies.

In **follow-up** studies **Relative Risk** is often the appropriate measure of association, (personal risk).

I.e. a model like this might be more relevant:

$$\Pr(\text{event}) = p_0 \times RR_1 \times RR_2 \times RR_3$$

$$\ln\{\Pr(\text{event})\} = \ln(p_0) + \ln(RR_1) + \ln(RR_2) + \ln(RR_3)$$

$$\ln\{\Pr(\text{event given the covariates})\} = \alpha + \sum_{i=1}^p (\beta_i \cdot x_i)$$

That is linear on **log-probability scale**

Morten Frydenberg Linear and Logistic regression - Note 6

20

### Other methods to analysis of binary response data Relative Risk models

$$\ln\{\Pr(\text{event given the covariates})\} = \alpha + \sum_{i=1}^p (\beta_i \cdot x_i)$$

Such a model **modelling the relative risk** can easily be fitted by many programs (not SPSS??).

**Logistic** regression in Stata:

`xi: logit obese age i.sex`

or

`xi: g1m obese age i.sex, fam(bin) link(logit)`

**Relative risk** model:

`xi: g1m obese age i.sex, fam(bin) link(log)`

The **link** is **log** instead of **logit**

Morten Frydenberg Linear and Logistic regression - Note 6

21

### Other methods to analysis of binary response data Risk difference models

Logistic regression model focus on the Odds Ratios

This is the correct thing to do in **case-control** studies.

In **follow-up** studies **Risk Difference** is often the appropriate measure of association, (community effect).

I.e. a model like this might be more relevant:

$$\Pr(\text{event}) = p_0 + RD_1 + RD_2 + RD_3$$

$$\Pr(\text{event given the covariates}) = \alpha + \sum_{i=1}^p (\beta_i \cdot x_i)$$

That is linear on **probability scale**

Morten Frydenberg Linear and Logistic regression - Note 6

22

### Other methods to analysis of binary response data Risk difference models

$$\Pr(\text{event given the covariates}) = \alpha + \sum_{i=1}^p (\beta_i \cdot x_i)$$

Such a model **modelling the risk difference** can easily be fitted by many programs (not SPSS).

**Logistic** regression in Stata:

`xi: logit obese age i.sex`

or

`xi: g1m obese age i.sex, fam(bin) link(logit)`

**Risk difference** model:

`xi: g1m obese age i.sex, fam(bin) link(id)`

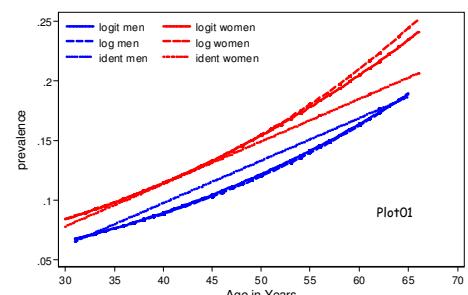
The **link** is **identity** instead of **logit**

Morten Frydenberg Linear and Logistic regression - Note 6

23

### Other methods to analysis of binary response data

Three different links for **Obese** = "sex" + "age"



Morten Frydenberg Linear and Logistic regression - Note 6

24

### Other methods to analysis of binary response data Problems

$$\Pr(\text{event}) = p_0 \times RR_1 \times RR_2 \times RR_3$$

As the relative risk can be **larger** than one  
the product might be **larger than one**!

$$\Pr(\text{event}) = p_0 + RD_1 + RD_2 + RD_3$$

The sum might **negative** and be **larger than one**!

Here/in Stata `glm` is an acronym for

**generalized** linear model

not

general linear model

Note: In Stata you can also use the `binreg` command  
with option `rr` or `rd`

Morten Frydenberg Linear and Logistic regression - Note 6

25

Morten Frydenberg Linear and Logistic regression - Note 6 26

### Missing data - example 1

Consider the Frammingham study and imagine, that (due to a limited budget) only 500 measurements of SBP were allowed.

It was decided to take SBP measurements on 100 random participants in each of the age groups -40 and 60+ and 150 in each of the age groups 40-50 and 50-60.

That is we have missing SBP on 4190 of the 4690 participants!

A short description of the data:

| agegrp | Freq. | N(sbp) | mean(sbp) | sd(sbp)  |
|--------|-------|--------|-----------|----------|
| 0-     | 1,325 | 100    | 122.18    | 15.43273 |
| 40-    | 1,684 | 150    | 130.8467  | 22.2366  |
| 50-    | 1,346 | 150    | 140.9267  | 22.48194 |
| 60-    | 335   | 100    | 149.51    | 26.92507 |
| Total  | 4,690 | 500    | 135.87    | 24.0783  |

Morten Frydenberg Linear and Logistic regression - Note 6

26

### Missing data - example 1

| agegrp | Freq. | N(sbp) | mean(sbp) | sd(sbp)  |
|--------|-------|--------|-----------|----------|
| 0-     | 1,325 | 100    | 122.18    | 15.43273 |
| 40-    | 1,684 | 150    | 130.8467  | 22.2366  |
| 50-    | 1,346 | 150    | 140.9267  | 22.48194 |
| 60-    | 335   | 100    | 149.51    | 26.92507 |
| Total  | 4,690 | 500    | 135.87    | 24.0783  |

We note:

This is not a **completely** random sample

- the chance of being sample depends on age group!

The overall (total) average SBP is a biased estimate of the mean SBP among participants in the Frammingham study!

I.e. an analysis of the 500 participants (a complete data analysis) will be biased.

Morten Frydenberg

Linear and Logistic regression - Note 6

27

### Missing data - example 1

| agegrp | Freq. | N(sbp) | mean(sbp) | sd(sbp)  |
|--------|-------|--------|-----------|----------|
| 0-     | 1,325 | 100    | 122.18    | 15.43273 |
| 40-    | 1,684 | 150    | 130.8467  | 22.2366  |
| 50-    | 1,346 | 150    | 140.9267  | 22.48194 |
| 60-    | 335   | 100    | 149.51    | 26.92507 |
| Total  | 4,690 | 500    | 135.87    | 24.0783  |

We also note:

**Within each age group** the sample is **completely** random.

**Within each age group** the average SBP is an **unbiased** estimate of the mean SBP in the age group.

We know the size of each age group.

We can **calculate an unbiased** estimate of the total mean by weighing the group averages.

Morten Frydenberg Linear and Logistic regression - Note 6

28

### Missing data - example 1

| agegrp | Freq. | N(sbp) | mean(sbp) | sd(sbp)  |
|--------|-------|--------|-----------|----------|
| 0-     | 1,325 | 100    | 122.18    | 15.43273 |
| 40-    | 1,684 | 150    | 130.8467  | 22.2366  |
| 50-    | 1,346 | 150    | 140.9267  | 22.48194 |
| 60-    | 335   | 100    | 149.51    | 26.92507 |
| Total  | 4,690 | 500    | 135.87    | 24.0783  |

An unbiased estimate can be found as the **weighted average** of the group averages using the group sizes as weights:

$$\frac{122.18 \cdot 1325 + 130.85 \cdot 1684 + 140.93 \cdot 1346 + 149.51 \cdot 335}{4690} = 132.62$$

**Conclusion:** Although this is not a completely random sample, we have enough information in the data to find an unbiased estimate!!!!

(Assuming completely random sample **within** age group!)

Morten Frydenberg

Linear and Logistic regression - Note 6

29

Assuming that SBP is related to age:

Being missing is **not independent** of the **unobserved** SBP.

but

Being missing is **independent** of the unobserved SBP, when we know the age group of the individual.

The first statement means that the data is not **missing completely at random (MCAR)**.

The second statement correspond to **missing at random (MAR)**, i.e. that given all **what we have observed** (including age group), then the missingness is (completely) random, i.e. independent of the unobserved data.

Mathematically missing at random implies that one (in theory) has enough information in the **observed data** to correct for the missing data.

Morten Frydenberg Linear and Logistic regression - Note 6

30

### Missing data: Standard terminology

#### Missing completely at random (MCAR).

The observed data is a (completely) random sample:  
A complete data analysis will be unbiased

#### Missing at random (MAR)

Given all what we have observed, then the missingness is (completely) random (independent of the unobserved data):

The biased sampling can be adjusted for.

#### Missing not at random (MNAR)

None of the two above apply:

We will need further assumptions in order to analyse the data.

### Missing at random

When the data is missing at random, then one can, in theory, make unbiased inference based on the observed data.

In the SBP example such an analysis could be to use the **weighted average** SBP in stead of the biased unweighted average.

#### In general

If the sampled persons are not a completely random sample, but the  $i$ th person is sampled with a **know** probability,  $p_i$ , then we can obtain unbiased estimates by weighting the  $i$ th person with  $1/p_i$ .

The method is called **Inverse Probability Weighing**.

### Inverse probability weighting

The SBP data:

Four different sampling probabilities and weights:

$$p_0 = 100/1325 = 0.0755 \quad w_0 = 1/p_0 = 13.25$$

$$p_1 = 150/1684 = 0.0891 \quad w_1 = 1/p_1 = 11.23$$

$$p_2 = 150/1346 = 0.1114 \quad w_2 = 1/p_2 = 8.97$$

$$p_3 = 100/335 = 0.2985 \quad w_3 = 1/p_3 = 3.35$$

That is information from each of the youngest should weigh by 13.25 and information from each of the oldest should weigh by 3.35.

Sampling weights can be used in many Stata commands:

```
mean sbp [pw=sampw]
Mean estimation                               Number of obs = 500
                                                Mean   Std. Err. [95% Conf. Interval]
sbp | 132.6242 1.032943 130.5947 134.6536
```

### Missing values - not by design

Most often the missing is **not per design** and both in the **outcome** and in the **covariates**:

| <i>id</i> | <i>y</i> | <i>x<sub>1</sub></i> | <i>x<sub>2</sub></i> | <i>x<sub>3</sub></i> |
|-----------|----------|----------------------|----------------------|----------------------|
| 1         | o        | o                    | o                    | o                    |
| 2         | o        | m                    | o                    | o                    |
| 3         | m        | o                    | o                    | o                    |
| 4         | m        | m                    | o                    | o                    |
| 5         | o        | o                    | o                    | o                    |
| 6         | o        | m                    | m                    | o                    |

o observed  
m observed

Here we have only **complete data** on 2 persons, but partial information on 4 persons.

### Missing values - not by design

If the missing is **completely at random**, then the analysis of the complete cases will be unbiased.

If this is not the case, then complete data analysis can give biased estimates.

If the data is **missing at random**, then it is **in theory** possible to make an unbiased analysis of all the data.

| <i>id</i> | <i>y</i> | <i>x<sub>1</sub></i> | <i>x<sub>2</sub></i> | <i>x<sub>3</sub></i> |
|-----------|----------|----------------------|----------------------|----------------------|
| 1         | o        | o                    | o                    | o                    |
| 2         | o        | m                    | o                    | o                    |
| 3         | m        | o                    | o                    | o                    |
| 4         | m        | m                    | o                    | o                    |
| 5         | o        | o                    | o                    | o                    |
| 6         | o        | m                    | m                    | o                    |

### Imputation

One way to try solve the problem with missing is to **fill in** the data for the missing values and then make the analysis on the whole data set with the **'imputed'** values.

The imputation can be done in many ways.

One way is to fill in an "average" value.

This could be the total average of the observed values for the specific variable or the average in a **relevant subgroup**.

This method will not in general solve the bias problem.

And of course the **standard error** stated in the output, when you analyse the imputed data set is **wrong**.

| <i>id</i> | <i>y</i>       | <i>x<sub>1</sub></i> | <i>x<sub>2</sub></i> | <i>x<sub>3</sub></i> |
|-----------|----------------|----------------------|----------------------|----------------------|
| 1         | o              | o                    | o                    | o                    |
| 2         | o              | a <sub>1</sub>       | o                    | o                    |
| 3         | a <sub>2</sub> | o                    | o                    | o                    |
| 4         | a <sub>2</sub> | a <sub>1</sub>       | o                    | o                    |
| 5         | o              | o                    | o                    | o                    |
| 6         | o              | a <sub>1</sub>       | a <sub>2</sub>       | o                    |

### The missing SBP example

Imputation by **observed mean** in age group:

```
bysort agegrp: egen msbp=mean(sbp)
generate isbp=msbp
replace isbp=msbp if missing(sbp)

mean isbp
Mean estimation                               Number of obs      =   4690
                                                Mean   Std. Err.   [95% Conf. Interval]
-----+-----+-----+-----+-----+
  isbp | 132.6242   .1627486   132.3051   132.9432
```

Correct mean, but a much to small standard error - incorrectly **assuming 4690 independent observations**.

Correct analysis using sampling weights:

```
mean sbp [pw=sampw]
Mean estimation                               Number of obs      =   500
                                                Mean   Std. Err.   [95% Conf. Interval]
-----+-----+-----+-----+-----+
  sbp | 132.6242   1.032943   130.5947   134.6536
```

Morten Frydenberg

Linear and Logistic regression - Note 6

37

### Imputation - random multiple

A fixed imputation will not take into account the random variation of the unobserved observation.

Imputation methods should add some random variation to the imputed data.

For that we need a **statistical model** for the missing data.

In **multiple imputations** one generates **several imputed data sets**.

For each imputed data set one fit the model of interest.

The point estimates are, then the average across the imputed.

One tricky thing is **calculation of the standard errors**.

| id | y | x <sub>1</sub> | x <sub>2</sub> | x <sub>3</sub> |
|----|---|----------------|----------------|----------------|
| 1  | o | o              | o              | o              |
| 2  | o | m              | o              | o              |
| 3  | m | o              | o              | o              |
| 4  | m | m              | o              | o              |
| 5  | o | o              | o              | o              |
| 6  | o | m              | m              | o              |

Morten Frydenberg

Linear and Logistic regression - Note 6

38

### Multiple imputations

**Questions:**

How to find the **models** from which to generate the missing data?

| id | y | x <sub>1</sub> | x <sub>2</sub> | x <sub>3</sub> |
|----|---|----------------|----------------|----------------|
| 1  | o | o              | o              | o              |
| 2  | o | m              | o              | o              |
| 3  | m | o              | o              | o              |
| 4  | m | m              | o              | o              |
| 5  | o | o              | o              | o              |
| 6  | o | m              | m              | o              |

Who should you handle missing data in this process?

How to find the uncertainty (**standard errors**) of the estimates?

**Bookkeeping.**

Most important: **Missing at random is required!**

Morten Frydenberg

Linear and Logistic regression - Note 6

39

### The missing SBP example

```
use sbpdata,clear
mi set mlong
mi register imputed sbp
(4190 m=0 obs. now marked as incomplete)
```

```
mi impute regress sbp i.agegrp, add(20)
```

```
Univariate imputation                               Imputations = 20
Linear regression                               added = 20
Imputed: m=1 through m=20                         updated = 0
                                                     |
                                                     Observations per m
variable | complete incomplete imputed | total
-----+-----+-----+-----+
  sbp | 500        4190    4190 | 4690
```

(complete + incomplete = total; imputed is the minimum across m of the number of filled in observations.)

Morten Frydenberg

Linear and Logistic regression - Note 6

40

### The missing SBP example

codebook, comp

| Variable | Obs   | Unique | Mean     | Min      | Max  | Label                   |
|----------|-------|--------|----------|----------|------|-------------------------|
| sbp      | 84300 | 83383  | 132.3204 | 44.52609 | 270  | Systolic Blood Pressure |
| id       | 88490 | 4690   | 2352.429 | 1        | 4699 |                         |
| agegrp   | 88490 | 4      | 1.107481 | 0        | 3    |                         |
| _mi_id   | 88490 | 4690   | 2357.795 | 1        | 4690 |                         |
| _mi_miss | 4690  | 2      | .8933902 | 0        | 1    |                         |
| _mi_m    | 88490 | 21     | 9.943496 | 0        | 20   |                         |

sum if \_mi\_m==1

| variable | Obs  | Mean     | Std. Dev. | Min      | Max      |
|----------|------|----------|-----------|----------|----------|
| sbp      | 4190 | 131.2507 | 21.65931  | 59.92363 | 209.6556 |
| id       | 4190 | 2352.611 | 1359.59   | 2        | 4699     |
| agegrp   | 4190 | 1.105251 | .8895275  | 0        | 3        |
| _mi_id   | 4190 | 2358.483 | 1331.661  | 101      | 4690     |
| _mi_miss | 0    |          |           |          |          |
| _mi_m    | 4190 | 1        | 0         | 1        | 1        |

Morten Frydenberg

Linear and Logistic regression - Note 6

41

### The missing SBP example

```
. table agegrp if _mi_m>0, c(count sbp mean sbp sd sbp)
```

| agegrp | N(sbp) | mean(sbp) | sd(sbp)  |
|--------|--------|-----------|----------|
| 0-     | 24,500 | 121.5843  | 22.32535 |
| 40-    | 30,680 | 131.1271  | 22.37045 |
| 50-    | 23,920 | 141.2539  | 22.4434  |
| 60-    | 4,700  | 150.2313  | 22.19089 |

**20\*1225=24500**

```
. table agegrp if _mi_m==0, c(count sbp mean sbp sd sbp)
```

| agegrp | N(sbp) | mean(sbp) | sd(sbp)  |
|--------|--------|-----------|----------|
| 0-     | 100    | 122.18    | 15.43273 |
| 40-    | 150    | 130.8467  | 22.2366  |
| 50-    | 150    | 140.9267  | 22.48194 |
| 60-    | 100    | 149.51    | 26.92507 |

Morten Frydenberg

Linear and Logistic regression - Note 6

42

### The missing SBP example

```
mi estimate: mean sbp

Multiple-imputation estimates
Mean estimation
DF adjustment: small sample
Within VCE type: ANALYTIC

Imputations = 20
Number of obs = 4690
Average RVI = 7.4275
Complete DF = 4689
DF: min = 23.43
avg = 23.43
max = 23.43

Mean | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----+-----+-----+-----+-----+-----+-----+-----+
sbp | 132.6799 1.017506 130.40 0.000 130.5772 134.7826
```

### Correct analysis using sampling weights:

```
mean sbp [pw=sampw]
Mean estimation
Number of obs = 500

Mean | Coef. Std. Err. [95% Conf. Interval]
-----+-----+-----+-----+-----+-----+-----+-----+
sbp | 132.6242 1.032943 130.5947 134.6536
```

Morten Frydenberg

Linear and Logistic regression - Note 6

43

### A more complicated example

```
use sbp2data,clear
codebook,comp

Variable Obs Unique Mean Min Max Label
-----+-----+-----+-----+-----+-----+-----+
sex 4188 2 1.566141 1 2 Sex
sbp 4216 112 132.6945 80 270 Systolic Blood Pressure
dbp 4281 67 82.62766 40 148 Diastolic Blood Pressure
scl 4192 244 228.2011 115 568 Serum Cholesterol
age 4245 37 46.0636 30 66 Age in Years
bmi 4218 245 25.63148 16.2 57.6 Body Mass Index
id 4690 4690 2349.172 1 4699

xi:regress sbp age i.sex
i.sex _Isex_1-2 (naturally coded; _Isex_1 omitted)
Source | SS df MS Number of obs = 3406
-----+-----+-----+-----+
Model | 281261.425 2 140630.713 F( 2, 3403) = 320.62
Residual | 1492627.36 3403 438.621029 Prob > F = 0.0000
R-squared = 0.1586
Adj R-squared = 0.1581
Total | 1773888.79 3405 520.96587 Root MSE = 20.943

sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----+-----+-----+-----+-----+-----+-----+-----+
age | 1.072026 .0423621 25.31 0.000 .9889686 1.155084
_Isex_2 | .2701054 .7247534 0.37 0.709 -1.150891 1.691101
_cons | 83.39557 2.017962 41.33 0.000 79.43903 87.35211
```

Morten Frydenberg Linear and Logistic regression - Note 6 44

### A more complicated example

```
misstable pattern sbp age sex,freq
```

```
Missing-value patterns
(1 means complete)
```

| Frequency | Pattern |   |   |
|-----------|---------|---|---|
|           | 1       | 2 | 3 |
| 3,406     | 1       | 1 | 1 |
| 407       | 1       | 1 | 0 |
| 386       | 1       | 0 | 1 |
| 359       | 0       | 1 | 1 |
| 46        | 1       | 0 | 0 |
| 44        | 0       | 1 | 0 |
| 37        | 0       | 0 | 1 |
| 5         | 0       | 0 | 0 |
| 4,690     |         |   |   |

```
variables are (1) age (2) sbp (3) sex
```

Morten Frydenberg

Linear and Logistic regression - Note 6

45

### A more complicated example

```
mi set mlong
mi ice sbp age o.sex bmi dbp scl , add(20)
#missing
values | Freq. Percent Cum.
-----+-----+-----+-----+
0 | 2,489 53.07 53.07
1 | 1,670 35.61 88.68
2 | 467 9.96 98.64
3 | 60 1.28 99.91
4 | 4 0.09 100.00
-----+-----+-----+-----+
Total | 4,690 100.00
```

```
Variable | Command | Prediction equation
-----+-----+-----+-----+
sbp | regress | age _Isex_2 bmi dbp scl
age | regress | sbp _Isex_2 bmi dbp scl
sex | ologit | sbp age bmi dbp scl
_Isex_2 | [Passively imputed from (sex==2)]
bmi | regress | sbp age _Isex_2 dbp scl
dbp | regress | sbp age _Isex_2 bmi scl
scl | regress | sbp age _Isex_2 bmi dbp
```

Morten Frydenberg Linear and Logistic regression - Note 6 46

### A more complicated example

```
codebook,comp

Variable Obs Unique Mean Min Max Label
-----+-----+-----+-----+-----+-----+
sex 48208 2 1.568682 1 2 Sex
sbp 48236 9585 132.3171 55.04445 270 Systolic Blood Pressure
dbp 48301 8239 82.44462 39.00607 148 Diastolic Blood Pressure
scl 48212 10200 227.2202 71.84563 568 Serum Cholesterol
age 48265 8932 45.94714 14.28921 83.50232 Age in Years
bmi 48238 9679 25.52701 10.58046 57.6 Body Mass Index
id 48710 4690 2348.166 1 4699
_mi_id 48710 4690 2330.321 1 4690
_mi_miss 4690 2 .4692964 0 1
_mi_m 48710 21 9.489017 0 20
```

Morten Frydenberg

Linear and Logistic regression - Note 6

47

### A more complicated example

```
mi estimate: regress sbp age sex

Multiple-imputation estimates
Linear regression
Imputations = 20
Number of obs = 4690
Average RVI = 0.1115
Complete DF = 4687
DF: min = 784.98
avg = 982.49
max = 1366.36
Model F test: Equal FMI F( 2, 1480.0) = 397.31
Within VCE type: OLS Prob > F = 0.0000

sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----+-----+-----+-----+-----+-----+-----+-----+
age | 1.074694 .0376721 28.53 0.000 1.000792 1.148595
sex | .2725589 .6618376 0.41 0.681 -1.026622 1.57174
_cons | 82.8989 2.061978 40.20 0.000 78.85135 86.94646
```

Morten Frydenberg Linear and Logistic regression - Note 6 48

**Clustered data / data with several random components**  
**Dichotomous outcome**

A different outcome:  
 $H_{fpd} = \begin{cases} 1 & \text{if the person has hayfewer} \\ 0 & \text{else} \end{cases}$

A statistical model:

**Systematic part**

$\text{logit}(H_{fpd} = 1) = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G$

$+ F_f + P_{fp} + X_{dp}$

**Random part**

This is not needed due to the binomial error

Morten Frydenberg    Linear and Logistic regression - Note 6    49

**Clustered data / data with several random components**  
**Dichotomous outcome**

$\text{logit}(H_{fpd} = 1) = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G$

$+ F_f + P_{fp}$

That is, an ordinary logistic regression + **random components**.

- A generalized linear mixed model
- A multilevel model for dichotomous outcome

Comments 1:

- It is **important** to include the **relevant random components** in the model.
- 'Multilevel models' is **essential** in medical/epidemiological research.

Morten Frydenberg    Linear and Logistic regression - Note 6    50

**Clustered data / data with several random components**  
**Dichotomous outcome**

Comments 2:

- The theory and insight into the models for non-normal data are **not yet fully developed**.
- The main problem being that it is very difficult find **valid (unbiased) estimates**.
- Several software programs **falsely claim** to estimate the models.
- Some programs like Stata and NLwin can give you valid estimates if you take care and have **a lot of data**.

**Advice:**  
Do not try to estimate this kind of models without consulting a specialist.

Morten Frydenberg    Linear and Logistic regression - Note 6    51

**Clustered data / data with one random components**  
**Dichotomous outcome**

If the models only involves **one random components**, e.g. **variation between families** or between **GP's**, then methods exists which can **adjust the standards errors**. Remember that if the **data contains clusters**, then the precision of the estimates overestimated, that is the reported **standard errors is too small**. So called **robust methods** or **sandwich estimates** of the standard errors will (try) adjust for this problem. Only a **few** programs have this option - Stata does!

Morten Frydenberg    Linear and Logistic regression - Note 6    52

**ROC curves - sensitivity and specificity**

generate over45=(age>45) if age!=.  
diagt obese over45

| obese    | Pos.  | Neg.  | Total |
|----------|-------|-------|-------|
| Abnormal | 361   | 240   | 601   |
| Normal   | 1,952 | 2,137 | 4,089 |
| Total    | 2,313 | 2,377 | 4,690 |

True abnormal diagnosis defined as obese = 1

[95% Confidence Interval]

| Prevalence                | Pr(A)             | 13%   | 12%   | 13.8% |
|---------------------------|-------------------|-------|-------|-------|
| Sensitivity               | Pr(+ A)           | 60.1% | 56%   | 64%   |
| Specificity               | Pr(- N)           | 52.3% | 50.7% | 53.8% |
| ROC area                  | (Sens. + Spec.)/2 | .562  | .541  | .583  |
| Likelihood ratio (+)      | Pr(+ A)/Pr(+ N)   | 1.26  | 1.17  | 1.35  |
| Likelihood ratio (-)      | Pr(- A)/Pr(- N)   | .764  | .69   | .846  |
| Odds ratio                | LR(+)/LR(-)       | 1.65  | 1.38  | 1.96  |
| Positive predictive value | Pr(A +)           | 15.6% | 14.2% | 17.2% |
| Negative predictive value | Pr(N -)           | 89.9% | 88.6% | 91.1% |

Morten Frydenberg    Linear and Logistic regression - Note 6    53

**ROC curves - sensitivity and specificity**

roctab obese over45,graph tab de

| obese | over45 | 0     | 1     | Total |
|-------|--------|-------|-------|-------|
| 0     | 2,137  | 1,952 | 4,089 |       |
| 1     | 240    | 361   | 601   |       |
| Total | 2,377  | 2,313 | 4,690 |       |

Detailed report of sensitivity and Specificity

| Cutpoint | Sensitivity | Specificity | Correctly Classified | LR+    | LR-    |
|----------|-------------|-------------|----------------------|--------|--------|
| ( >= 0 ) | 100.00%     | 0.00%       | 12.81%               | 1.0000 |        |
| ( >= 1 ) | 60.07%      | 52.26%      | 53.26%               | 1.2583 | 0.7641 |
| ( > 1 )  | 0.00%       | 100.00%     | 87.19%               |        | 1.0000 |

| obs  | ROC Area | Std. Err. | [95% Conf. Interval] |
|------|----------|-----------|----------------------|
| 4690 | 0.5616   | 0.0107    | 0.54061 0.58268      |

Morten Frydenberg    Linear and Logistic regression - Note 6    54

