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When one might use logistic regression.

Some examples:
One binary independent variable. (one odds ratio).
Probabilities, odds and the logit function
One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and continuous
independent variable no interaction.

One binary independent variable and continuous
independent variable with interaction.
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Watch out for ‘small’ reference groups
The likelihood ratio test: comparing two nested models.
The logistic regression model in general

The model and the assumptions.

The data and the assumption of independence.

Estimation and inference
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Logistic regression models: Introduction

A logistic regression is a possible model if the dependent
variable (the response) is dichotomous dead/alive obese/not
obese efc.

Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

When working with binary response it is custom to code the
“positive” event (eg. dead) as 1 and a "negative” event (alive)
as 0.

A logistic regression models the probability of a "positive
event” via odds.

And the associations via odds ratio.

If the event is rare then odds ratios estimate the relative

risk.
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Logistic regression models: Introduction

A logistic regression can also be used to estimate the odds
ratios in a unmatched case-control study.

For such data the constant terms have no meaning.

And the odds ratios comparable odds ratio from a follow-up
study.

Many other epidemiological design are analyzed by logistic
regression models.
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Estimating one odds ratio using logistic regresion

We are now considering a larger part of the Frammingham
data set, consisting of 4690 person with known BMI at the
start.

We will focus on the risk obesity (BMI>30 kg/m?).

Out of the 4690 persons 601 = 12.8% were obese.
Divided into gender

Obese Not-Obese
Women |375 (14.2%) |2268
Men 226 (11.0%) |1821

We see a higher prevalence among women: OR: 1.33 (1.12;1.59).

That is the odds of being obese is between 12 and 59 percent
higher for women.( x2=10.2 p-value=0.001)
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Finding an odds ratio using logistic regresion
_odds,

Women

The odds ratio is defined as: OR
odds,,,,

So applying the logarithm we get:

In(OR) = In| 2% %8wmen | ~ 11 (odds,, ) ~In(odds,,, )
odds,,,,
And rearranging terms :
In(odds,,,,, ) =In(odds,,, ) +1n(OR)

That is the log-odds obesity for the women can be written as
the sum of two terms:

+The log-odds in reference group (men)
*The log of the odds ratio
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Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
In(odds,,,,, ) =In(odds,,, ) +1n(OR) In(odds) = f3, + f3, - woman
If we again let women be a indicator/dummy variable, then we In(odds,,,, ) In(OR)
can consider the model:
In(odds) = f3, + B, - woman Or to be more precise: B, =10(OR,0111)
For men we get: In(odds) = f, So, if we can fit the model above to the data, then we can

get an estimate of the 1o0g(OR) and hence of OR!
And for women: In(odds)= /3, + 5,

Comparing with the equation on top we get:

ﬂtl = 11'1 (Oddstx )
and
=l ( OR )
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Probabilities and odds eas
Probabilities and odds
If p denote the probability of an event (the risk, the N
prevalence proportion, or cumulated incidence proportion) o PRt
then the odds is given by : :
.87
odds =—L— .
1-p i
2z 6
Note: odds=1 < p=0.5 < In(odds)=0 3 s
& 4
In(odds) = In| —£ 3
I-p 2
. . . W on A4
In mathematics the last function of p is called the "logit |
function. o1 ‘ ; ; ; ; ; ; ; ; ;
-5 -4 -3 -2 -1 0 1 2 3 4 5
logit(p) —In )4 logit=In(odds)
I-p
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Probabilities and odds Finding an odds ratio using logistic regresion
‘ln(odds) Ty ~woman‘ logit( p) =In(odds) = f3, + f, - woman
0 1
Back to finding the estimates.
So modelling the log-odds is the same as modelling logit(p) In Stata: 7ogit obese bl.sex,baselevel
and model from before could be written. T o0 ke hood = 170 385
Iteration 2: log 1ikelihood = -1790.3703
: _ Iteration 3: Tog likelihood = -1790.3703
‘IOglt(p) - ﬁ() +ﬁl : WOman‘ Lo;::tjignregress?gn reettho |Number of obs = 4690 |
R chiZ(D) = 10.35
odds ) ) Prob > chi2 = 0.0013
Going from odds to probabilities: p=———— tog likelihood = ~1790.3703 . Poewdo®2 . S
1+0ddS std. Err. z P>|z]| [95% cConf. Interval]

The model on probability scale is :

ex + 3, - woman
= p(f+ 5, ) = INVLOGIT (3, + /3, - woman) I
L+exp(f, + B, - woman) _cons | -2.086606 .0705261 -29.59 0.000 -2.224835 -1.948378

.0898972 3.19 0.001 .1106831 .4630738
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Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
logit(p) =In(odds) = 3, + 3, - woman logit(p) =In(odds) = f3, + 3, - woman
An easier way to obtain the odds ratio
o .
95% CI for In(OR) Jogit obese bl.se base'leve'l
"""""""""" std. Err. 2 pelzl  [95% cogf. Interval] Tteration 0: log likelihood = -1795.5437
__________________________________________ Iteration 3: log Tikelihood = -1790.3703
.0898972 | 3.19  0.001 | [1106831 _ .4630738 Logit estimates Number of obs = 4690
.070526  -29.594 0.000  -2.224835 _-1.948378 LR chi2(1) = 10.35
__________________________________________________________________ Prob > chi2 = 0.0013
Log likelihood = -1790.3703 Pseudo R2 = 0.0029
OR =exp(0.2868784) =1.33 95% CI: (1.12;1.59). 5dds Ratio T95% Conf. Intervall
Test for the hypothesis : In(OR)=0 < OR=1
1.332262 . 1.117041  1.588951

Odds in reference group (men) = exp(-2.086606)=0.1241
95% CT :(0.1081:0.1425). Note, we cannot ffnd any information about the risk in the

reference group , i.e. the odds and prevalence among men!
Prevalence among men: 0.1104 (0.0975;0.1247).
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The obesity and age: version 1 The obesity and age: version 1
In the previous section we saw that the prevalence of obesity logit(p) =In(odds) = 5, + - (age —45)

was different between men and women. ) )
The interpretation of the parameters:

Is it also associated with age?
T also assaclared wrth age B, + the log odds for 45 year old person.

The simplest model on the logit scale would be:
P 9 B, : the log odds ratio, when comparing two persons who

logit(p)=In(odds)= /3, + B, - age differ 1 year in age.

That is a linear relation on the log-odds scale. exp(f, ): the odds ratio, when comparing two persons who

As we have seen before using age implies that 4 references to differ 1 year in age.
a newborn (age=0). Note, that this odds ratio is assumed to be the same no
matter what age the two persons have, as long as they differ

So we will chose age=45 reference instead: by one year!

The log odd i ional di
logit(p) = In(odds) = /4, + /- (age—45) he log odds ratio is proportional to the age differences,
e.g. OR increases exponentially with the age differences.
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =In(odds) = f3, + B, - (age—45) logit(p) =In(odds) = f3, + 3, - (age —45)
Obtaining the estimates in Stata: Estimate: /3, : —1.985 (—2.0767;-1.8951)

generate age45=age-45
Jogit obese age45

""""""""""""""""""""""""""""""""""""""" 0.1373 (0.1253;0.1503)

The odds for obesity for among 45 year old:

obese | Coef. std. Err. z P>|z| [95% conf. Interval]
—————— e et e e R S e e e L e .
ageds | .0348023  .0051296 .0247484  .0448561 The prevalence of obesity for among 45 year old:
_cons | -1.985922 .0463594 -42.84 0.00 -2.076785 -1.895059
““““““““““““““““““““““““““““““““““““ 0.1207 (0.1114;0.1307)

Test for no association with age \
Jogit obese age45,0R odds

odds = exp(log(odds Prob =

____________________________________________________________________ p( &( )) 1+ odds
obese | 0odds Ratio [95% conf. Interval]
age45 1.025057 1.045877
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =In(odds) = f3, + B, - (age—45)
Estimates: B, + 0.0348 (0.0247:0.0449) Estimated relationship: In(odds)=-1.986+0.0348(age —45)
The odds ratio for being obese is 1.0354 (1.0251;1.0459) R -

when comparing the old person to the young person, if they
differ with one year in age.

If they differ with 4.5 years then the odds ratio is 2
1.035443 (1.025143;1.045945)= 1.17 (1.12;1.22) g
2
In Stata: Tincom age45*4.5,0R
(1) 4.5 aged45 =0
-2.5
3‘0 3‘5 4‘0 45 5;0 5‘5 éO 6‘5 7‘0
Age in Years
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The obesity and age: version 1 The obesity and age: version 2
Estimated relationship: _
exp(—1.986+0.0348 - (age - 45)) In(odds) = 3, + 3, -(age —45)
prevalence = 1+exp(~1.986+0.0348 - (age — 45)) This model assumes that one year of age difference is
o associated with the same odds ratio irrespectively of the age.
Plot03 An other way to model the prevalence could be o assume a

step function that is to categorize age.

We will here look at age divided in seven five-years groups:
egen agegrp7=cut(age), at(0,35,40,45,50,55,60,120) 7abel

prevalence
o
T

With this command the youngest age group will be number O

n / the second youngest: 1and the oldest: 6

.05
30 35 40 45 50 55 60 65 70

Age in Years
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The obesity and age: version 2 The obesity and age: version 2
. 6
table agegrp7 ,c(min age max age count obese sum obese) row In(odds) =, + Y. a, - agei
agegrp7 | min(age) max(age) N(obese) sum(obese) . . i=l
__________ DT T The interpretation of the parameters:
0- | 30 34 352 23 .
35- | 35 39 973 105 o, : the log odds in reference group=the youngest.
40- | 40 44 885 93
45- | 45 49 799 95 - i i i
e - ot s R o i the Iog.oqu ra‘h?, when comparing one person in age
55- | 55 59 613 95 group i with one in the reference group=the youngest.
60- | 60 66 335 75
| Tlogit obese 1i.agegrp7,baselevel Not all output
Total | 30 66 4,690 601 | e
__________________________________________________________ obese | coef. std. Err z P>|z| [95% conf. Interval]
_____________ T T Tl
A model that have different odds in each age group : agearp? I (base)
6
_ . 1 | .5483322 .239152  2.29 0.022 0796029  1.017061
In(odds) = @, +204 -aget 2 | .5186016 .2419361 2.14 0.032 .0444155  .9927877
i=l 3 | .6576621 .2417944 2.72  0.007 .1837537 1.13157
.. . Lo . 4 | .9790072 .2383937 4.11  0.000 .5117642 1.44625
Where agei is an indicator for being in the ith age group 5 | .9644652 .2428468 3.97  0.000 .4884941  1.440436
6 | 1.41737 .2523832 5.62 0.000 9227081 1.912032
_cons |-2.660564 .2156798 -12.34 0.000  -3.083288 -2.237839
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The obesity and age: version 2 The obesity and age: version 2
. 6
In(odds) = c, + ), - agei In(odds) =, + - agei
i=1 . . i-1 . . .
Togit obese i.agegrp?,or baselevel Not all output The output contains six tests of no difference in risk -
“““ chese lodds racioNecd. tref 2 ezl Tosk conf. imtervall comparing each of the six groups with the reference (the
____________ O e youngest) group.
1 | 1.730365 . 29 0.022 1.082857 2.765057 .
2 | 1.679677 14 0.032 1.045417  2.698747 The command: testparm i.agegrp7
| e R R A Yt will give a "Wald test” of no difference between the seven
5 | 2.623384 . .97___0.000 1.62986___ 4.222538 groups .
6 | 4.126254 .0413 .62 0.000 2.516095 6.766825
______________________________________________________________________ (1) [obesell.agegrp7 = 0
( 2) [obesel2.agegrp7 = 0
The OR between the second oldest and the youngest: (3) [obese]3.agegrp? = 0
. ( 4) [obesel4.agegrp? = 0
262 (163,422) ( 5) [obese]l5.agegrp7 = 0
( 6) [obesel6.agegrp7 =
Between a 63 and 322 percent increase in odds. chi2( 6) = 55.26 Highly significant

Prob > chi2 0.0000 differences
Small prevalence: 63 and 322 percent increase in prevalence.
A statistical significant difference in prevalence!
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The obesity and age: version 2 The obesity and age: version 2
Using the age group 45-49 as reference
1 .25
Togit obese b3.agegrp7,or baselevel Not all output Plot04
obese |o0dds Ratio std. Err z P>|z| [95% conf. Interval]
———————————— e e .24
agegrp7 |
0 | .5180611 -2.72 0.007 .3225264  .8321407
1 | .8964346 -0.73  0.467 .6675609  1.203778 3
2 | .8701754 -0.90  0.369 .6424561 1.17861 5
3 | (base) e
4 ]1.3789 &
5 | 1.359073_/ 1.96__0.050 1.000625___ 1.845927
6 | 2.137652 7 .3648206 4.45 0.000 1.529915  2.986803 N
The OR between the second oldest and the 45-49 old:
1.36 (1.00;1.85) s o5
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
Age in Years Age in Years

Between a no and 85 percent increase in (odds) prevalence.

. d relationshi
A borderline significant different in prevalence! Estimated relationship
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The obesity and age: version 1 and 2 The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at
T — modelt 251 — modelt age.
Plot05 - :mzwz - ::azlz 9

Let us try to look at those two at the same time
The simplest model on the logit scale would be:

In(odds) = /3, + f,- woman + 3, - (age — 45)
This is based on three assumptions:

log odds
prevalence

Additivity on logit scale: The contribution from sex and age
are added.

Proportionalty on logit scale: The contribution from age is
3 051 proportional fo it is value.

30 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70

Agen Years Agen Years No effectmodification on logit scale: The contribution from
one independent variable is the same whatever the value is
for the other.
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds)=f3,+ /3, - woman + f3, - (age —45) In(odds) = 3, + 3, - woman + 3, - (age —45)
Obtaining the estimates in Stata:

The interpretation of the parameters: Jogit obese bI.sex ageds

£, : the log odds for 45 year old man.

Iteration O: Tlog 1ikelihood = -1795.5437

. . Iteration 3: log likelihood = -1767.7019
p, : the log odds ratio, when comparing a woman to a man of Logistic regression [ Number of obs = 4690]
LR ch12(2) = 55.68
the same age. prob > chi2 = 0.0000
. . Log Tikelihood = -1767.7019 Pseudo R2 = 0.0155

B, : the log odds ratio, when comparing two persons of the o e s ] e
same sex, where the first is one year older than the obese | coef. std. Err. z ez [95% conf. Interval]
other. | 77 s | T
. 1 | (base)

B, *Aage: the log odds ratio, when comparing two persons of 2 | .2743976  .0903385 AdelldemellaOll -0973374 4514579
. . age45 | .0344723 .0051354/ | .0244072 .0445374
the same sex, where the first is Aage years older than “cons |-2.147056 0721981 |20.74 0.000 ] 748561  -2.00555

the other. Tests: [No association with sex l No association with age

Prevalence is 50% among 45 year old men
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = f3, + 5, - woman + 3, - (age — 45) In(odds) = /3, + f,- woman + 3, - (age — 45)
Togit obese bl.sex age45, or -1 .25
obese | odds Ratio Std. Err. z P>|z| [95% conf. Interval] . VT;:‘E" , . VT;:‘E"
-------- i et Plot06
2.sex | 1.315738  .1188618 3.04  0.002 1.102232 1.5706
age45 | 1.035073  .0053155 6.71  0.000 1.024707  1.045544

OR for women compared to men “adjusted for age" :

1.32 (1.10;1.57) 8 &
=4 2 ® 157
The unadjusted was 1.33 (1.12;1.59). 8 g
. “w . 4
OR for one year age difference "adjusted for sex” : S
1.04 (1.02;1.05) 2 " /,/’
The unadjusted was 1.04 (1.03;1.05)
Not much has changed! s 051
30 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70
AgeinYears X . Agein Yeas
The estimated relationship
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The obesity, sex and age: version 2 The obesity, sex and age: version 2
) . In(odds) =S, + j3,- woman + f3, - (age — 45) + /3, - woman - (age — 45)
A more complicated model on the logit scale would be: Estimates log odds:
men: ln(odds) =o,+a, - ([lge — 45) Togit obese bl.sex##c.age45
. - . — obese | Coef. std. Err. z P>|z| [95% Conf. Interval]
women: In(odds)=7y,+7,-(age-45) | | obese | coef. std. Err. z  Plzl  [95% conf. 1ntervall
PH ians: 2.sex | 116797 .0950345 1.23 0.219  -.0694672 _ _.3030611
This is based on one assumptions age45 | -,005684 .0083728 -0.68 0.497  -.0220953 _ 0107255
Proportionalty on logit scale: The contribution age is sexfcages® | ossE0n 010743 6.13 0.000 0887472 _ _.QBeEsas
proportional to it is value. _cons |-2.083041 .0706433 -29.49  0.000  -2.221499 _ "1.044583
) o o I N S T i .
Tt can be written in just one formula (with interaction): Men , Difference between women and men :
In(odds) = S, + B -woman+ S, -(age—45) + [, - woman - (age — 45 . .
(odds)=fy+ p.-(as )+h, (ag ) Estimates odds ratios:
a, = ﬂ() [24 ::BZ obese | odds Ratio P>|z|  [95% conf. Intervall
Where: _ s |- T
n=6+6  n=p5+p 2.sex | 1.123891 . 0.219  .9328907 _ _1.353997

age4s 09943312

sex#c.age45 |

Thatis: B=y,-a, B=1-¢ 2_ _1.068016

0.497 .978147 1.010783
0.000 1.045763 1.090743
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The obesity, sex and age: version 2 A small case-control example
In(odds) = f,+ j3,- woman + f3, - (age — 45) + /3, - woman - (age — 45) tabodds cancer age
Ploto7 ~° men 4 mn [ | 1 |- p——————————————————y oo e
—=—" women J == women age | cases controls odds [95% Conf. Interval]
2 e N R EEEee St R e e
1 / I/ 25-34 | 2 116 0.01724 0.00426 0.06976
/ 3 / 35-44 | 9 190 0.04737 0.02427  0.09244
/ ,/ 45-54 | 46 167 0.27545 0.19875 0.38175
s / 55-64 | 76 0.45783 0.34899  0.60061
P / 3 /I 65-74 | 55 106 0.51887 0.37463 0.71864
§ // % » / >=75 | 13 31 41935 0.21944  0.80138
g / S S
& . .
2] ~——— ] / | Few events in reference group= wide CI's
Vv [ — / tabodds cancer age,~or
/ "—""“’7-4-—-._._,___-_ ———————————————————————————————————————————————————————
25 ,l ! ,/’ age || odds Ratio chi2 P>chi2 [95% conf.|Interval]
/ S R IR IR bbb B i it Sttt
/ - 25-34 || 1.000000 ) )
/ 35-44 | 2.747368 1.76 0.1843 0.579474 13.025660
B I — ol — 45-54 || 15.976048 24.18 0.0000 3.588609 71.123412
3 3 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70 55-64 | 26.554217 41.14 0.0000 5.834718 120.850133
Age in Years Agein Years 65-74 | 30.094340 43.99 0.0000 6.278745 144.243682
The estimated relationship sl e | w0 v e s |
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A small case-control example ) A small case-control example
logit cancer b0.smoker bl.age,or
Iteration O: Tlog Tikelihood = -496.55682
tabodds cancer age Iteration 1: Tlog likelihood = -437.36405
________________________________________ Iteration 2: log Tikelihood = -429.36499 " P .
age | cases controls odds [95% conf. Interval] Iteration 3: Tlog Tikelihood = -428.94718 quy iterations
""" e e Iteration 4: log likelihood = -428.94432
25-34 | 2 116 0.01724 0.00426  0.06976 Iteration 5: Jlog likelihood = -428.94432
35-44 | 9 190 0.04737 0.02427  0.09244 Logistic regression Nimber of obs = 977
45-54 | 46 167 | 0.27545 0.19875  0.38175 LR chi2(6) - 135.23
55-64 | 76 166 | 0.45783 0.34899  0.60061 prob > chi2 - 0.0000
65-74 | 55 0.51887 0.37463  0.71864 Log TikeTihood = -428.94432 pseudo R2 B 0.1362
>=75 | 13 e 0.21944  0.80138 Log Ttkelthood = oS A P seudo Re T Demee
Tttt """‘"‘ ‘‘‘‘‘ '_ ‘‘‘‘‘‘‘‘ T " cancer | odds Ratio  Std. Err z P>|z| [95% conf. Interval]
| Many' events in reference group= narrow CI'sf |----—-- R
smoker
tabodds_cancer age r| base(3)| 0 | (base)
——————————————————————————————————————————————————————————————————————— 1 | 2.350498  .4513038 4.45 0.000 1.613342  3.424472
age || odds Ratio chi2 P>chi2 [95% Conf.|Interval] age |
------ B ity i I 1 | (base)
25-34 | 0.062594 24.18 0.0000 0.014060 | 0.278660 2 | 2.832192 2.243677 1.31 0.189 .5995101 13.37978
35-44 | 0.171968 25.86 0.0000 0.079661 ¥ 0.371235 3 | 16.58078 12.17376 3.82  0.000 3.932284 69.91412
45-54 | 1.000000 . . - R 4 | 27.89911  20.32372 4.57 0.000 6.691354 116.3233
55-64 | 1.662127 5.54 0.0186 1.083844  2.548952 5 | 34.79453  25.59025 4.83 0.000 8.231513 147.0761
65-74 | 1.883716 7.32 0.0068 1.181689  3.002809 6 | 27.713 21.89264 4.21 0.000 5.891876 130.3507
>=75 | 1.522440 1.30 0.2546 0.734799 3.154365 | | @ |---mmmmmmmmmmmm e ————
I_V\EFT_eE_F_r'ycI&l_);r‘_g _________ Linear and Eggﬁs_ﬁc_l:e_g;;e_s_siv;n_-_l\l_o}; T 39 Morten Frydenberg Linear and Logistic regression - Note 4 40
A small case-control example Things to look out for in the output
Togit cancer b0.smoker b3.age,or baselev
Iteration 0: Tog T1kelihood = -496.55682 In general;
Iteration 1 log Tikelihood = -437.36405
Iteration 2: Tlog Tikelihood = -429.36499 : J H fati H
Tteration 3. oy Tikelihood = -428.94718 Wu.:le CI's or large standard errors in a logistic regression
Tteration 4:  Tog Tikelihood = -428.94432 indicates that at least one group has few events!
Iteration 5: log 1ikelihood = -428.94432
Logistic regression Number of obs = 977 Many iterations in a logistic regression indicates that some
LR chi2(6) = 135.23 f Th + h d + +i +
Prob > chi2 - 0.0000 (0] € parameters are har 0 estTimate.
Log Tikelihood = -428.94432 Pseudo R2 = 0.1362
cancer | odds Ratio std. Err z P>|z| [95% conf. Interval]
__________ S
smoker |
0 | (base)
1 | 2.350498 .4513038 4.45 0.000 1.613342 3.424472
age |
1 | .0603108 .0442807 -3.82 0.000 .014303 .254305
2 | .1708118 .0652397 -4.63 0.000 .080800 .361098
3 | (base)
4 ] 1.682618 .3701188 2.37 0.018 1.093327 2.58953
5 | 2.098486 .5042862 3.08 0.002 1.31025 3.360918
6 | 1.671393 .6277714 1.37  0.171 .800514 3.489699
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Comparing two models: the likelihood ratio test Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald to test if several One can compare two models with a likelihood ratio test if:

coefficients could be zero . *The two models are fitted on exactly the same data set.

An other way to "compare” two models is by a likelihood

N *The dels are nested, i.e. one e model
ratio test. he two models are nested, i.e. one can go from one mo

to the other by setting some coefficients to zero.
In the logistic regression output from Stata we find a

likelihood ratio test comparing the fitted model with the In Stata the test is found in this way:

logit cancer i.smoker 1i.age

model with no dependent variables the constant odds model: estimates store modell
LR chi2(6) = 135.23 Togit cancer i.smoker
pProb > chi2 - 0.0000 estimates store model2
Trtest modell model2
The conclusion: The model with smoker and age is statistical Output:
significant better, than a model assuming the same odds, risk 1ikelihood-ratio test LR chi2(s) =  120.82
for everybody. (Assumption: model2 nested in modell) Prob > chi2 = 0.0000

i.age adds statistical significant information to the model
only containing smoking!
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Logistic regression model in general Logistic regression model in general
In(odds) = f3, + z ‘X,
0 2
In(odds) ﬂ0+2ﬂp x, ;

If one consider two persons who drffer with

This is based on three assumptions: Ax, inx,, Ax, inx, .. and Ax, in x,
a. Additivity on log-odds scale: The contribution from each di . loa odds is :
of the independent variables are added. then difference in the log odds is :

b.Proportionalty: The contribution from independent variables Zﬂ,, Ax,

is proportional to it is value (with a factor
prop ¢ & Again we see that the contribution for each of the

c. No effectmodification: The contribution from one explanatory variables:
independent variables is the same whatever the values are are added,
for the other. are proportional fo the difference
Note a. can also be formulate as multiplicativity on odds scale and does not dependent of the difference in the other
odds = odds, - OR" - OR}* -++- OR}* on the log odds scale.
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Logistic regression model in general Logistic regression model in general
k
In(odds) = 5, +z X, In(odds) = S, + Z X,
p=1

If one consider two persons who differ with
Ax;inx;, Ax, inx, .. and Ax; in x;
then odds ratio :

The data: Y =1/0 dichotomous dependent variable

X| , X, ... X independent/explanatory variables

OR =OR™ -OR}™---- OR™ Like in the normal regression models it is assumed that the Y's
are independent given the explanatory variables.
Note the model might also be formulated: This assumption can, in general, only be checked by
scrutinising the design.
k
exp[ﬁo + Zﬁp .xpj Look out for data sampled in clusters:
p=Pr[Y=1]= Patients within the same GP
k
1+ exp[ﬁ(] +> 8, .xpj Children within the same family
! Twins.
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Logistic regression model in general

Estimation:

Excepting the two by two tables, there are no closed form for
the estimates.

The distribution of the estimates are not known.
Estimates are found by the method of maximum likelihood.
Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based
on asymptotics.

That is, all statistical inference are approximate.

The more data - the more events -the better the
approximations.
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