

Working with logistics regression models

Morten Frydenberg ©
Department of Biostatistics, Aarhus Univ, Denmark

The lincom command for logistic regression

Further remarks on logistic regression

Diagnostics: residuals and leverages

Enough data?

Test of fit: The Hosmer-Lemeshow test

ROC-curves and the area under the ROC-curve

Morten Frydenberg

Linear and Logistic regression - Note 6

Extensions to the ordinary logistic regression:

Conditional logistic regression

- When?
- What?
- How?

Other methods for analyzing binary data

Models for relative risks

Models for risk differences

Data with several random components: Binary outcome

Clustered binary data with one random components

Morten Frydenberg

Linear and Logistic regression - Note 6

2

The lincom command after logit or regress

Consider the model:

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
_Isex_2	.2743977	.0903385	3.04	0.002	.0973375 .451458
age45	.0344723	.0051354	6.71	0.000	.0244072 .0445374
_cons	-2.147056	.0721981	-29.74	0.000	-2.288561 -2.00555

Here men are reference.

If we want to find the log odds for a 45 year old women we can calculate by hand $-2.147 + 0.274 = -1.873$

But what about confidence interval?

We could change the reference to women and fit the model once more.

But.....

Morten Frydenberg

Linear and Logistic regression - Note 6

3

The lincom command after logit or regress

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Stata has a command that can be used for this: "lincom"

lincom _const+_Isex					
(1) _Isex_2 + _cons = 0					
	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	-1.8726	.05813	-32.21	0.000	-1.986602 -1.758714

You can add ", or" to get odds/odds ratios.

lincom _const+_Isex, or					
(1) _Isex_2 + _cons = 0					
	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	.1537145	.0083363	-32.21	0.000	.1371606 .172266

Morten Frydenberg

Linear and Logistic regression - Note 6

4

The lincom command after logit or regress

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Some examples:

Odds for a 42 year old woman:

lincom _const+_Isex-age45*3, or					
(1) _Isex_2 - 3 age45 + _cons = 0					
	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	.1386122	.0088678	-30.89	0.000	.1222772 .1571295

Odds ratio for 4.5 age difference:

lincom age45*4.5, or					
(1) 4.5 age45 = 0					
	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	1.167804	.069869	6.71	0.000	1.116091 1.221914

Morten Frydenberg

Linear and Logistic regression - Note 6

Logistic regression models: Diagnostics

In the linear regression we saw some example of statistics:

residuals, standardized residuals and leverage

which can be used in the model checking and search for strange or influential data points.

Such statistics can also be defined for the logistic regression model.

But they are much more difficult to interpret and cannot in general be recommended.

Checking the validity of a logistic regression model will mainly be based on comparing it with other models.

Morten Frydenberg

Linear and Logistic regression - Note 6

6

Logistic regression models: Test of fit

A common, and to some extend informative, test of fit is the **Hosmer-Lemeshow test**.

Consider the model for obesity from Monday

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Logit estimates

		Number of obs = 4690			
		LR chi2(2) = 55.68			
		Prob > chi2 = 0.0000			
		Pseudo R2 = 0.0155			
obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
_Isex_2	.2743977	.0903385	3.04	0.002	.0973375 .451458
age45	.0344723	.0051354	6.71	0.000	.0244072 .0445374
_cons	-2.147056	.0721981	-29.74	0.000	-.2.288561 -.2.00555

Significantly better than nothing - but is it good?

Morten Frydenberg Linear and Logistic regression - Note 6

7

Logistic regression models: Do you have enough data?

All inference in logistic regression models are based on asymptotics, i.e. **assuming that you have a lot of data!**

Rule of thumb:

You should have at least **10 events** per variable (parameter) in the model.

A **large standard error** typical indicates that you have to little information concerning the variable and that the **estimate and standard error are not valid**.

Lower your ambitions or get **more data**!

A exact methods exists, but only one (**expensive**) program can do it.

And it will give also wide confidence intervals.

Morten Frydenberg Linear and Logistic regression - Note 6

8

Logistic regression models: Test of fit

What about comparing the **estimated prevalence** with the **observed prevalence**?

In the Hosmer-Lemeshow test the data is **divided** into groups (traditionally 10) according to the **estimated probabilities**

and the **observed** and **expected** counts are compared in these groups by a chi-square test.

Most programs, that can fit a logistic regression model, can calculate this test.

In Stata it is done by (**after fitting the model**):

`ifit, group(10) table`

The data is divided into **deciles** after the estimated probabilities.

Morten Frydenberg Linear and Logistic regression - Note 6

9

Logistic regression models: Test of fit

OUTPUT

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

Group	Prob	obs_1	Exp_1	obs_0	Exp_0	Total
1	0.0841	64	40.9	462	485.1	526
2	0.0953	43	45.5	453	450.5	496
3	0.1045	44	44.6	398	397.4	442
4	0.1112	42	50.3	422	413.7	464
5	0.1217	44	51.4	394	386.6	438
6	0.1332	52	63.0	441	430.0	493
7	0.1456	53	61.7	389	380.3	442
8	0.1592	62	69.8	392	388.2	454
9	0.1834	98	89.9	424	432.1	522
10	0.2407	99	83.8	314	329.2	413

number of observations = 4690
number of groups = 10
Hosmer-Lemeshow chi2(8) = 26.01
Prob > chi2 = 0.0010

One problem:
Too many in
the tails

Significant difference between observed and expected!

Morten Frydenberg Linear and Logistic regression - Note 6

10

Logistic regression models: Test of fit

`xi: logit obese i.sex*age45`

`ifit, group(10) table`

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

Group	Prob	Obs_1	Exp_1	Obs_0	Exp_0	Total
1	0.0796	36	35.9	466	466.1	502
2	0.1011	42	41.1	406	406.9	448
3	0.1053	49	49.6	429	428.4	478
4	0.1096	50	54.8	458	453.2	508
5	0.1124	52	54.2	436	433.8	488
6	0.1153	51	46.4	355	359.6	406
7	0.1182	52	53.9	410	408.1	462
8	0.1590	76	70.3	428	433.7	504
9	0.2133	96	91.8	391	395.2	487
10	0.3310	97	103.0	310	304.0	407

number of observations = 4690
number of groups = 10
Hosmer-Lemeshow chi2(8) = 2.43
Prob > chi2 = 0.9650

The model 'fits' - when we look at in this way !!!!!!!

Morten Frydenberg Linear and Logistic regression - Note 6

11

ROC curves - sensitivity and specificity

generate over45=(age>45) if age!=.

diagt obese over45

obese	Pos.	Neg.	Total
Abnormal	361	240	601
Normal	1,952	2,137	4,089
Total	2,313	2,377	4,690

True abnormal diagnosis defined as obese = 1

[95% Confidence Interval]

Prevalence	Pr(A)	13%	12%	13.8%
Sensitivity	Pr(+ A)	60.1%	56%	64%
Specificity	Pr(- N)	52.3%	50.7%	53.8%
ROC area	(Sens. + Spec.)/2	.562	.541	.583
Likelihood ratio (+)	Pr(+ A)/Pr(+ N)	1.26	1.17	1.35
Likelihood ratio (-)	Pr(- A)/Pr(- N)	.764	.69	.846
Odds ratio	LR(+)/LR(-)	1.65	1.38	1.96
Positive predictive value	Pr(A +)	15.6%	14.2%	17.2%
Negative predictive value	Pr(N -)	89.9%	88.6%	91.1%

Morten Frydenberg Linear and Logistic regression - Note 6

12

ROC curves - sensitivity and specificity

roctab obese over45, graph tab de

		over45		Total
obese		0	1	
0	2,137	1,952	4,089	
1	240	361	601	
Total	2,377	2,313	4,690	

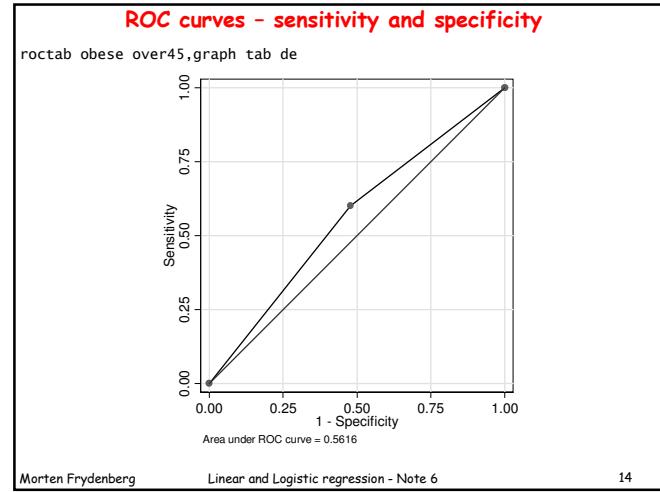
detailed report of Sensitivity and Specificity

Cutpoint	Sensitivity	Specificity	Correctly classified	LR+	LR-
(>= 0)	100.00%	0.00%	12.81%	1.0000	
(>= 1)	60.07%	52.26%	53.26%	1.2583	0.7641
(> 1)	0.00%	100.00%	87.19%		1.0000

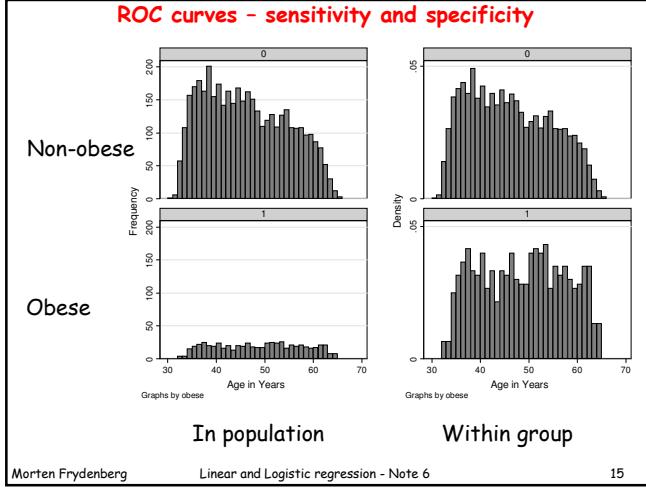
Obs ROC Area Std. Err. -Asymptotic Normal-- [95% Conf. Interval]

4690 0.5616 0.0107 0.54061 0.58268

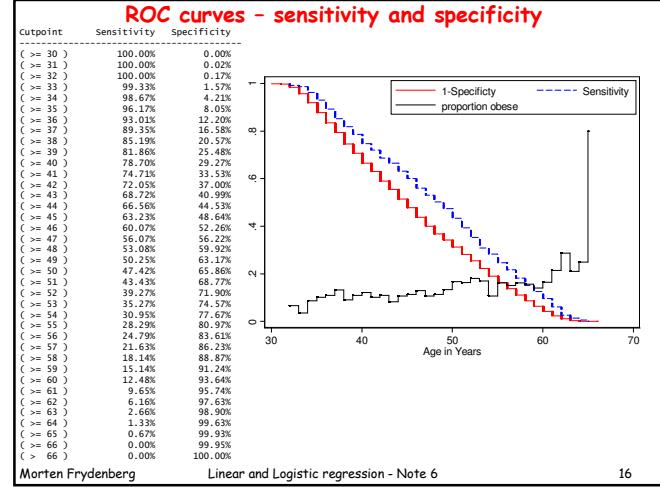
Morten Frydenberg Linear and Logistic regression - Note 6 13



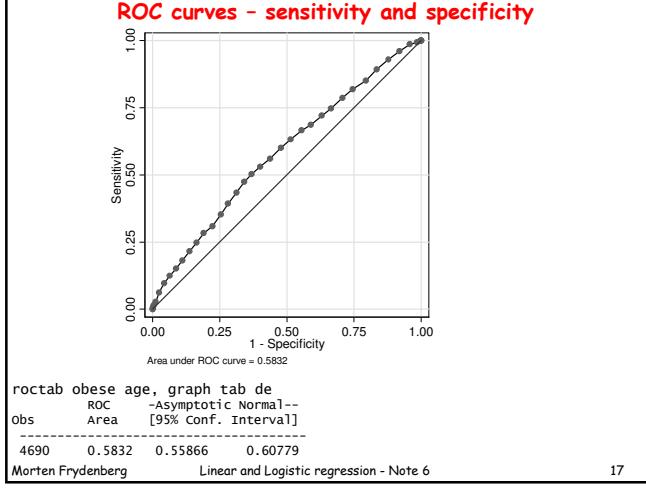
Morten Frydenberg Linear and Logistic regression - Note 6 14



Morten Frydenberg Linear and Logistic regression - Note 6 15



Morten Frydenberg Linear and Logistic regression - Note 6 16



Morten Frydenberg Linear and Logistic regression - Note 6 17

ROC curves - the area under the curve

The area under the ROC curve - what is it?

Note, it only depends on the sensitivity and the specificity , but not on the prevalence!

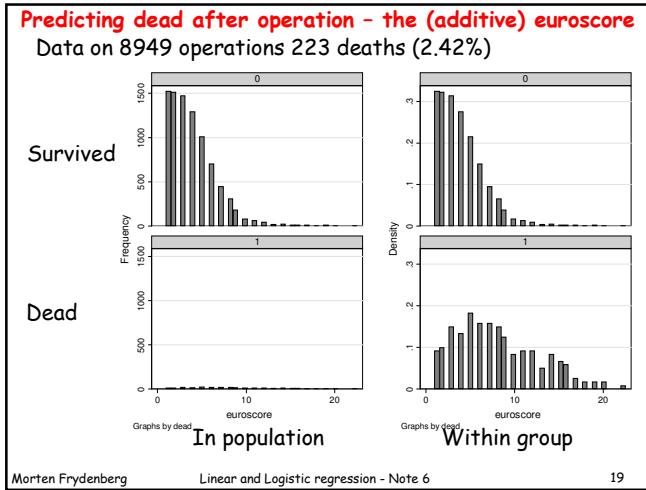
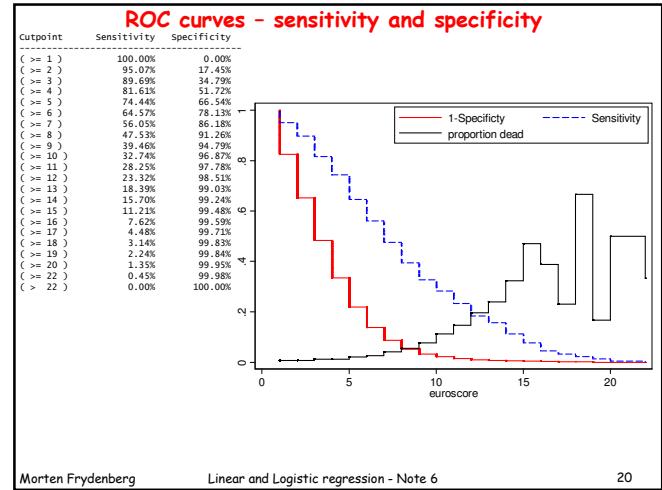
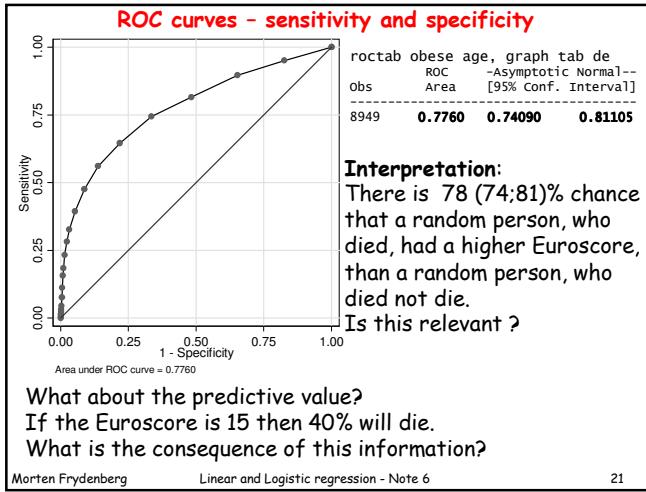
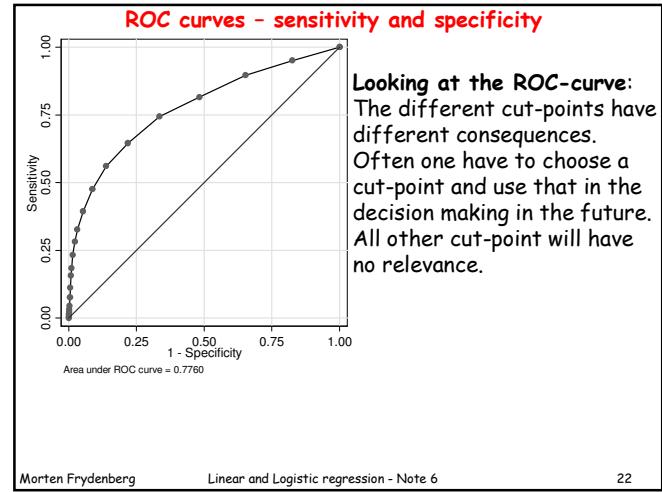
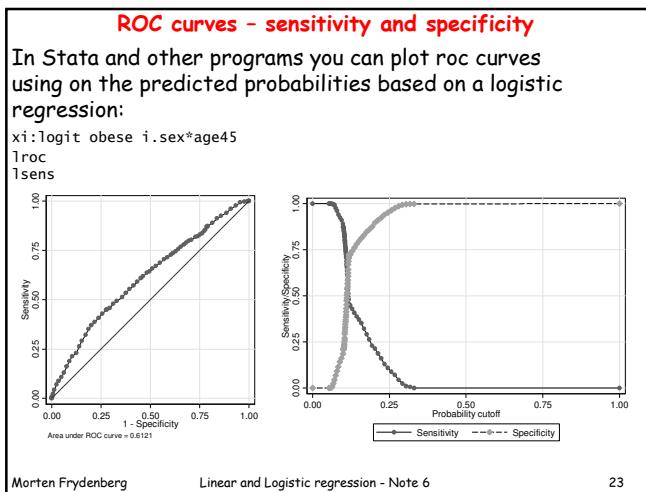
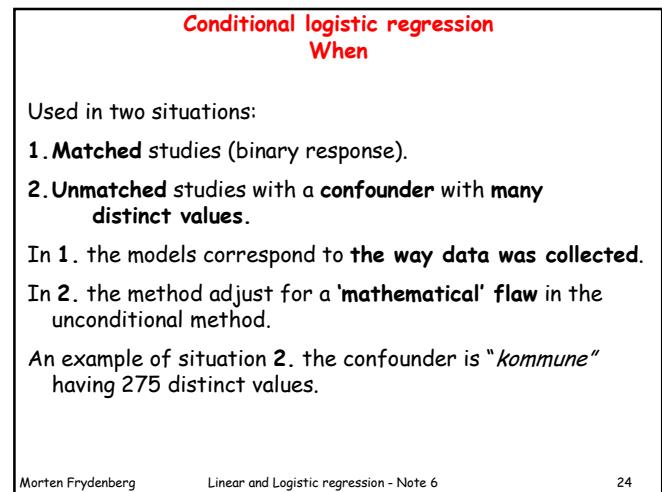
The mathematical definition of the are under the ROC-curve is:

Suppose we take one **random obese** person and one **random non-obese** person then :

$$\Pr(\text{age obese} > \text{age non-obese}) + \frac{1}{2} \Pr(\text{age obese} = \text{age non-obese})$$

Note, this is not related to the predictive values!

Morten Frydenberg Linear and Logistic regression - Note 6 18



Conditional logistic regression What

The logistic regression model (outcome disease yes/no):

$$\ln(\text{odds}) = \alpha + \sum_{i=1}^k (\beta_i \cdot x_i)$$

ln(odds) in reference ln(odds ratios)

Suppose the model above hold in each strata:

$$\ln(\text{odds}) = \alpha_s + \sum_{i=1}^k (\beta_i \cdot x_i)$$

ln(odds) in reference ln(odds ratios)
different in each strata the same in each strata

Morten Frydenberg

Linear and Logistic regression - Note 6

25

Conditional logistic regression What

$$\ln(\text{odds}) = \alpha_s + \sum_{i=1}^k (\beta_i \cdot x_i)$$

ln(odds) different in each strata

We are not interested in these!

In a matched study these are 'controlled'.

In a conditional logistic regression one 'condition on the odds in each strata', i.e. these case/control ratio.

In the conditional model the α 's disappear!

The β 's, the log OR's, are still in and can be estimated.

Morten Frydenberg

Linear and Logistic regression - Note 6

26

Conditional logistic regression How

It is easy!

You need a statistical software package.

A package made for research in epidemiology

Not in social science

Not SPSS

But **Stata**, **EPICURE**, **EPILOG**, **EGRET**, **EPIINFO(2000)** and **SAS** can do it.

Morten Frydenberg

Linear and Logistic regression - Note 6

27

Conditional logistic regression How

An example using **Stata**

A study of cancer in the oral cavity

Matched on gender and 10 years age groups

Ten strata (*genage*)

Here we focus on

textile-worker and

life time consumption of alcohol (three groups)

Morten Frydenberg

Linear and Logistic regression - Note 6

28

Conditional logistic regression How

logistic regression in **Stata**

xi:logit cancer textile i.alkcon i.genage

Part of the output:

	cancer	Coef.	Std. Err.	z	P> z	CI
+	textile	.5022	.4141	1.213	0.225	-.3094 1.3139
alkcon_1	.4628	.2823	1.639	0.101	-.0905	1.0163
alkcon_2	2.7165	.3232	8.404	0.000	2.0829	3.3501
genage_2	.2450	1.2514	0.196	0.845	-2.2075	2.6977
genage_3	-.4940	.5503	-0.898	0.369	-1.5726	.5846
genage_4	.1798	.6406	0.281	0.779	-1.0758	1.4353
genage_5	-.2899	.5482	-0.529	0.597	-1.3644	.7844
genage_6	.2127	.6262	0.340	0.734	-1.0147	1.4401
genage_7	-.2305	.5355	0.431	0.667	-1.2802	.8190
genage_8	.5507	.5263	1.046	0.295	-.4809	1.5825
genage_9	-.0315	.5884	0.054	0.957	-1.1217	1.1847
genage_10	.5572	.5595	0.996	0.319	-.53954	1.6539
const	-1.4692	.4762	-3.085	0.002	-2.4027	.5356

Morten Frydenberg

Linear and Logistic regression - Note 6

29

Conditional logistic regression in **Stata**

The syntax:

xi:clogit cancer textile i.alkcon, **group**(genage)

Part of the output:

	cancer	Coef.	Std. Err.	z	P> z	CI
+	textile	.4929	.4103	1.201	0.230	-.3112 1.2971
alkcon_1	.452	.27923	1.621	0.105	-.094	.9999
alkcon_2	2.660	.31936	8.332	0.000	2.034	3.2868

xi:clogit cancer textile i.alkcon, **group**(genage) or

	cases	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
+	textile	1.63708	.6717022	1.20	0.230	.732517 3.658661
alkcon_1	1.572508	.4390957	1.62	0.105	.909724	2.718168
alkcon_2	14.30908	4.569879	8.33	0.000	7.651811	26.75835

Morten Frydenberg

Linear and Logistic regression - Note 6

30

Other methods to analysis of binary response data Relative Risk models

Logistic regression model focus on the **Odds Ratios**

This is the correct thing to do in **case-control** studies.

In **follow-up** studies **Relative Risk** is often the appropriate measure of association, (personal risk).

I.e. a model like this might be more relevant:

$$\Pr(\text{event}) = p_0 \times RR_1 \times RR_2 \times RR_3$$

$$\ln\{\Pr(\text{event})\} = \ln(p_0) + \ln(RR_1) + \ln(RR_2) + \ln(RR_3)$$

$$\ln\{\Pr(\text{event given the covariates})\} = \alpha + \sum_{i=1}^p (\beta_i \cdot x_i)$$

That is linear on **log-probability scale**

Morten Frydenberg

Linear and Logistic regression - Note 6

31

Other methods to analysis of binary response data Relative Risk models

$$\ln\{\Pr(\text{event given the covariates})\} = \alpha + \sum_{i=1}^p (\beta_i \cdot x_i)$$

Such a model **modelling the relative risk** can easily be fitted by many programs (not SPSS).

Logistic regression in Stata:

xi: logit obese age i.sex

or

xi: g1m obese age i.sex, fam(bin) link(logit)

Relative risk model:

xi: g1m obese age i.sex, fam(bin) link(log)

The **link** is **log** instead of **logit**

Morten Frydenberg Linear and Logistic regression - Note 6

32

Other methods to analysis of binary response data Risk difference models

Logistic regression model focus on the **Odds Ratios**

This is the correct thing to do in **case-control** studies.

In **follow-up** studies **Risk Difference** is often the appropriate measure of association, (community effect).

I.e. a model like this might be more relevant:

$$\Pr(\text{event}) = p_0 + RD_1 + RD_2 + RD_3$$

$$\Pr(\text{event given the covariates}) = \alpha + \sum_{i=1}^p (\beta_i \cdot x_i)$$

That is linear on **probability scale**

Morten Frydenberg

Linear and Logistic regression - Note 6

33

Other methods to analysis of binary response data Risk difference models

$$\Pr(\text{event given the covariates}) = \alpha + \sum_{i=1}^p (\beta_i \cdot x_i)$$

Such a model **modelling the risk difference** can easily be fitted by many programs (not SPSS).

Logistic regression in Stata:

xi: logit obese age i.sex

or

xi: g1m obese age i.sex, fam(bin) link(logit)

Risk difference model:

xi: g1m obese age i.sex, fam(bin) link(id)

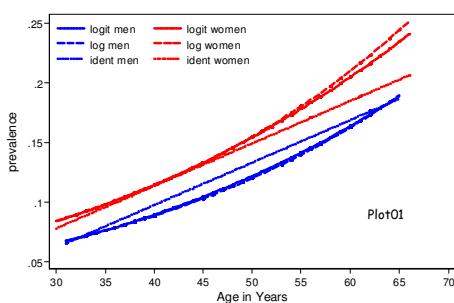
The **link** is **identity** instead of **logit**

Morten Frydenberg Linear and Logistic regression - Note 6

34

Other methods to analysis of binary response data

Three different links for **Obese** "=" **sex** "+" **age**



Morten Frydenberg

Linear and Logistic regression - Note 6

35

Other methods to analysis of binary response data Problems

$$\Pr(\text{event}) = p_0 \times RR_1 \times RR_2 \times RR_3$$

As the relative risk can be **larger** than one the product might be **larger than one**!

$$\Pr(\text{event}) = p_0 + RD_1 + RD_2 + RD_3$$

The sum might **negative** and be **larger than one**!

Note: In Stata you can also use the **binreg** command

Morten Frydenberg Linear and Logistic regression - Note 6

36

Clustered data / data with several random components
Dichotomous outcome

A different outcome:

$$H_{fpd} = \begin{cases} 1 & \text{if the person has hayfewer} \\ 0 & \text{else} \end{cases}$$

A statistical model:

Systematic part

$$\text{logit}(H_{fpd} = 1) = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G$$

Random part

$$+ F_f + P_{fp} + X_{pd}$$

This is not needed due to the binomial error

Morten Frydenberg

Linear and Logistic regression - Note 6

37

Clustered data / data with several random components
Dichotomous outcome

$$\text{logit}(H_{fpd} = 1) = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + F_f + P_{fp}$$

That is, an ordinary logistic regression + **random components**.

- A **generalized linear mixed model**
- A **multilevel model for dichotomous outcome**

Comments 1:

- It is **important** to include the **relevant random components** in the model.
- 'Multilevel models' is **essential** in medical/epidemiological research.

Morten Frydenberg

Linear and Logistic regression - Note 6

38

Clustered data / data with several random components
Dichotomous outcome

Comments 2:

- The theory and insight into the models for non-normal data are **not yet fully developed**.
- The main problem being that it is very difficult find **valid (unbiased) estimates**.
- Several software programs **falsely claim** to estimate the models.
- Some programs like Stata and NLwin can give you valid estimates if you take care and have **a lot of data**.

Advice:

Do not try to estimate this kind of models without consulting a specialist.

Morten Frydenberg

Linear and Logistic regression - Note 6

39

Clustered data / data with one random components
Dichotomous outcome

If the models only involves **one random components**, e.g. **variation between families** or between **GP's**,

then methods exists which can **adjust the standards errors**.

Remember that if the **data contains clusters**, then the precision of the estimates overestimated, that is the reported **standard errors is too small**.

So called **robust methods** or **sandwich estimates** of the standard errors will (try) adjust for this problem.

Only a **few** programs have this option - Stata does!

Morten Frydenberg

Linear and Logistic regression - Note 6

40