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General things for regression models:
Collinearity - correlated explanatory variables
Flexible modelling af response curves - Cubic splines
Extensions
Random coefficient model

Clustered data / data with several random components

Morten Frydenberg Linear and Logistic regression - Note 3

Collinearity

Consider a subsample of the serum cholesterol data set
and the three models:

model O: regress logscl sex sbp dbp
model 1: regress logscl sex dbp
model 2: regress logscl sex sbp
variable | model0 modell model12 .

sbp+| .00126448 0014988 Estimate

.0005548 +—— Se
——-
0.1524 0.0075 «—__ P

| .00087992
|
dbp | .00056517 00239702
|
|

.00164485 .0010424
0.7315+—> 0.0226
sex | .02080574  .02446746 .0197773 .
| loz636149  .oze3mn1  .oze1304s  EGCh BP-measure is
| 0.4310 0.3536 0.4501 isti
_cons | 5.1444085  5.1555212  5.1615877 STOT,'ST‘CGI
| .09912234 .09909537 .08539118 sugmflcan‘r, when the
| 0.0000 0.0000 0.0000 . |
_____________ i other is removed!
N 194 194 194
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Collinearity
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SBP and DBP are highly positively correlated that will lead
to highly negatively correlated estimates!!!

Morten Frydenberg Linear and Logistic regression - Note 3

Collinearity

This can be seen by listing the correlation between the
estimates.
In Stata by the command: vce, cor

regress logscl sbp dbp sex
vce,cor

dbp || _-0.7750 | 1.0000
sex | -0.0967 0.1135  1.0000
_cons | -0.0780 -0.5044 -0.4665 1.0000

If two estimates are highly correlated, it indicates that it is
very difficult to estimate the “independent effect” of the
each of the two variables.

Often it is even nonsense to try to do it!
Often it see better to try to reformulate the problem.
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Collinearity

Collinearity
avebp=(sbp+dbp) /2 and bpratio=(sbp/dbp)

One way to work around the problem of colinearity is —
to ‘ortogonalize’ it: = Plot02
Create two new variable: Only weakly - .
associated R 3 .
one measures the blood pressure g < e .
and another that measure the difference in Tt
systolic and diastolic blood pressure.
Some candidates: )
(sbp+dbp)/2  and  (sbp-dbp) " o 2 ety o "
regress logscl avebp bpratio sex
vce,cor
| (pr+dbp)/2 and (pr/dbp) | | avebp bpratio sex _cons
AR~ /9 ommd Twlelhm /ARt i
Tn(sbp*dbp) /2 and Tn(sbp/dbp) avebp |
. ) . bpratio | 1.0000
We will here consider the second pair. sex | 0.0382 -0.1041  1.0000
_cons | -0.4542 -0.6874 -0.2585  1.0000
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Collinearity Collinearity
The serum cholesterol data set and the three models: Look out for it:
model O: regress logscl sex avebp bpratio +systolic and diastolic blood pressure
model 1:  regress logscl sex avebp _ +24 hour blood pressure and 'clinical’ blood pressure
model 2: regress logscl sex bpratio

‘weight and height

+age and parity

variable | model10 modell mode12
bp | .00198973  .00206564 Blood pressure -age and time since menopause
avel . .
’ | .0007887  .00076285 seems to play arole, 9 P
| 001285 0.0074 .
- *BMI and skinfold measure
bpratio | .02769662 107148118 .
| .07067134 ‘osoas2as | | The ratio between birth cohort and calendar i
| 0.6956 0.3048 i *age IrTh conhort and calenaar time
Sex | .02060675  .02168128  .01806662 SBP and DBP might 9e m
| cozeaz 026128 02667689 | nof. -volume and concentration
_cons | 5.1003417  5.1351912  5.2485724
| .12936418  .09374803  .11685799 .
| 0.0000 0.0000 0.0000
_________ N e T T e T e Remember you will need a huge amount of data to disentangle
Tegend: b/se/p the effects of correlated explanatory variables
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Flexible modelling of response curves - cubic splines Flexible modelling of response curves - cubic splines
Log SBP against age for 2650 women with fitted straight line. We want to model the relationship between SBP and age

more flexible.

There several ways to do this, including fractional
polynomial, splines and cubic splines.

We will here look at restricted cubic splines as they are
implemented in Stata.

If one want used the restricted cubic splines you start by
generating of set of new independent variables:

mkspline sage=age, cubic nk(6) disp

| knotl knot2 knot3 knot4 knot5 knot6
_____________ o e e
age | 34 38 43 48 54 61
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Flexible modelling of response curves - cubic splines Flexible modelling of response curves - cubic splines
The mksp1ine command will generate 5 new variables knots:  a,,a,,...,a,
named sagel to sage5 which are function of age.
o sage, = age
Where sagel=age.
f o —
sage2=0 if age<34 @ _ ¥ —(age— )3 4 —4a,
. s sagejH— age Llj . age—a,_, +—a i
sage3=0 if age<38 _ G
2
=0 1 34, —a;
sage4=0 if age<43 | Jr(age_ak)+ i
sage5=0 if age<48 g A =Gy,
3 -
VA~
o
0 10 20 30 40 50 60 70
Age in Years
sagel sage2
sage3 sage4
sage5
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Flexible modelling of response curves - cubic splines Flexible modelling of response curves - cubic splines
drop sagel predict fit if e(sample) /// fit values
regress 1sbp age sage? predict fitsd if e(sample),stdp /// standard error
—————————————————————————————————————————————————————————————————————————————— generate Tow=fit-1.96*fitsd /// lower ci-limit

Isbp | Ccoef std. Err t P>t [95% conf. Interval] generate hig=fit+1.96*fitsd /// upper ci-Timit
————————————— b Tline fit low hig age /// plot
age | .0067837 .0035322 1.92  0.055 -.0001425 .0137099
sage2 | -.0005598 .0525269 -0.01 0.991 -.1035577 .1024381 5
sage3 | .0553357 .1336906 0.41 0.679 -.2068131 .3174845
sage4 | -.1398205 .1547781 -0.90 0.366 -.4433189 .1636778
sage5 | .0932052 .1207685 0.77  0.440 -.1436051 3300155
cons | 4.527844 .1253021 36.14  0.000 4.282144 4.773544 ol
testparm sage?
§ peelce Test of linearity
L . o
(3) saget =0 The hypothesis is rejected +7
( 4) sage5 =0
F(C 4, 2644) = 3.81
prob > F =  0.0043 /
o
<7 /
The relationship is not linear, but how does look ? //
7
<
30 40 50 60 70
Age in Years
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Flexible modelling of response curves - cubic splines Random coefficient models
Compare with the straight line model: .
P g Question
" Is cerebral blood flow declining with age?
Data
Cross sectional data on age, sex and cerebral blood flow in
° grey matter from 7 studies:
0 .8’; | sex
R study | male female | Total
S TRt HHHTH B T T Rt o o
1 7 0| 7
H 2| 4 6 | 10
o e 3 6 6 | 12
1. 4 | 8 7 | 15
— ‘ ‘ ‘ ‘ 51 5 4| 9
30 4 50 60 70 6 | 17 0 | 17
. | foemvears . . o 71 6 0| 6
Although, there is 'statistical significant’ non-linearity, it 8 | 1 1] 2
has no practical implications- the straight line model isa | | ----------- #oommmmmmoooooooooo #ommmmoooo
valid approximation. Total | >4 24| 78
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All the data All the data - separate line for each study gender combination
8
g o 7 704 70 study = 1
i 7 604 2 TR 60 60-
70 3 s50q 3%3? 3 %é;ﬁ, # 50 — 50{
G 4o ®AT EEHEL oo 40 40{ &2
T a0 '8 7 s Fes o 304 a0 ° °
3 ¢ ‘ 5 1 ‘ ‘ A ‘ ‘ A ‘ : ‘
60 6 . 22 ° 2 4 60 80 20 4 60 80 20 40 60 80
= age age age
g 3 733 4 n
S 33 3 3 2 5 1
= 504 5 4 70 study = 2 70 study =3 70
> 6 5 2 4 604 ° 601 3 607
%) 22 5 . o
o .3 5 8 5 4 4 50 oo 50| *\‘9\0 50
S 6 13 s, 7 72 4" g56 40 o 401 404
] 1 30 . 304 30
"(E) 407 '1 7 ¢ ?35 6 6 20, r r r 20, r r r 201, r r r
8 6 2 ¢ 20 40 60 80 20 40 60 80 20 40 60 80
1 1 age age age
6 7 5 . 6
30 6 2
70 study =5 704 study = 6 70 ° study=7
60 60{ g 60-
6 504 $ale 50{ o 50
204 pdl Beo® o | 404 N@_\%S\ 40 <g\o
T T T T 30 ° 307 @ oo 30 °©
20 p & 5 w, oawl G al
age 20 40 60 80 20 40 60 80 20 40 60 80
age age age
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Seven simple linear regressions

We will here only consider the men.
Fitting a line for each of the seven studies:

CBF,=a,+pJ, ~(agexi—50)+Exi s=1,...7,i=1,...n
E,~N(0,07)

I regress greymatter age50 if sex==0 & study==s I

study N _cons se(_cons) age50 se(age50) sd
1 7 50.51 13.63 0.465 0.564 4.070
2 4 47.71 6.49 0.082 0.682 11.428
3 6 30.42 18.11 -0.941 0.831 7.223
4 8 49.21 5.71 0.189 0.483 7.754
5 5 41.38 3.60 -0.055 0.433 6.701
6 17 38.94 1.96 -0.218 0.089 8.062
7 6 37.99 17.11 -0.654 1.095 14.420
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slope
»

14 3

30 35 40 45 50

Is cerebral blood flow decliningcﬁ/ﬁh age?

What is the “average slope” ?
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Seven random slopes and intercepts
CBFvi = A.r + B.r ' (age.ri - 50) + E.ri
A ~N(a.0}) B,~N(p.o;) E,~N(0.07)

xtmixed greymatter age50 ||study: age50 if sex==0

s=1...7,i=1,...n

s

greymatter | Coef. std. Err. z P>|z| [95% conf. Interval]
+
age50 |  -.089039 .11662 -0.76 0.445 -.31761 .1395321
_cons | 44.44259  2.135614 20.81  0.000 40.25687 48.62832
Random-effects Parameters | Estimate  Std. Err. [95% conf. Interval]
+
study: Independent |
sd(age50) | .1637849 .1691682 .0216319 1.240089
sd(_cons) | 4.25174  2.182807 1.554415 11.62964
+
sd(Residual) | 8.07755 .8410269 6.586479 9.906174

£:-0.089(-0.318;0.140) H:5=0 p=45%
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Clustered data / data with several random components
120 measurements of FEV:
o

Plot02
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Some variation in the data.
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Clustered data / data with several random components
But it is on only 30 persons:

6 PloTO3
H
51 o E
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Person

Some of the variation is due o variation between persons
and some within person.
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Clustered data / data with several random components

From 10 families:
A

Plot04
s
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Some of the variation between persons is due to
variation between families and some within family.
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Clustered data / data with several random components

Structure of the data: FEV v
Family Person Day

Three sources of random variation:
Variation between families
Variation between persons (variation within family)

Variation between days (variation within person)
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Clustered data / data with several random components
Factors of interest:

household Income Constant within family

Urbanization Constant within family

Age Constant within person; varies within family|
Sex Constant within person; varies within family
6Grass pollen Constant within day: varies within person

A model:

FEV=0+B-1+B, U+pB,-A+B,-S+ /.-G
+random variation
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Clustered data / data with several random components

FEV=[+p, -1+, - U+pB,-A+pB,-S+ 5, -G
+random variation
If the three levels/sources of random variation are
not taken into account :
+ The precision of the 3, and j, are highly overestimated
+ The precision of the 3, and f; are overestimated

+ The estimates of the 5, and £, will be biased if the not all
families are represented by the same number of persons
and each person is measured the same number of times.

+ The estimates of the 3, and £ will be biased if the not all
persons are measured the same number of times.
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Clustered data / data with several random components
FEV =B+ b, 1+ 5, -U+f,-A+ ;- S+ ;-G

+F, +P,+E,
variance
F, : Random family contribution G2
P, | : Random person contribution G2
E,, | : Random day contribution G2

var(FEprd ) = 0',2,- + a,z, + af;

Variance components

k Assumed to be normal distributed
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Clustered data / data with several random components
Systematic part

FEV =, +f,-1+B, - U+B,-A+S-S+5,G |
P+ E,]

Random part

By, BBy, By, Bs and f;  Quantify the systematic variation

o;.0} and o;
This is a:

Variance component model

*Mixed model (both systematic and random variation)
*Multilevel model

Quantify the random variation

The theory behind and the understanding of such models is
well established!!!
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