

Working with linear and logistics regression models
Morten Frydenberg ©
Department of Biostatistics, Aarhus Univ, Denmark

General things for regression models:

- Collinearity** - correlated explanatory variables
- Flexible modelling of response curves** - Cubic splines

Extensions

- Random coefficient model**
- Clustered data** / data with several random components

Morten Frydenberg Linear and Logistic regression - Note 3 1

Collinearity

Consider a subsample of the serum cholesterol data set and the **three** models:

```
model 0: regress logscl sex sbp dbp
model 1: regress logscl sex      dbp
model 2: regress logscl sex sbp
```

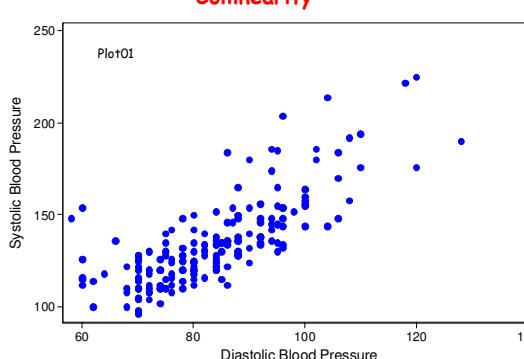
variable	model0	model1	model2
sbp	.00126448 .00087992 .0.1524		.0014988 .0005548 0.0075
dbp	.00056517 .00164485 .0.7315	.00239702 .0010424 .0.0226	
sex	.02080574 .02636149 .0.4310	.02446746 .02631111 .0.3536	.0197773 .02613048 .0.4501
_cons	5.1444085 .09912234 .0.0000	5.1555212 .09909537 .0.0000	5.1615877 .08539118 .0.0000
N	194	194	194

Legend: b/se/p

Each BP-measure is statistical significant, when the other is removed!

Morten Frydenberg Linear and Logistic regression - Note 3 2

Collinearity



SBP and DBP are highly **positively correlated** that will lead to highly **negatively correlated estimates**!!!

Morten Frydenberg Linear and Logistic regression - Note 3 3

Collinearity

This can be seen by listing the **correlation between the estimates**.

In Stata by the command: `vce, cor`

```
regress logscl sbp dbp sex
vce,cor
|   sbp      dbp      sex      _cons
-----+-----+-----+-----+
sbp | 1.0000
dbp | -0.7750  1.0000
sex | -0.0967  0.1135  1.0000
_cons | -0.0780 -0.5044 -0.4665  1.0000
```

If two estimates are highly correlated, it indicates that it is very difficult to estimate the "**independent effect**" of the each of the two variables.

Often it is even **nonsense** to try to do it!

Often it see better to try to **reformulate the problem**.

Morten Frydenberg Linear and Logistic regression - Note 3 4

Collinearity

One way to work around the problem of collinearity is to **'orthogonalize'** it:

Create two new variable:

- one measures the **blood pressure**
- and another that measure the **difference** in systolic and diastolic blood pressure.

Some **candidates**:

- $(\text{sbp}+\text{dbp})/2$ and $(\text{sbp}-\text{dbp})$
- $(\text{sbp}+\text{dbp})/2$ and (sbp/dbp)
- $\ln(\text{sbp} \cdot \text{dbp})/2$ and $\ln(\text{sbp}/\text{dbp})$

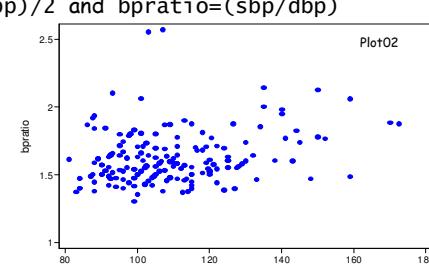
We will here consider the second pair.

Morten Frydenberg Linear and Logistic regression - Note 3 5

Collinearity

$\text{avebp} = (\text{sbp} + \text{dbp})/2$ and $\text{bpratio} = (\text{sbp}/\text{dbp})$

Only weakly associated



```
regress logscl avebp bpratio sex
vce,cor
|   avebp      bpratio      sex      _cons
-----+-----+-----+-----+
avebp | 1.0000
bpratio | -0.2456  1.0000
sex | 0.0382 -0.1041  1.0000
_cons | -0.4542 -0.6874 -0.2585  1.0000
```

Morten Frydenberg Linear and Logistic regression - Note 3 6

Collinearity

The serum cholesterol data set and the **three** models:

model 0: regress logscl sex avebp bpratio
 model 1: regress logscl sex avebp
 model 2: regress logscl sex bpratio

variable	model0	model1	model2
avebp	.00198973 .0007887 .0.0125	.00206564 .00076285 .0.0074	
bpratio	.02769662 .07067134 .0.6956	.07148118 .06946246 .0.3048	
sex	.02060675 .02632924 .0.4348	.02168128 .026128 .0.4077	.01806662 .02667689 .0.4991
_cons	5.1003417 .12936418 .0.0000	5.1351912 .09374803 .0.0000	5.2485724 .11685799 .0.0000
N	194	194	194

Legend: b/se/p
Morten Frydenberg Linear and Logistic regression - Note 3 7

Collinearity

Look out for it:

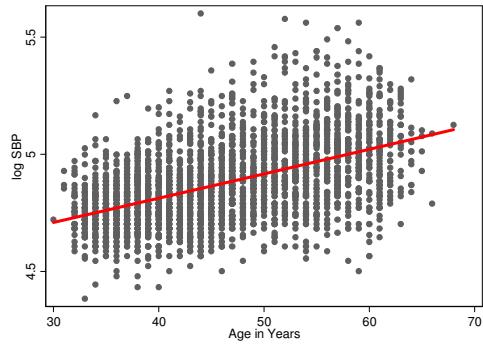
- systolic and diastolic blood pressure
- 24 hour blood pressure and 'clinical' blood pressure
- weight and height
- age and parity
- age and time since menopause
- BMI and skinfold measure
- age, birth cohort and calendar time
- volume and concentration
-

Remember you will need a huge amount of data to disentangle the effects of correlated explanatory variables

Morten Frydenberg Linear and Logistic regression - Note 3 8

Flexible modelling of response curves - cubic splines

Log SBP against age for 2650 women with fitted straight line.



Morten Frydenberg Linear and Logistic regression - Note 3 9

Flexible modelling of response curves - cubic splines

We want to model the relationship between SBP and age more flexible.

There several ways to do this, including fractional polynomial, splines and cubic splines.

We will here look at restricted cubic splines as they are implemented in Stata.

If one want used the restricted cubic splines you start by generating of set of new independent variables:

mkspline sage=age, cubic nk(6) disp

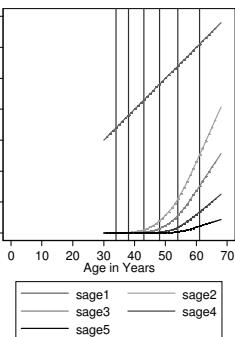
age	knot1	knot2	knot3	knot4	knot5	knot6
30	34	38	43	48	54	61

Morten Frydenberg Linear and Logistic regression - Note 3 10

Flexible modelling of response curves - cubic splines

The mkspline command will generate 5 new variables named sage1 to sage5 which are function of age.

Where sage1=age.
 sage2=0 if age<34
 sage3=0 if age<38
 sage4=0 if age<43
 sage5=0 if age<48



Morten Frydenberg Linear and Logistic regression - Note 3 11

Flexible modelling of response curves - cubic splines

knots: a_1, a_2, \dots, a_k

$sage_i = age$

$$sage_{j+1} = (age - a_j)_+^3 - (age - a_{k-1})_+^3 \frac{a_k - a_j}{a_k - a_{k-1}} + (age - a_k)_+^3 \frac{a_{k-1} - a_j}{a_k - a_{k-1}}$$

Morten Frydenberg Linear and Logistic regression - Note 3 12

Flexible modelling of response curves - cubic splines

```
drop sage1
regress lsbp age sage?
```

lsbp	coef.	Std. Err.	t	P> t	[95% Conf. Interval]
age	.0067837	.0035322	1.92	0.055	-.0001425 .0137099
sage2	-.0005598	.0525269	-0.01	0.991	-.1035577 .1024381
sage3	.0553357	.1336906	0.41	0.679	-.2068131 .3174845
sage4	-.1398205	.1547781	-0.90	0.366	-.4433189 .1636778
sage5	.0932052	.1207685	0.77	0.440	-.1436051 .3300155
_cons	4.527844	.1253021	36.14	0.000	4.282144 4.773544

```
testparm sage?
( 1) sage2 = 0
( 2) sage3 = 0
( 3) sage4 = 0
( 4) sage5 = 0
F( 4, 2644) = 3.81
Prob > F = 0.0043
```

Test of linearity
The hypothesis is rejected

The relationship is not linear, but how does look?

Morten Frydenberg

Linear and Logistic regression - Note 3

13

Flexible modelling of response curves - cubic splines

```
predict fit if e(sample)
predict fitsd if e(sample), stdp
generate low=fit-1.96*fitsd
generate high=fit+1.96*fitsd
line fit low high age
```

Morten Frydenberg Linear and Logistic regression - Note 3 14

Flexible modelling of response curves - cubic splines

Compare with the straight line model:

Although, there is 'statistical significant' non-linearity, it has no practical implications- the straight line model is a valid approximation.

Morten Frydenberg

Linear and Logistic regression - Note 3

15

Random coefficient models

Question
Is cerebral blood flow declining with age?

Data
Cross sectional data on age, sex and cerebral blood flow in grey matter from 7 studies:

study	sex		Total
	male	female	
1	7	0	7
2	4	6	10
3	6	6	12
4	8	7	15
5	5	4	9
6	17	0	17
7	6	0	6
8	1	1	2
Total	54	24	78

Morten Frydenberg

Linear and Logistic regression - Note 3

16

All the data

Morten Frydenberg Linear and Logistic regression - Note 3 17

All the data - separate line for each study gender combination

Morten Frydenberg Linear and Logistic regression - Note 3 18

Seven simple linear regressions

We will here only consider the men.

Fitting a line for each of the seven studies:

$$CBF_{si} = \alpha_s + \beta_s \cdot (age_{si} - 50) + E_{si} \quad s = 1, \dots, 7, i = 1, \dots, n_s$$

$$E_{si} \sim N(0, \sigma_s^2)$$

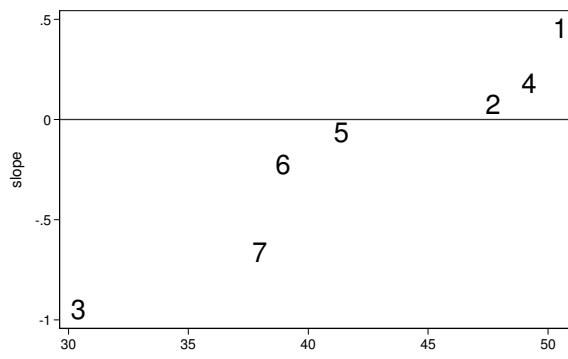
regress greymatter age50 if sex==0 & study==

study	N	cons	se(cons)	age50	se(age50)	sd
1	7	50.51	13.63	0.465	0.564	4.070
2	4	47.71	6.49	0.082	0.682	11.428
3	6	30.42	18.11	-0.941	0.831	7.223
4	8	49.21	5.71	0.189	0.483	7.754
5	5	41.38	3.60	-0.055	0.433	6.701
6	17	38.94	1.96	-0.218	0.089	8.062
7	6	37.99	17.11	-0.654	1.095	14.420

Morten Frydenberg

Linear and Logistic regression - Note 3

19



Is cerebral blood flow declining with age?

What is the "average slope"?

Morten Frydenberg

Linear and Logistic regression - Note 3

20

Seven random slopes and intercepts

$$CBF_{si} = A_s + B_s \cdot (age_{si} - 50) + E_{si} \quad s = 1, \dots, 7, i = 1, \dots, n_s$$

$$A_s \sim N(\alpha, \sigma_A^2) \quad B_s \sim N(\beta, \sigma_B^2) \quad E_{si} \sim N(0, \sigma_E^2)$$

What is β ?

xtmixed greymatter age50 || study: age50 if sex==0

	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
age50	-.089039	.11662	-0.76	0.445	-.31761 .1395321
_cons	44.44259	2.135614	20.81	0.000	40.25687 48.62832
Random-effects Parameters	Estimate	Std. Err.			[95% Conf. Interval]
study: Independent					
sd(age50)	.1637849	.1691682	.0216319	1.240089	
sd(_cons)	4.25174	2.182807	1.554415	11.62964	
sd(Residual)	8.07755	.8410269	6.586479	9.906174	

$$\beta: -0.089(-0.318; 0.140) \quad H: \beta = 0 \quad p = 45\%$$

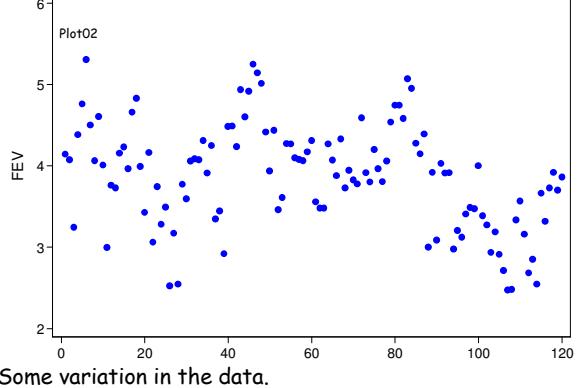
Morten Frydenberg

Linear and Logistic regression - Note 3

21

Clustered data / data with several random components

120 measurements of FEV:



Some variation in the data.

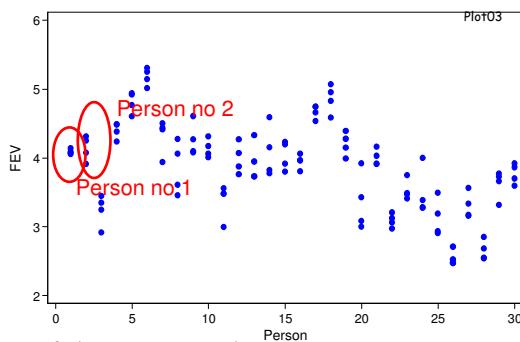
Morten Frydenberg

Linear and Logistic regression - Note 3

22

Clustered data / data with several random components

But it is on only 30 persons:



Some of the variation is due to variation between persons and some within person.

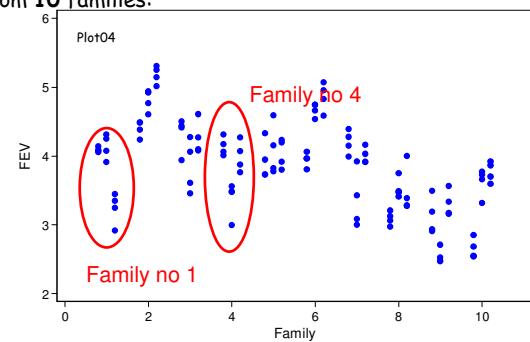
Morten Frydenberg

Linear and Logistic regression - Note 3

23

Clustered data / data with several random components

From 10 families:



Some of the variation between persons is due to variation between families and some within family.

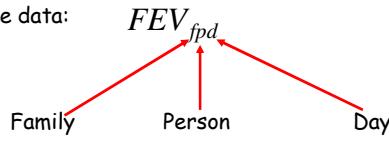
Morten Frydenberg

Linear and Logistic regression - Note 3

24

Clustered data / data with several random components

Structure of the data:



Three sources of random variation:

Variation between families

Variation between persons (variation within family)

Variation between days (variation within person)

Clustered data / data with several random components

Factors of interest:

household Income	Constant within family
Urbanization	Constant within family
Age	Constant within person; varies within family
Sex	Constant within person; varies within family
Grass pollen	Constant within day; varies within person

A model:

$$FEV = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + \text{random variation}$$

Clustered data / data with several random components

$$FEV = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + \text{random variation}$$

If the three levels/sources of random variation are not taken into account :

- The precision of the β_I and β_U are highly overestimated
- The precision of the β_A and β_S are overestimated
- The estimates of the β_I and β_U will be biased if the not all families are represented by the same number of persons and each person is measured the same number of times.
- The estimates of the β_A and β_S will be biased if the not all persons are measured the same number of times.

Clustered data / data with several random components

$$FEV = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + F_f + P_{fp} + E_{fpd}$$

variance

F_f	: Random family contribution	σ_F^2
P_{fp}	: Random person contribution	σ_P^2
E_{fpd}	: Random day contribution	σ_E^2

$$\text{var}(FEV_{fpd}) = \sigma_F^2 + \sigma_P^2 + \sigma_E^2$$

Variance components

Assumed to be normal distributed

Clustered data / data with several random components

Systematic part

$$FEV = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + F_f + P_{fp} + E_{fpd}$$

Random part

$\beta_0, \beta_I, \beta_U, \beta_A, \beta_S$ and β_G Quantify the systematic variation

σ_F^2, σ_P^2 and σ_E^2 Quantify the random variation

This is a:

- Variance component model
- Mixed model (both systematic and random variation)
- Multilevel model

The theory behind and the understanding of such models is well established!!!