

Working with linear and logistics regression models
Morten Frydenberg ©
Department of Biostatistics, Aarhus Univ, Denmark

Further remarks on logistic regression

Diagnostics: residuals and leverages

Test of fit: The Hosmer-Lemeshow test

Enough data?

General things for regression models:

The lincom command

Collinearity - correlated explanatory variables

What model should I use?

Automatic model selection

The consequences of model selection

Morten Frydenberg Linear and Logistic regression - Note 4.1 1

Logistic regression models: Diagnostics

In the linear regression we saw some example of statistics: **residuals, standardized residuals and leverage** which can be used in the **model checking** and search for strange or **influential** data points.

Such statistics can also be defined for the logistic regression model.

But they are much more **difficult to interpret** and cannot in general be **recommended**.

Checking the validity of a logistic regression model will mainly be based on **comparing** it with other **models**.

We will return to this later!

Morten Frydenberg Linear and Logistic regression - Note 4.1 2

Logistic regression models: Test of fit

A common, and to some extend informative, test of fit is the **Hosmer-Lemeshow test**.

Consider the model for obesity from Monday

$$\text{logit}(\text{Pr}(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Logit estimates

		Number of obs = 4690	
		LR chi2(2) = 55.68	
		Prob > chi2 = 0.0000	
		Pseudo R2 = 0.0155	
obese	Coef.	Std. Err.	z
_Isex_2	.2743977	.0903385	3.04
age45	.0344723	.0051354	6.71
_cons	-2.147056	.0721981	-29.74

Log likelihood = -1767.7019

		P> z [95% Conf. Interval]	
		[95% Conf. Interval]	
obese	Coef.	Std. Err.	z
_Isex_2	.2743977	.0903385	3.04
age45	.0344723	.0051354	6.71
_cons	-2.147056	.0721981	-29.74

Significantly better than nothing - but is it good?

Morten Frydenberg Linear and Logistic regression - Note 4.1 3

Logistic regression models: Test of fit

What about comparing the **estimated prevalence** with the **observed prevalence**?

In the Hosmer-Lemeshow test the data is **divided** into groups (traditionally 10) according to the **estimated** probabilities and the **observed** and **expected** counts are compared in these groups by a chi-square test.

Most programs, that can fit a logistic regression model, can calculate this test.

In Stata it is done by (**after fitting the model**):

`1fit, group(10) table`

The data is divided into **deciles** after the estimated probabilities.

Morten Frydenberg Linear and Logistic regression - Note 4.1 4

Logistic regression models: Test of fit

OUTPUT

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

Group	Prob	Obs_1	Exp_1	Obs_0	Exp_0	Total
1	0.0841	64	40.9	462	485.1	526
2	0.0953	43	45.5	453	450.5	496
3	0.1045	44	44.6	398	397.4	442
4	0.1112	42	50.3	422	413.7	464
5	0.1217	44	51.4	394	386.6	438
6	0.1332	52	63.0	441	430.0	493
7	0.1456	53	61.7	389	380.3	442
8	0.1592	62	69.8	392	384.2	454
9	0.1834	98	89.9	424	432.1	522
10	0.2407	99	83.8	314	329.2	413

number of observations = 4690
number of groups = 10
Hosmer-Lemeshow chi2(8) = 26.01
Prob > chi2 = 0.0010

Significant difference between observed and expected!

Morten Frydenberg Linear and Logistic regression - Note 4.1 5

Logistic regression models: Test of fit

`xi: logit obese i.sex*age45`
1fit, group(10) table

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

Group	Prob	Obs_1	Exp_1	Obs_0	Exp_0	Total
1	0.0796	36	35.9	466	466.1	502
2	0.1011	42	41.1	406	406.9	448
3	0.1053	49	49.6	429	428.4	478
4	0.1096	50	54.8	458	453.2	508
5	0.1124	52	54.2	436	433.8	488
6	0.1153	51	46.4	355	359.6	406
7	0.1182	52	53.9	410	408.1	462
8	0.1590	76	70.3	428	433.7	504
9	0.2133	96	91.8	391	395.2	487
10	0.3310	97	103.0	310	304.0	407

number of observations = 4690
number of groups = 10
Hosmer-Lemeshow chi2(8) = 2.43
Prob > chi2 = 0.9650

The model 'fits' - when we look at in this way !!!!!!!

Morten Frydenberg Linear and Logistic regression - Note 4.1 6

Logistic regression models: Do you have enough data?

All inference in logistic regression models are based on asymptotics, i.e. **assuming that you have a lot of data!**

Rule of thumb:

You should have at least **10 events** per variable (parameter) in the model.

A large standard error typically indicates that you have too little information concerning the variable and that the **estimate and standard error are not valid**.

Lower your ambitions or get more data!

A exact methods exists, but only one (**expensive**) program can do it.

And it will give also wide confidence intervals.

The lincom command after logit or regress

Consider the model:

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
_Isex_2	.2743977	.0903385	3.04	0.002	.0973375 .451458
age45	.0344723	.0051354	6.71	0.000	.0244072 .0445374
_cons	-2.147056	.0721981	-29.74	0.000	-2.288561 -2.00555

Here men are reference.

If we want to find the log odds for a 45 year old women we can calculate by hand $-2.147 + 0.274 = -1.873$

But what about confidence interval?

We could change the reference to women and fit the model once more.

But.....

The lincom command after logit or regress

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Stata has a command that can be used for this: "lincom"

lincom _const+_Isex					
(1) _Isex_2 + _cons = 0					
obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	-1.8726	.05813	-32.21	0.000	-1.986602 -1.758714

You can add ", or" to get odds/odds ratios.

lincom _const+_Isex, or					
(1) _Isex_2 + _cons = 0					
obese	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	1.1537145	.0069363	-32.21	0.000	.1371606 .172266

The lincom command after logit or regress

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Some examples:

Odds for a 42 year old woman:

lincom _const+_Isex-age45*3, or					
(1) _Isex_2 - 3 age45 + _cons = 0					
obese	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	.1386122	.0088678	-30.89	0.000	.1222772 .1571295

Odds ratio for 4.5 age difference:

lincom age45*4.5, or					
(1) 4.5 age45 = 0					
obese	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	1.167804	.0769869	6.71	0.000	1.116091 1.221914

Collinearity

Consider a subsample of the serum cholesterol data set and the **three** models:

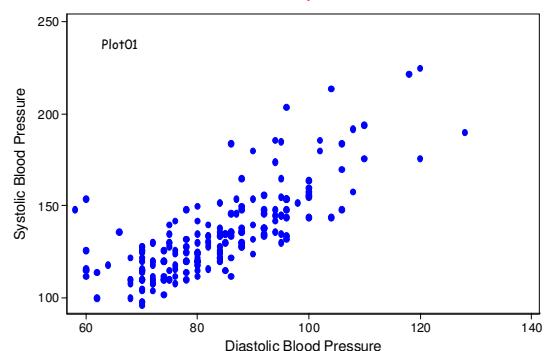
model 0: regress logscl sex sbp dbp
 model 1: regress logscl sex dbp
 model 2: regress logscl sex sbp

variable	model0	model1	model2
sbp	.00126448	.0014988	Estimate
	.00087992	.0005548	Se
	.0.1524	.0.0075	p
dbp	-.0056517	-.00239702	
	.00164485	.0010424	
	.0.7315	.0.0226	
sex	.02080574	.02446746	.0197773
	.02636149	.02631111	.02613048
	.0.4310	.0.3536	.0.4501
_cons	5.1444085	5.1555212	5.1615877
	.09912234	.09090537	.08539118
	.0.0000	.0.0000	.0.0000
N	194	194	194

Each BP-measure is statistical significant, when the other is removed!

Legend: b/se/p

Collinearity



SBP and DBP are highly **positively correlated** that will lead to highly **negatively correlated estimates!!!**

Collinearity

This can be seen by listing the **correlation between the estimates**.

In Stata by the command: `vce, cor`

```
regress logscl sbp dbp sex
vce, cor
      |   sbp     dbp     sex   _cons
-----+-----+-----+-----+
  sbp |  1.0000
  dbp | -0.7750  1.0000
  sex | -0.0967  0.1135  1.0000
  _cons | -0.0780 -0.5044 -0.4665  1.0000
```

If two estimates are highly correlated, it indicates that it is very difficult to estimate the "independent effect" of the each of the two variables.

Often it is even **nonsense** to try to do it!

Often it see better to try to **reformulate the problem**.

Morten Frydenberg

Linear and Logistic regression - Note 4.1

13

Collinearity

One way to work around the problem of collinearity is to 'orthogonalize' it:

Create two new variable:

one measures the **blood pressure**

and another that measure the **difference** in systolic and diastolic blood pressure.

Some **candidates**:

$(\text{sbp}+\text{dbp})/2$ and $(\text{sbp}-\text{dbp})$

$(\text{sbp}+\text{dbp})/2$ and (sbp/dbp)

$\ln(\text{sbp}^*\text{dbp})/2$ and $\ln(\text{sbp}/\text{dbp})$

We will here consider the second pair.

Morten Frydenberg

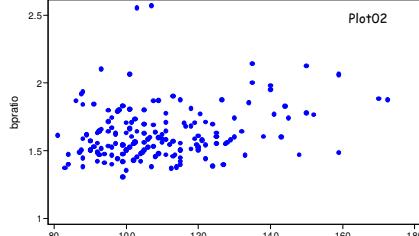
Linear and Logistic regression - Note 4.1

14

Collinearity

$\text{avebp}=(\text{sbp}+\text{dbp})/2$ and $\text{bpratio}=(\text{sbp}/\text{dbp})$

Only weakly associated



```
regress logscl avebp bpratio sex
vce, cor
      |   avebp     bpratio     sex   _cons
-----+-----+-----+-----+
  avebp |  1.0000
  bpratio | -0.2456  1.0000
  sex |  0.0382 -0.1041  1.0000
  _cons | -0.4542 -0.6874 -0.2585  1.0000
```

Morten Frydenberg

Linear and Logistic regression - Note 4.1

15

Collinearity

The serum cholesterol data set and the **three** models:

```
model 0: regress logscl sex avebp bpratio
model 1: regress logscl sex avebp
model 2: regress logscl sex           bpratio
```

variable	model0	model1	model2
avebp	.00198973 .0007887 .0125	.00206564 .00076285 .0074	
bpratio	.02769662 .07067134 .0.6956		.07148118 .06946246 .3048
sex	.02060675 .02632924 .0.4348	.02168128 .026128 .0.407	.01806662 .02667689 .0.4991
_cons	5.1003417 .12936418 .0.0000	5.1351912 .09374803 .0.0000	5.2485724 .11685799 .0.0000
N	194	194	194

Blood pressure seems to play a role,

The ratio between SBP and DBP might not.

Morten Frydenberg

Linear and Logistic regression - Note 4.1

16

Collinearity

Look out for it:

- systolic and diastolic blood pressure
- 24 hour blood pressure and 'clinical' blood pressure
- weight and height
- age and parity
- age and time since menopause
- BMI and skinfold measure
- age, birth cohort and calendar time
- volume and concentration
-

Remember you will need a **huge amount** of data to disentangle the effects of correlated explanatory variables

Morten Frydenberg

Linear and Logistic regression - Note 4.1

17

Which model should I use?

This a hard question!

The first thing to remember is that all models are **approximations**!

The "true", the "best" or the "correct" model **does not exist**!

The **quality** of a model depends on what you want to use it for.

So the first thing to clarify is:

What is the **purpose** of your analysis - what is the **aim** of your data collection?

Different purposes - different models!!!!

When you have found out what you want, you still have an **infinity** of models to chose between.

Morten Frydenberg

Linear and Logistic regression - Note 4.1

18

Which model should I use?

The choice is always a choice between **complicated** and **less complicated** models.

Complicated models are often better models, in the sense that they are **better approximations** to the truth.

But complicated models can be:

Very hard to **estimate** - many parameters.

Very hard to **understand**.

Very hard to **communicate**.

So in these senses they are **not so good** models.

Morten Frydenberg

Linear and Logistic regression - Note 4.1

19

Which model should I use?

Less complicated models are often not as good models, in the sense that they are **not so good approximations** to the truth.

But less complicated models can be:

Easy to **estimate** - few parameters.

Easy to **understand**

Easy to **communicate**

So in these senses they are **better** models.

The first thing to remember is that all models are **approximations**!

Statistical significance has nothing to do with the quality of the model!

Morten Frydenberg

Linear and Logistic regression - Note 4.1

20

Which model should I use?

You can often divide the explanatory variables into **groups**:

- 1: Variables of **primary interest** - **main exposure**.
- 2: Variables of **less interest** - variables you want to **adjust** for.

A good model will try to introduce the **first** group in an **interpretable** way into model.

- You want to **know** "how they work".

E.g. if you specifically are interested on the "effect" of age you should model age in a **understandable** way.

Still you have to look out for collinearity.

Morten Frydenberg

Linear and Logistic regression - Note 4.1

21

Which model should I use?

The **second** type of variables can be introduced any way you like.

It can be very complicated - you do not care- as long as they do the job - that is, **adjust sufficiently**.

If you are not interested in age in itself - you just want to **adjust** - then age can be introduced in a complicated/weird way, e.g. a fourth order polynomial.

In **general**:

Models with many parameters need more data to obtain precise estimate.

Again few data - lower your ambition !

Morten Frydenberg

Linear and Logistic regression - Note 4.1

22

Automatic model selection

Some programs (even Stata) have programmed algorithms for **automatic model selection**!

That is, procedures that will find the "best" model to answer your question without knowing what **you want, know or anything else about the problem**!

It is very rarely of any interest, especially if you have **little data**.

There are in general three types of such algorithms:

Backward selection : You specify a **start model** and the procedure will reduce the model by **removing** variables from the model until nothing can be removed.

The **criteria** for removing variables are typically **high p-values**.

Morten Frydenberg

Linear and Logistic regression - Note 4.1

23

Automatic model selection

Forward selection : You specify a **start model** together with a list of variables that might be included in a model. The procedure will build the model by **adding variable** from the list to the model until nothing can be added.

The **criteria** for adding variables is typically **low p-values**.

Best subset selection: You specify a list of variables that might be included in a model and **number** of variables you want in the model. The procedure will then search among the possible models and find the "best".

The **criteria** is typically the **highest likelihood** or related statistics.

Morten Frydenberg

Linear and Logistic regression - Note 4.1

24

Automatic model selection

Some comments:

- These procedures **do not know anything about the subject**.
- They will not consider **transformation** of the variables.
- or **interaction**.
- They will chose **arbitrarily** between explanatory variables that are highly correlated.

Model selection and some implications

Even when you do not use an automatic model selection procedures : The **final model** is selected!

That is, you have spend some time **working** with the model you present!

You might choose only to include **statistical significant** variables in the model.

You might group **two levels** of a explanatory variable **into one level** if there is no statistical significant difference between the two levels.

The implications of this selection:

- The **estimates** tend to be too far **away from null**.
- The **standard errors** are too **small**.
- The **CI's** are to **narrow** and the **p-values** too **small**.