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When one might use logistic regression.

Some examples:
One binary independent variable. (one odds ratio).
Probabilities, odds and the logit function
One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and continuous
independent variable no interaction.

One binary independent variable and continuous
independent variable with interaction.
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Watch out for 'small' reference groups
The likelihood ratio test: comparing two nested models.
The logistic regression model in general

The model and the assumptions.

The data and the assumption of independence.

Estimation and inference
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Logistic regression models: Introduction

A logistic regression is a possible model if the dependent
variable (the response) is dichotomous dead/alive obese/not
obese etc.

Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

When working with binary response it is custom to code the
“positive” event (eg. dead) as 1 and a "negative” event (alive)
as 0.

A logistic regression models the probability of a "positive
event” via odds.

And the associations via odds ratio.
If the event is rare then odds ratios estimate the relative

risk.
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Logistic regression models: Introduction

A logistic regression can also be used to estimate the odds
ratios in a unmatched case-control study.

For such data the constant terms have no meaning.

And the odds ratios comparable odds ratio from a follow-up
study.

Many other epidemiological design are analyzed by logistic
regression models.
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Estimating one odds ratio using logistic regresion

We are how considering a larger part of the Frammingham
data set, consisting of 4690 person with known BMI at the
start.

We will focus on the risk obesity (BMI>30 kg/m?) .
Out of the 4690 persons 601 = 12.8% were obese.
Divided into gender

Obese Not-Obese
Women |375 (14.2%) |2268
Men 226 (11.0%) |1821

We see a higher prevalence among women: OR: 1.33 (1.12;1.59).

That is the odds of being obese is between 12 and 59 percent
higher for women.( x?>=10.2 p-value=0.001)
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Finding an odds ratio using logistic regresion

odds,
The odds ratio is defined as: OR =— "t
odds,,,,
So applying the logarithm we get:
In(OR) = In| 9% wsmes | 11 (odds,,, )~ 1n(odds,,, )
odds,,,,

And rearranging terms :
In(odds,,,,, ) = In(odds,,,, ) +1n(OR)
That is the log-odds obesity for the women can be written as
the sum of fwo terms:
*The log-odds in reference group (men)
*The log of the odds ratio
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Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
In(odds,,,,, ) = In(odds,,,, )+ 1n(OR) In(odds) = S, + f3, - woman
If we again let women be a indicator/dummy variable, then we In(odds,,,, ) In(OR)
can consider the model:
In(odds) = f, + f,- woman Or to be more precise: B, =10(OR, 1)
For men we get: In(odds) = f, So, if we can fit the model above to the data, then we can

get an estimate of the log(OR) and hence of ORI
And for women: In(odds)= S, + 5,

Comparing with the equation on top we get:
B, =1n(odds,,,)

and 5 =In(OR)
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Probabilities and odds Probabilities and odds
If p denote the probability of an event (the risk, the 17
prevalence proportion, or cumulated incidence proportion) 1 Ploror
then the odds is given by : ?
8
odds = . -
1-p :
S
Note: odds=1 < p=0.5 < In(odds)=0 3 5
g
In(odds) = In| —£— o
I-p 21
In mathematics the last function of p is called the “logit" "
function. 0
)4 st B2 -1log't Ir?(odds) : ? ! °
logit(p)=1In| — =
git(p)=n| = .
Morten Frydenberg Linear and Logistic regression - Note 3 9 Morten Frydenberg Linear and Logistic regression - Note 3 10
Probabilities and odds Finding an odds ratio using logistic regresion

‘ln(odds) —h+B <wamun‘ logit(p)=1In(odds)= B, + B, - woman

Back to finding the estimates.
So modelling the log-odds is the same as modelling logit(p) In STATA:

and model from before could be written. char sex[omit]1l
x7: Jogit obese 7.sex

‘IOglt(p) = /B() + ﬁl . Woman‘ i.sex _Isex_1-2 (naturally coded;
Iteration 0: log 1ikelihood = -1795.5437

Iteration 3: log 1ikelihood = -1790.3703,
odds Logit estimates Number of obs

. eas = 4690
Going from odds to probabilities: p=—— TR R = TS |

1+odds prob > chi2 = 0.0013

Log Tikelihood = -1790.3703 Pseudo R2 = 0.0029

The model on probability scaleis: | s

obese | coef. std. Err. z P>|z| [95% conf. Interval]

ex +p,-woman) | | |70 G

= p(ﬁ” 'B' ) _Isex_2 | .2868784 .0898972 3.19 0.001 .1106831 .4630738

L+ exp(/, + 4, woman) _oons | 20RO o70s2e 20039 0.0 22T 148

Morten Frydenberg Linear and Logistic regression - Note 3 11 Morten Frydenberg Linear and Logistic regression - Note 3 12

Linear and Logistic Regression: Note 3 2



Morten Frydenberg Thursday, 17 November 2005

Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
logit(p) =In(odds) = j3, + j3, - woman logit(p) =In(odds) = S, + B, - woman
A — An easier way fo obtain the odds ratio
— o, .
fi=In OR) 95% CT for In(OR) x7: Jogit obese 7.sex
obese | coef. std. Err. z P>|z| [95% cdnf. Interval] i.sex _Isex_1-2 (naturally coded; _Isex_1 omitted)
,,,,,,,,,,,,,,,, Iteration 0: Tog Tikelihood = -1795.5437
0898972 | 3.19  0.001 .1106831 .4630738 Iteration 3:  log Tikelihood = -1790.3703
.070526 —z9.59t 0.000  -2.224835 _ -1.948378 Logit estimates Number of obs = 4690
________ LR chi2(1) = 10.35
Prob > chi2 = 0.0013
—~ Log likelihood = -1790.3703 Pseudo R2 = 0.0029
OR = exp(0.2868784) =1.33 95% CI: (1.12;1.59). || = [--ocopeeee oo e
obese odds Ratio z P>|z| [95% conf. Interval]

3.19 0.001 1.117041 1.588951

Test for the hypothesis : In(OR)=0 < OR=1

Odds in reference group (men) = exp(-2.086606)=0.1241
95% CT :(0.1081:0.1425). Note, we cannot f!nd any information about the risk in the
reference group , i.e. the odds and prevalence among menl!

_Isex_2 1.332262

Prevalence among men: 0.1104 (0.0975;0.1247).
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The obesity and age: version 1 The obesity and age: version 1

In the previous section we saw that the prevalence of obesity logit(p) =In(odds) =, + J5, - (age —45)
was different between men and women. . .
The interpretation of the parameters:

Is it also associated with age?
T IS0 assoclated with age 5, + the log odds for 45 year old person.

The simplest model on the logit scale would be:
P 9 B, + the log odds ratio, when comparing two persons who

logit(p) =In(odds)= j3,+ j, - age differ 1year in age.

That is a linear relation on the log-odds scale. exp(p, ): the odds ratio, when comparing two persons who

. N i 1 i .
As we have seen before using age implies that /3 references to differ 1 year in age

a newborn (age=0). Note, that this odds ratio is assumed to be the same no
matter what age the two persons have, as long as they differ
So we will chose age=45 reference instead: by one year!

The log odds ratio is tional to th di s,
logit(p) = In(odds) = 5, + 5 -(age —45) e og.o ratio i pr-opor.- lona. o the age .lffer‘ence
e.g. OR increases exponentially with the age differences.
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =1In(odds) = S, + /3, - (age — 45) logit(p) =1In(odds) = 3, + f3, - (age — 45)

Obtaining the estimates in STATA:

gene age4s=age-45
logit obese age45

Estimate: 3, : —1.985 (-2.0767;-1.8951)
The odds for obesity for among 45 year old:
0.1373 (0.1253;0.1503)

Iteration 0: Tlog Tikelihood = -1795.5437
Iteration 3: log 1ikelihood = -1772.3839 . .
Logit estimates Number of obs = 4690 The prevalence of obesity for among 45 year old:
LR chi2(1) = 46.32
o prob > chi2 = 0.0000 0.1207 (0.1114;0.1307)
Log likelihood = -1772.3839 Pseudo R2 = 0.0129
obese | Coef. std. Err. z P>|z| [95% conf. Interval]

______ S I
|

age45 .0348023 .0051296 I 6.78 0.000 I .0247484 .0448561
_cons | -1.985922 .0463594  -42.84 0.000\72.076785 -1.895059

Test for no association with age
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The obesity and age: version 1 The obesity and age: version 1
logit(p)=1In(odds)= S, + B, - (age —45) . o
Estimates: B+ 0.0348 (0.0247:0.0449) Estimated relationship: In(odds)=—-1.986+0.0348 - (age —45)

-1

The odds ratio for being obese is 1.0354 (1.0251;1.0459) Plot02
when comparing the old person to the young person, if they
differ with one year in age.

If they differ with 4.5 years then the odds ratio is 2
8
=
1.035443 (1.025143;1.04594%)=1.17 (1.12;1.22) =
2]
In STATA:
Togit obese age45,or
will give you the OR for one year age difference directly.
-2.54
I < 3 35 40 45 50 55 60 o 70
obese | odds Ratio d. r. z P>|z| [95% conf. Interval] Age in Years
______ e el
age45 | 1.035415 /éh’t\ 6.78 0.000 1.025057 1.045877
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The obesity and age: version 1 The obesity and age: version 2
Estimated relationship:
1 exp(—1.986+0.0348 - (age - 45)) In(odds) = 3, + 3, - (age —45)
prevaience = . . .
1+exp(~1.986 +0.0348  (age — 45)) This model assumes that one year of age difference is
o associated with the same odds ratio irrespectively of the age.
Ploto3 An other way to model the prevalence could be to assume a
N step function that is to categorize age.
Y We will here look at age divided in seven five-years groups:
% 154 egen agegrp7=cut(age), at(0,35,40,45,50,55,60,120) Jabe7
o
a With this command the youngest age group will be number O
+ / the second youngest: 1 and the oldest: 6
051 T T T T T T T T
30 35 40 45 50 55 60 65 70
Agein Years
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The obesity and age: version 2 The obesity and age: version 2
table apegre7 c(nin age max age count obese sun obese) rox In(odds) =@, + Y@ -agei
agegrp? | min(age) max (age) N(obese) sum(obese) i=1
********** o The interpretation of the parameters:
0- | 30 34 352 23
35- | 35 39 973 105 . H -
o | h a b 93 o, : the log odds in reference group=the youngest.
45- 45 49 799 95 . . .
50- I 50 54 733 115 @ : the log odds ratio, when comparing one person in age
55- | 55 59 613 95 T Wi H =
o | b5 b o % group i with one in the reference group=the youngest.
| char agegrp7[omit]0
””T?E—ﬂl 777777777 %0 66 4,690 601 xi: logit obese i.agegrp? Not all output
: : b f. d. Err. 95% Conf. 1
A model that have different odds in each age group: | | obese | (Coef. std. Err 2 Plzl | [9%% conf. mntervall
5 . _Tagegrp7_1 | .54833 .23915 2.29 0.022 .079603 1.017061
ln(ndds) =a,+ Za, -agei _Tagegrp7_2 |  .51860  .24193 2.14  0.032 .0444155 992787
=1 _Tagegrp7_3 | .65766 .24179 2.72 0.007 .1837537 1.13157
.. Lo . . . _Tagegrp7_4 | .97900 .23839 4.11 0.000 .5117642 1.44625
Where agei is an indicator for being in the ith age group _Tagegrp7_5 |  .96446 .24284  3.97  0.000 .4884941  1.440436
_Tagegrp7_6 | 1.41737 .25238 5.62 0.000 .9227081 1.912032
_cons | -2.66056 .21567 -12.34  0.000 -3.083288 -2.237839
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The obesity and age: version 2 The obesity and age: version 2
6
ln(()dds):a'(,+2ﬁ,magez ln(odds)=04,+2a,-agei
i=1 ) . i=1 . .
xi: logit obese i.agegrp7,or Not all output The output contains six tests of no difference in risk -
shese lodds Ratio \etd. 2 [95% conf. ntervall comparing each of the six groups with the reference (the
,,,,,,,,,,,, o N youngest) group.
_Tagegrp7_1 | 1.730365 . f .29 .022 .082857 2.765057
_Tagegrp7_2 | 1.679677 045417 2.698747 The command: testparm _Iagegrp*
JaoearT | S e 3o will give a "Wald test” of no difference between the seven
— _ 2.623384 06 .97 .000 1.62986 4.222538 gr‘oups .
_Tagegrp7_6 | 4.126254 .62 .000 2.516095 6.766825
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (1) _Tagegrp7_1 =0
( 2) _tagegrp7_2 =0
The OR between the second oldest and the youngest: ( 3) _Iagegrp7_3 = 0
. ( 4) _Iagegrp7_4 =0
262 (163,422) ( 5) _Iagegrp7_5 =10
! - —
Between a 63 and 322 percent increase in odds. H.'9h|Y significant
differences
Small prevalence: 63 and 322 percent increase in prevalence.
A statistical significant difference in prevalence!
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The obesity and age: version 2 The obesity and age: version 2
Using the age group 45-49 as reference
-1 .25
char agegrp7[omit]3 Plot04
xi: logit obese i.agegrp7,or Not all output
obese |odds Ratio z P>|z| [95% conf. Interval] 2
____________ R N A
_Tagegrp7_0 | .518061 -2.72 0.007 .3225264 .8321407 °
Tagegrp7_1 | .896434 ¥ 3 -0.73 0.467 .6675609 1.203778 g
7_2 | .870175 A(005 -0.90 0.369 .6424561 1.17861 g 15
b 898 1 0 84 8 a
1.96 0.050 1.000625 1.845927
_Tagegrp7_6 | 2.137652 4.45 0.000 1.529915 2.986803
________________________________________________________________________ .
The OR between the second oldest and the 45-49 old:
1.36 (1.00;1.85) 3 05
3 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70
Age in Years Age in Years

Between a no and 85 percent increase in (odds) prevalence.

A borderline significant different in prevalence! Estimated relationship
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The obesity and age: version 1 and 2 The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at
Plot05 #%] = moen age.

—— modei2

Let us try to look at those two at the same time
The simplest model on the logit scale would be:

In(odds) = B, + /3, - woman + j3, - (age — 45)
This is based on three assumptions:

log odds
prevalence
5

Additivity on logit scale: The contribution from sex and age
are added.

Proportionalty on logit scale: The contribution from age is
s 05 proportional to it is value.

F S P R o . o

Age in Years Agen Years No effectmodification on logit scale: The contribution from
one independent variable is the same whatever the value is
for the other.
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = B, + B, - woman + 3, - (age —45) In(odds) = f3, + f, - woman + j3, - (age - 45)
Obtaining the estimates in STATA:

x7:10g7t obese 7.sex age45

The interpretation of the parameters:

S, : the log odds for 45 year old man.
. . i.sex _Isex_1-2 (naturally coded; m
B, : the log odds ratio, when comparing a woman to a man of Iteration 0: Tlog likelihood = -1795.5437
The same age Iteration 3: log 1ikelihood = -1767.701%
ge. Logit estimates | Number of obs = 4690|
o . LR chi2(2 = 55.68
f, : the log odds ratio, when comparing two persons of the Roehiz@) o s
same sex, where the first is one year older than the Log Tikelihood = -1767.7019 pseudo R2 = 0.0155
ofher‘. obese | coef. std. Err. z P>|z| [95% conf. Interval]
,,,,,,,, e T T T
[, *Aage: the log odds ratio, when comparing two persons of _Tsex_2 | .2743977  .0903385 A_3.04__0.002 .0973375 .451458
- . . age45 | .0344723 .005135 6.71 0.000 .0244072 .0445374
the same sex, where the first is Aage years older than _cons | -2.147056  .0721981 [T29.74 _0.000 | ~2w288561  -2.00555
the other. i

~ 3
Tests: | No association with sex | No association with age

| Prevalence is 50% among 45 year old men|
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = S, + B, - woman+ B3, - (age — 45) In(odds) = B, + /3, - woman + j3, - (age — 45)
x7:]logit obese 7.sex age45, or -1 .25
obese | odds Ratio  std. Err. z P>|z| [95% conf. Intervall e —_me
77777777 L e whtervall - women . women
_Isex_2 | 1.315738 .1188618 3.04 0.002 1.102232 1.5706
age45 | 1.035073 .0053155 6.71 0.000 1.024707 1.045544 B

OR for women compared to men “adjusted for age" :

1.32(1.10;1.57) 4 g
-2 B 15
The unadjusted was 1.33 (1.12;1.59). g g
OR for one year age difference "adjusted for sex" : //'
1.04 (1.02;1.05) 2 ! //’
The unadjusted was 1.04 (1.03;1.05)
Not much has changed! 3 o5
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
AgeinYears . . Agein Yeas
The estimated relationship
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The obesity, sex and age: version 2 The obesity, sex and age: version 2
In(odds) = S, + f3,- woman + j3, -(age — 45) + 3, - woman - (age — 45)
A more complicated model on the logit scale would be: Estimates lo(;; odlds: ) ’
men: ]n(gdds) =a,+a,- (agg —45) xi: logit obese i.sex*age45

Coef. std. Err. z P>|z|

women: In(odds) =y, +7,-(age—45)

-116797 .095034 1.23  0.219

age4s -.0056849 .008372 -0.68 0.497
. . . . . _I X 4~2 .065803 .01074 6.13 0.000
Proportionalty on logit scale: The contribution age is sexxagtae "070643 -29.49 0000

proportional to it is value.
Tt can be written in just one formula (with interaction): Men : Difference between women and men:

In(odds) = B, + f3,- woman + j3, -(age — 45) + 3, - woman - (age — 45)

This is based on one assumptions:

Estimates odds ratios:

0!0 ::B() 0!, :ﬂz obese | odds Ratio std. Err z P>|z| [95% conf. Interval]

_____________ SO A4

n=5+5 v=5+5 _TIsex 2 | 1.123891 .10640 1.23  0.219  .9328908 _ _1.353997
age4s 2994331 .0 2

Where:

-0.68 0.497 .978147 1.010783
_TIsexXage4~2 | 1.068016 P114 6.13  0.000 1.045763 1.090743

Thatis: g =y-o  Si=y-¢ | | DT T
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The obesity, sex and age: version 2
In(odds) = B, + f3, - woman + j3, - (age — 45) + B, - woman - (age — 45)

Plot07 "> — men 1 — men
— wamen , —= wonen
7/
/
1 /,
/
/
/
7
,l
15
s
/ g
g / 8
g
2 \L
7 \
/
/
/I
25 Vs
4
//
/
3 0
3 35 40 45 5 55 60 65 70 30 35 40 45 50 55 60 65 70
Age in Years Age in Years

The estimated relationship
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The case control example

tabodds cancer age

age | cases controls odds [95% conf. Interval]
,,,,,, SN ol
25-34 | 2 116 0.01724 0.00426 0.06976

35-44 | 9 190 0.04737 0.02427  0.09244
45-54 | 46 167 0.27545 0.19875 0.38175

55-64 | 76 0.45783 0.34899  0.60061
65-74 | 55 106 0.51887 0.37463 0.71864

>=75 | 13 31 \\3\4&?35 0.21944  0.80138

I Few events in reference group= wide CI's
tabodds cancer age,~o

age || odds Ratio chi2 pP>chi2 [95% conf.| Interval]
______ S I
25-34 | 1.000000 .
35-44 | 2.747368 1.76 0.1843 0.579474 13.025660
45-54 | 15.976048 24.18 0.0000 3.588609 71.123412
55-64 | 26.554217 41.14 0.0000 5.834718 120.850133
65-74 | 30.094340 43.99 0.0000 6.278745 144.243682
>=75 | 24.322581 29.40 0.0000 4.402342 134.380270
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The case control example

tabodds cancer age

age | cases controls odds [95% conf. Interval]
,,,,,, S e S
25-34 | 2 116 0.01724 0.00426 0.06976
35-44 | 9 190 0.04737 0.02427 0.09244
45-54 | 46. 167 0.27545 0.19875 0.38175
55-64 | 76 166 0.45783 0.34899 0.60061
65-74 | 55 0.51887 0.37463 0.71864
>=75 | 13 31 ‘\Q*iizzf 0.21944 0.80138

) The case control example
char age [omit]l

xi:logit cancer i.smoker i.age,or

‘Many' events in reference group= narrow CI's

tabodds_cancer age, or|base(3)

age || odds Ratio chi2 P>chi2 [95% conf.| Interval]
25-34 | 0.062594 24.18 0.0000 0.014060 | 0.278660
35-44 | 0.171968 25.86 0.0000 0.079661 v 0.371235
45-54 | 1.000000 . . 0
55-64 | 1.662127 5.54 0.0186 1.083844  2.548952
65-74 | 1.883716 7.32 0.0068 1.181689  3.002809

>=75 | 1.522440 1.30 0.2546 0.734799  3.154365
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The case control example

char age [omit]3
xi:logit cancer i.smoker 1i.age,or

i.smoker _Ismoker_0-1 (naturally coded; _Ismoker_0 omitted)
i.age _Iage 1-6 (naturally coded; _Iage_3 omitted)
Iteration 0: log likelihood = -496.55682 -
Iteration 1: Tlog Tikelihood = -437.55133
Iteration 2: Tlog Tikelihood = -429.86007
Iteration 3: log 1ikelihood = -428.99383
Iteration 4: log likelihood = -428.94473
Iteration 5: log 1ikelihood = -428,94432
Logit estimates Number of obs = 977
LR chi2(6) = 135.23
Prob > chi2 = 0.0000
Log Tikelihood = -428.94432 Pseudo R2 = 0.1362
cancer | odds Ratio std. Err. z P>|z| [95% conf. Interval]
,,,,,,,,,,, o e e e e e
_Ismoker_1 | 2.3504 .451303 4.45 0.000 1.613343 3.424469
_TIage_1 | .0603 .0442767 -3.83 0.000 .0143051 .2542718
_Iage_2 | .1708 .0652397 -4.63 0.000 .0807999 .3610977
_Tage_4 | 1.6826 .3701188 2.37 0.018 1.093327 2.58953
_Tage 5 | 2.0984 .5042862 3.08 0.002 1.31025 3.360918
_Tage 6 | 1.6713 .6277714 1.37 0.171 .8005146 3.489699
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Linear and Logistic Regression: Note 3

i.smoker _Ismoker_0-1 (naturally coded; _Ismoker_0 omitted)

i.age Tage_1-6 (naturally coded; _Tage_1 omitted)

Iteration O: Tog Tikelihood -496.55682

Iteration 1: log Tikelihood -437.55133

Iteration 2:  log likelihood = -429.86007 “ " .

Iteration 3: log likelihood = -428.99383 Many" iterations

Iteration 4: log Tikelihood -428.94473

Iteration 5: log Tikelihood -428.94432

Iteration 6: log 1ikelihood = -428.94432

Logit estimates Number of obs = 977

LR chi2(6) = 135.23
Prob > chi2 = 0.0000
Log likelihood = -428.94432 Pseudo R2 = 0.1362
cancer | odds Ratio std. Err. z P>|z| [95% conf. Interval]

,,,,,,,,,,, bmmmmmmmee e

_Ismoker_1 | 2.350 .4513038 4.45 0.000 1.613342 3.424472
_Tage_2 | 2.832 2.24368 1.31  0.189 .5995103 13.3798
_Tage_3 | 16.58 12.17378 3.82 0.000 3.932286 69.91422
_Tage_4 | 27.89 20.32374 4.57 0.000 6.691356 116.3235
_Tage_5 | 34.79 25.59029 4.83 0.000 8.231516 147.0764
_Tage_6 | 27.71  21.89267 4.21 0.000 5.891878 130.3509
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Things to look out for in the output
In general:

Wide CI's or large standard errors in a logistic regression
indicates that at least one group has few events!

Many iterations in a logistic regression indicates that some
of the parameters are hard to estimate.
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Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald to test if several
coefficients could be zero .

An other way to "compare” two models is by a likelihood
ratio test.

In the logistic regression output from STATA we find a
likelihood ratio test comparing the fitted model with the
model with no dependent variables the constant odds model:

LR chi2(6) 135.23
Prob > chi2 0.0000

The conclusion: The model with smoker and age is statistical
significant better, than a model assuming the same odds, risk
for everybody.
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Comparing two models: the likelihood ratio test
One can compare two models with a likelihood ratio test if:
*The two models are fitted on exactly the same data set.

*The two models are nested, i.e. one can go from one model
to the other by setting some coefficients to zero.

In STATA the test is found in this way:
xi:logit cancer 1i.smoker 1i.age
estimates store modell

xi:logit cancer 1i.smoker

estimates store model2

Trtest modell model2

Output:
Tlikelihood-ratio test LR chi2(5) = 120.82
(Assumption: model2 nested in modell) Prob > chi2 = 0.0000

i.age adds statistical significant information to the model
only containing smoking!
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Logistic regression model in general

k
In(odds) = S, + Z,b’ﬂ ‘X,
p=1

This is based on three assumptions:

a. Additivity on log-odds scale: The contribution from each
of the independent variables are added.

b.Proportionalty: The contribution from independent variables
is proportional to it is value (with a factor )

c. No effectmodification: The contribution from one
independent variables is the same whatever the values are
for the other.

Note a. can also be formulate as multiplicativity on odds scale
odds = odds, - OR" - OR;* ---- OR*
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Logistic regression modkel in general
ln(odds) =4+ Zﬂﬂ ‘X,
If one consider two persons whpo:]differ with
Ax;inx;, Ax, inx, .. and Axy in x;

then difference in the log odds is :
k

Z]ﬁ/; : AX[)
P=
Again we see that the contribution for each of the
explanatory variables:
are added,
are proportional to the difference
and does not dependent of the difference in the other

on the log odds scale.
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Logistic regression model in general
k
In(odds)=f,+ ., x,
If one consider two persons who differ with
Ax;inx;, Ax, inx, .. and Ax, in x;
then odds ratio :
OR =OR -OR"---- OR™

Note the model might also be formulated:

exp(ﬁ” +iﬁ” ~xp]
1+exp[,6’0 +iﬂp -xp]

p=1

In(p) zln(Pr[Y = 1]) =
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Logistic regression model in general

k
In(odds) = S, + Zﬁ, "X,

p=1
The data:  Y=1/0 dichotomous dependent variable
X; . X, .. X independent/explanatory variables

Like in the normal regression models it is assumed that the Y's
are independent given the explanatory variables.

This assumption can, in general, only be checked by
scrutinising the design.

Look out for data sampled in clusters:
Patients within the same GP
Children within the same family

Twins.
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Logistic regression model in general
Estimation:

Excepting the two by fwo tables, there are no closed form for
the estimates.

The distribution of the estimates are not known.
Estimates are found by the method of maximum likelihood.
Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based
on asymptotics.

That is, all statistical inference are approximate.

The more data - the more events -the better the
approximations.
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