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Checking the model
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The assumptions.

Independent errors?

Predicted values and residuals.

Do the errors have the same distribution?
Normal errors?

Two examples, where the model is not valid.
Leverage: a measure of influence.

Standardized residuals.
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Simple linear regression: The model

Let Y; and x; be the data for the ith person.
Y, =B, +p x+E E ~N(0,0)
This model is based on the assumptions:
1. The expected value of Y is a linear function of x.
2. The unexplained random deviations are independent.

3. The unexplained random deviations have the same
distributions.

4. This distribution is normal.

Morten Frydenberg Linear and Logistic regression - Note 1.2 2

Checking the model: Independent errors ?

Assumption no. 2: the errors should be independent, is mainly
checked by considering how the data was collected.

The assumption is violated if

-some of the persons are relatives (and some are not) and the
dependent variable have some genetic component.

some of the persons were measured using one instrument and
others using another.

«in general if the persons were sampled in clusters.
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Predicted values and residuals

Y, =B+ B x,+E E~N(0.0)
Based on the estimates we can calculate the predicted (fitted)
values and the residuals:

Si=p+bx
r=y-J :yi_(ﬁ()"'ﬁl'xi)

The predicted value is the best guess of y; (based on the
estimates) for the ith person.

Predicted value:

Residual :

The residual is a guess of E; (based on the estimates) for the
ith person.

Stata: predict PEFR_hat 7f e(samplie),xb
predict PEFR_res 7f e(sample),resid
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Checking the model:
Linearity and identical distributed errors

Assumption no. 1:
The expected value of Y is a linear function of x.
Assumption no. 3:
The unexplained random deviations have the same
distributions.

These are checked by inspecting the following plots of:

* Residuals versus predicted

+ Residuals versus x
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Checking the model:
Linearity and identical distributed errors

| No problems! Except this outlier
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Checking the model:
Linearity and identical distributed errors

| No problems! Except this outlier

Checking the model: Normal errors ?
Assumption no. 4: the errors should be normal distibuted.
This is checked by making histograms or qq-plots of the
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Assumptions violated: Example 2 Assumptions violated: Example 2
The relation between GFR and Serum Creatinine Checking the model Close to normal
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Assumptions violated: Example 3 Assumptions violated: Example 3
The relation between GFR and 1/Serum Creatinine Checking the model Close to normal
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Influential data points: Example 4 Influential data points: Leverage

The influence of a data point is sometime measured
by its | : —
y its leverage 1 (x - x)z
26 h=—+4—-—"--"—
Plot08 n & _\2
2 - x)
j=1
A large value implies that the estimates and/or the standard
errors is highly influenced by this observation.

Not all data points have the same influence on the estimates:

24+

Fitted line with
all the points

221 |included Note that 0<h<1
Fitted lineg with the Notice, it is a function only of the independent variable, x and
red point excluded the sample size.

20

; ; ; ‘ : The leverage for a given data point depends on how far away

¢ & 8 1 2 its independent variable is from the average value.
The data point works like a leverage (vaegtstang). Stata: predict PEFR_lev if e(sample), leverage
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Influential data points Leverage Types of residuals: Standardized residuals
A leverage versus independent variable for the The (unstandardized) residual: L=y, = ( By + 5, ~xi)
example on page 13.

] @ Plot08 has mean zero but non-constant variance: sd(r,)=o./1-h
7 I. e. residuals from points with high leverage have smaller

g variance, than residuals from points with small leverage.

o 3 . N .

g ® Due to this one often use the standardized residual:

.25 r;
oo 4=
oot O1-h,
01 T T T T T
! ° % " ? This will have variance 1, if the model is true.
The data point with the ‘'extreme’ x value has very Stata: predict PEFR_zres 7f e(sample), rstandard
high leverage - as expected. _
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Influential data points? Example 4 Influential data points? Example 5
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Influential data points? Example 6
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Large leverage but standardized residual ok!
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Influential data points? Example 6

Results with using all data:

Root MSE = 1.0282
y | coef. std. Err t P>|t] [95% Conf. Interval]
________ S
x| .7364484 .1594519 4.62 0.002 .3594045 1.113492
cons | 16.1386 1.78019 9.07 0.000 11.92912 20.34808

Root MSE = 1.1099
y | coef std. Err t P>|t| [95% conf. Interval]
________ S
x| .8080605 .8563254 0.94 0.382 -1.287292 2.903413
_cons |

15.2985 10.02669 ‘\153 0.178 -9.235928 39.83292

Point estimates unchanged | Standard errors much larger.

Confidence intervals much
wider.
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The PEFR example: leverage and standardized residuals
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Leverages are small, observation no. 83 has large residual
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The PEFR example: Excluding observation no 83
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Some comments on checking a (simple) linear regression
Always consider the design: How was the data collected?
This has implications for the validity of the statistical model.
And it has implications for the interpretation of the results.

Observations with high leverages have ‘extreme’ values of the
independent variable.

These observation will have high impact on the results, but
might not be 'representative’.

Sometimes it is best to exclude these from the analysis.

Observation with large residuals, that is observed y value far
away from expected, should be checked for errors.
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Prediction interval for future value
y=B6+5"x
y= ﬂo +0 - x

The standard deviation for a new observation is given by:

The true line is given as :

and estimated by plugging in the estimates

s 1
sd| B, + B, x+E|=6,[l+—+—=—"—
( 0 1 ) B Z( ,
with the 95% (pointwise) prediction interval
B+ B x 2 -sd(ﬁ0 +4 -x+E)
Many programs can make a plot with the fitted line and its
prediction limits.

In Stata its done by the 7f7itc7 and graph command, the
option stdf
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Prediction interval for future value

twoway ///

(scatter PEFR height, mco(blue) msym(0)) ///
(1fitci PEFR height, stdf clpat(l) cip(rline) ) ///
.leaend(off) vtit("PEFR (1/min)™)
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