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Logistic regression . ,

Morten Frydenberg © Watch out for 'small’ reference groups
Institut for Biostatistik I . .
The likelihood ratio test: comparing two nested models.

When one might use logistic regression. The logistic regression model in general

Some examples: The model and the assumptions.

One binary independent variable. (one odds ratio). The data and the assumption of independence.

Probabilities, odds and the logit function Estimation and inference

One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and continuous
independent variable no interaction.

One binary independent variable and continuous
independent variable with interaction.

Morten Frydenberg Linear and Logistic regression - Note 3 1 Morten Frydenberg Linear and Logistic regression - Note 3 2
Logistic regression models: Introduction Logistic regression models: Introduction
A logistic regression is a possible model if the dependent A logistic regression can also be used to estimate the odds
variable (the response) is dichotomous dead/alive obese/not ratios in a unmatched case-control study.
obese efc.

For such data the constant terms have no meaning.
Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

And the odds ratios comparable odds ratio from a follow-up
study.

Many other epidemiological design are analyzed by logistic

When working with binary response it is custom to code the regression models.

“positive” event (eg. dead) as 1 and a "negative" event (alive)
as 0.

A logistic regression models the probability of a "positive
event” via odds.

And the associations via odds ratio.
If the event is rare then odds ratios estimate the relative
risk.

Morten Frydenberg Linear and Logistic regression - Note 3 3 Morten Frydenberg Linear and Logistic regression - Note 3 4
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Estimating one odds ratio using logistic regresion Finding an odds ratio using logistic regresion
We are now considering a larger part of the Frammingham odds,,
data set, consisting of 4690 person with known BMI at the The odds ratio is defined as: OR = ——om
start. OddsMen
We will focus on the risk obesity (BMI>30 kg/m?). 5o applying the logarithm we get:
Out of the 4690 persons 601 = 12.8% were obese. In(OR)=1In (%j =1In(odds,,,,, )~ In(odds,,,
Divided into gender 0ddS )z,
Obese Not-Obese And rearranging terms :
Women | 375 (14.2%) | 2268 In(oddsy,,,, ) =n(odds,,, ) +In(OR)
Men 226 (11.0%) |1821 That is the log-odds obesity for the women can be written as

We see a higher prevalence among women: OR: 1.33 (1.12;1.59). the sum of two terms:

That is the odds of being obese is between 12 and 59 percent "The log-odds in reference group (men)

higher for women.( x2=10.2 p-value=0.001) *The log of the odds ratio
Morten Frydenberg Linear and Logistic regression - Note 3 5 Morten Frydenberg Linear and Logistic regression - Note 3 6
Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
In(odds,,,,, ) =In(odds,,,, ) +1n(OR) In(odds) = f3, + B, - woman
If we again let women be a indicator/dummy variable, then we In(odds,y,, ) In(OR)
can consider the model:
ln(OddS) = IB() —+ ﬁl -woman OI" 1'0 be more pl"eCISe: IBI = ln(ORW(an\'.\'M(’H)
So, if we can fit the model above to the data, then we can
For men we geft: In(odds) = f3, if fi

get an estimate of the log(OR) and hence of OR!
And for women: In(odds) = f, + 5,

Comparing with the equation on top we get:

ﬂ(} = ln (OddsMen )

and 5, =In(OR)

Morten Frydenberg Linear and Logistic regression - Note 3 7 Morten Frydenberg Linear and Logistic regression - Note 3 8

Linear and Logistic Regression: Note 3 2



Morten Frydenberg Thursday, 17 November 2005

Probabilities and odds -
Probabilities and odds
If p denote the probability of an event (the risk, the i
prevalence proportion, or cumulated incidence proportion) o Peror
then the odds is given by : '
8
odds = v 5
1-p '
Z 6
Note: odds=1 < p=0.5 < In(odds)=0 5 ]
Qo
£ 4
In(odds) = In| —2 3]
I-p 2
. . . w e 14
In mathematics the last function of p is called the "logit
func‘rlon 0 T T T T T T T T T T T
5 4 3 2 A 0 1 2 3 4 5
logit( p) _ ln( )4 logit=In(odds)
1—
Morten Frydenberg Linear and Logistic regression - Note 3 9 Morten Frydenberg Linear and Logistic regression - Note 3 10
Probabilities and odds Finding an odds ratio using logistic regresion
logit =1In(odds)= f, + [, - woman
‘ln(odds) =p,+5 -woman‘ git(p)=n(odds) =, +
Back to finding the estimates.
So modelling the log-odds is the same as modelling logit(p) In STATA:
and model from before could be written. char sex[omit]1l
x7: Jogit obese 7.sex
‘IOglt(p) = ﬂo + ﬂl i Woman‘ i.sex _Isex_1-2 (naturally coded;| _Isex_1 omitted)
Iteration 0: Tog Tikelihood = -1795.5437
OddS Iteration 3: Tog Tikelihood = —1790.3702I |
. - i i ber of obs = 4690
Going from odds to probabilities: p=—— Logrt estimates T Tt
1+ odds Prob > chi2 = 0.0013
. Log likelihood = -1790.3703 Pseudo R2 = 0.0029
The model on probability scaleis: | |
obese | Coef. std. Err. z P>|z]| [95% conf. Interval]
-woman) | S 0 |f==—————- e
_ exp(/, + B, - woman) _Isex.2 | .2868784  .0898972  3.19 0.001 .1106831  .4630738
1+eXp(ﬁo +- woman) _cons | -2.086606 .070526 -29.59 0.000 -2.224835 -1.948378
Morten Frydenberg Linear and Logistic regression - Note 3 1 Morten Frydenberg Linear and Logistic regression - Note 3 12
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Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
logit(p) =In(odds) = 3, + B, - woman logit(p) =In(odds) = S, + B, - woman
A — o An easier way o obtain the odds ratio.
B =In OR) 95% CI for In(OR) x7: Jogit obese 7. sex
obese | | coef. std. Err. 2"";;I;I""'Eéé«%%@'iéiéﬁéﬁ i.sex _Tsex_1-2 (naturally coded; _Tsex_1 omitted)
________ mm e - — oo M Iteration 0: Tog likelihood = -1795.5437
_Tsex_2 | .0898972 | 3.19 0.001 | [.1106831  .4630738 | Iteration 3: log likelihood = -1790.3703
.070526 -29.594 0.000 -2.224835 -1.948378 Logit estimates Number of obs = 4690
_____________________________________________________________ LR chi2(1) = 10.35
Prob > chi2 = 0.0013
— o Log Tikelihood = -1790.3703 Pseudo R2 = 0.0029
OR = exp(0.2868784) =1.33 95% CIL: (1.12;1.59).]] = |- e pEem—m———————————
obese odds Ratio . . z P>|z]| [95% conf. Interval]
e 1A o AD1 - ] B i
Test for the hypothesis : In(OR)=0 & OR=1 _tsex_2 | 1.332262 3.19  0.001 | 1.117041  1.588951
Odds in reference group (men) = exp(-2.086606)=0.1241
0 i i i isk i
95% CT :(0.1081:0.1425). Note, we cannot find any information about the risk in the

reference group , i.e. the odds and prevalence among men!
Prevalence among men: 0.1104 (0.0975;0.1247).

Morten Frydenberg Linear and Logistic regression - Note 3 13 Morten Frydenberg Linear and Logistic regression - Note 3 14

The obesity and age: version 1 The obesity and age: version 1

In the previous section we saw that the prevalence of obesity logit(p) =1n(odds) = S, + j, - (age - 45)
was different between men and women. . .
The interpretation of the parameters:

Isital iated with ?
S T also associated with age /5, : the log odds for 45 year old person.

The simplest model on the logit scale would be:
P 9 f, + the log odds ratio, when comparing two persons who

logit(p) =In(odds) = 3, + /3, - age differ 1 year in age.

That is a linear relation on the log-odds scale. exp(4, ): the odds ratio, when comparing two persons who

As we have seen before using age implies that /5 references to differ 1year in age.

a newborn (age=0). Note, that this odds ratio is assumed to be the same no
matter what age the two persons have, as long as they differ
So we will chose age=45 reference instead: by one year!

The | dds ratio is tional to th differences,
logit( p) = In(odds) = f, + /- (age —45) e og.o ratio i pr'opor" io a' o the age | erence
e.g. OR increases exponentially with the age differences.

Morten Frydenberg Linear and Logistic regression - Note 3 15 Morten Frydenberg Linear and Logistic regression - Note 3 16
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The obesity and age: version 1
logit(p)=In(odds) = S, + f3, - (age —45)
Obtaining the estimates in STATA:

gene age4s=age-45
Jlogit obese age45

Iteration 0: Tog Tikelihood = -1795.5437

Iteration 3: Tog Tikelihood = -1772.3839

Logit estimates Number of obs = 4690
LR chi2(1) = 46.32
Prob > chi2 = 0.0000

Log likelihood = -1772.3839 Pseudo R2 = 0.0129

obese | Coef. std. Err. z P>|z]| [95% conf. Interval]

______ oo o m oo oo oo oo __________

age45 | .0348023 .0051296 6.78 0.000 .0247484 .0448561

_cons | -1.985922 .0463594  -42.84  0.000 -2.076785  -1.895059

Test for no association with age
Morten Frydenberg Linear and Logistic regression - Note 3 17

The obesity and age: version 1
logit(p)=In(odds) = S, + f3, - (age —45)
Estimate:  f,: —1.985 (-2.0767;—-1.8951)
The odds for obesity for among 45 year old:

0.1373 (0.1253;0.1503)
The prevalence of obesity for among 45 year old:

0.1207 (0.1114;0.1307)

Morten Frydenberg Linear and Logistic regression - Note 3 18

The obesity and age: version 1
logit(p) =In(odds) = B, + B, - (age —45)
Estimates: £, +0.0348 (0.0247;0.0449)

The odds ratio for being obese is 1.0354 (1.0251;1.0459)
when comparing the old person to the young person, if they
differ with one year in age.

If they differ with 4.5 years then the odds ratio is

1.035443 (1.025142;1.04594%)= 1.17 (1.12;1.22)

In STATA:
Togit obese age45,or

will give you the OR for one year age difference directly.

obese | 0dds Ratio z P>|z]| [95% conf. Interval]
______ O <
age45 | 1.035415 6.78 0.000 1.025057 1.045877
Morten Frydenberg Linear and Logistic regression - Note 3 19

The obesity and age: version 1

Estimated relationship: In(odds)=—1.986+0.0348-(age —45)

-1
Plot02
1.54
(2]
e
©
o
D
o
2
-2.51
T T T T T T T T
30 35 40 45 50 55 60 65 70
Agein Years
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The obesity and age: version 1 The obesity and age: version 2
Estimated relationship: B
exp(—1.986+0.0348 - (age - 45)) In(odds) = 3, + 5, - (age - 45)
prevalence = I+exp(—1.986 +0.0348 - (age — 45)) This rpodel assumes that one year of age difference is
o associated with the same odds ratio irrespectively of the age.
Plot03 An other way to model the prevalence could be to assume a

step function that is to categorize age.

We will here look at age divided in seven five-years groups:
egen agegrp7=cut(age), at(0,35,40,45,50,55,60,120) 7abel

prevalence
o
f

With this command the youngest age group will be number O

o / the second youngest: 1and the oldest: 6

.05

T
30 35 40 45 50 55 60 65 70

Agein Years
Morten Frydenberg Linear and Logistic regression - Note 3 21 Morten Frydenberg Linear and Logistic regression - Note 3 22
The obesity and age: version 2 The obesity and age: version 2
fable agegrp7 ,c(min age max age count obese sum obese) row In(odds) = o, + Y, - agei
agegrp? | min(age) max (age) N(obese) sum(obese) i=1
---------- g The interpretation of the parameters:
0- | 30 34 352 23
35- | 35 39 973 105 . H -
20- | 0 " 885 93 o, : the log odds in reference group=the youngest.
45- | 45 49 799 95 . ﬂ"l | dd i h . .
50- | 50 54 733 115 ;. Tne log odds raftio, when comparing one person in age
55- | 55 59 613 95 Wi ; -
oo | P e 530 7 group i with one in the reference group=the youngest.
| char agegrp7[omit]0
____T(_er_l]_l________j? __________ ?? _______ ‘_1:??9 _________ f_S(_):_L xi: logit obese i.agegrp7 Not all output
. . b Coef std. E P 95% conf. Int 1
A model that have different odds ineachage group: | | obese | Coef. std. Err. 2 Plel | [95% cont. Intervall
6 . _TIagegrp7_1 | 54833 .23915 2.29 0.022 .079603 1.017061
ln(odds) =o,+ Zai -agei _Tagegrp7_2 |  .51860  .24193  2.14 0.032 .0444155 .992787
i=1 _Iagegrp7_3 | 65766 .24179 2.72 0.007 .1837537 1.13157
.. . . . . . _Tagegrp7_4 | .97900 .23839 4.11 0.000 .5117642 1.44625
Where agei is an indicator for being in the ith age group _Tagegrp7_5 |  .96446  .24284  3.97  0.000 .4884941  1.440436
_Tagegrp7_6 | 1.41737 .25238 5.62 0.000 .9227081 1.912032
_cons | -2.66056 .21567 -12.34 0.000 -3.083288 -2.237839
Morten Frydenberg Linear and Logistic regression - Note 3 23 Morten Frydenberg Linear and Logistic regression - Note 3 24
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The obesity and age: version 2 The obesity and age: version 2
6
In(odds) =, + 5, - agei In(odds) = o, + Y e, - agei
i=1 i . i=1 . A
xi: logit obese i.agegrp7,or Not all output The output contains six tests of no difference in risk -
shase odds Ratio \erd. 2T [95% conf. imeerval] comparing each of the six groups with the reference (the
____________ e youngest) group.
_Tagegrp7_1 | 1.730365 .29 0.022 1.082857  2.765057
_Tagegrp7_2 | 1.679677 .14 0.032 1.045417  2.698747 The command: testparm _Iagegrp*
_I 7_3 1.930274 .72 0.007 1.20172 3.100522 . . w " .
Tagegrp73 | 2-os0eme ‘11 0000 1668232 4247159 will give a "Wald test” of no difference between the seven
Tageqrp7 5 | 2.623384 .97 _0.000 _ 1.62986 __ 4.222538 groups .
“Tagegrp7_6 | 4.126254 .62 0.000  2.516095  6.766825
_______________________________________________________________________ (1) _Tagegrp7_1 =0
( 2) _Iagegrp7_2 =0
The OR between the second oldest and the youngest: ( 3) _Tagegrp7_3 = 0
. ( 4) _Tagegrp7_4 =0
262 (163,422) ( 5) _Iagegrp7_5 =0
( 6) _Iagegrp7 6 =0 - —
Between a 63 and 322 percent increase in odds. ppopiz( 0= 5326 Highly significant
oo e s ' differences
Small prevalence: 63 and 322 percent increase in prevalence.
A statistical significant difference in Npr'evalence!
Morten Frydenberg Linear and Logistic regression - Note 3 25 Morten Frydenberg Linear and Logistic regression - Note 3 26
The obesity and age: version 2 The obesity and age: version 2
Using the age group 45-49 as reference
1 .25
char agegrp7[omit]3 Plot04
xi: Tlogit obese 1i.agegrp7,or Not all output
obese |0dds Ratio z P>|z]| [95% conf. Interval] ]
____________ R N
_Tagegrp7_0 | .518061 -2.72 0.007  .3225264  .8321407 .
_Tagegrp7_1 | .896434 -0.73  0.467 .6675609 1.203778 g
_Tagegrp7_2 | .870175 -0.90 0.369 .6424561 1.17861 3 151
Iagearp7 4 | 1,378981 2.15 0,031 1.029341 1.847385 a
Tagegrp7 5 | 1.359073 1.96  0.050 1.000625  1.845927
“Tagegrp7_6 | 2.137652 4.45 0.000 1.529915  2.986803
_________________________________________________________________________ N
The OR between the second oldest and the 45-49 old:
1.36 (1.00;1.85) 3 054
30 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70
Age in Years Age in Years

Between a no and 85 percent increase in (odds) prevalence.
L . . Estimated relationshi
A borderline significant different in prevalencel! P

Morten Frydenberg Linear and Logistic regression - Note 3 27 Morten Frydenberg Linear and Logistic regression - Note 3 28
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The obesity and age: version 1 and 2 The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at
25 — modelt age.

Plot05
Let us try to look at those two at the same time

The simplest model on the logit scale would be:
In(odds) = f3, + B, - woman + f3, - (age — 45)
This is based on three assumptions:

log odds
N
prevalence
&

Additivity on logit scale: The contribution from sex and age
are added.

-25

Proportionalty on logit scale: The contribution from age is
3 o1 proportional to it is value.

3 35 40 45 50 55 60 65 70 3 3 40 45 5 55 60 65 70

Age n Years Agein vears No effectmodification on logit scale: The contribution from
one independent variable is the same whatever the value is
for the other.

Morten Frydenberg Linear and Logistic regression - Note 3 29 Morten Frydenberg Linear and Logistic regression - Note 3 30

The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = f3, + B, - woman + f3, - (age — 45) In(odds) = 3, + j3, - woman + 3, - (age - 45)
. . Obtaining the estimates in STATA:
The interpretation of the parameters: 9 m
x7:7logit obese 7.sex age45
/3, : the log odds for 45 year old man. g 9
. 3 i.sex _Isex_1-2 (naturally coded;
f, i the log odds ratio, when comparing a woman to a man of Iteration 0: Tlog Tikelihood = -1795.5437
Iteration 3: log likelihood = -1767.7019
the same age. Logit estimates Number of obs = 4690|
. . R chi2(2 - 55.68
/3, + the log odds ratio, when comparing two persons of the R 2 T ass
same sex, where the first is one year older than the Log Tikelihood = -1767.7019 Pseudo R2 = 0.0155
o‘rher‘. obese | coef. std. Err. z P>|z| [95% conf. Interval]
________ e
p, *Aage: the log odds ratio, when comparing two persons of ~Isex_2 | .2743977  .0903385 Aedelliellelllley  -0973375 -451458
o age45 | .0344723  .005135 6.71 _ 0.000 .0244072  .0445374
the same sex, where the first is Aage years older than _cons | -2.147056  .0721981 [-29.74  0.000 Wl -2.00555
the other. | I . 7 BN T
Tests: | No association with sex No association with age
Prevalence is 50% among 45 year old men
Morten Frydenberg Linear and Logistic regression - Note 3 31 Morten Frydenberg m=NoTeS 32
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = B, + B, - woman + f3, - (age — 45) In(odds) = B, + B, - woman + f3, - (age — 45)
x7:]og7t obese 7.sex age45, or RE P 25
obese | 0dds Ratio std. Err. z P>|z]| [95% Conf. Interval] . V":j:]en , — :j:]en
———————— oo Plot06
_TIsex_2 | 1.315738 .1188618  3.04 0.002 1.102232  1.5706
age45 | 1.035073  .0053155  6.71  0.000 1.024707  1.045544

OR for women compared to men “adjusted for age” :

1.32 (1.10;1.57) 8 g
- T 157
The unadjusted was 1.33 (1.12;1.59). 8 s
. " . 4
OR for one year age difference "adjusted for sex” : 7
1.04 (1.02;1.05) 29 " ,,/’
The unadjusted was 1.04 (1.03;1.05)
Not much has changed! 3 05
30 35 40 45 50 55 60 65 70 30 3 40 45 50 55 60 65 70
Age in Years . . . Age in Years
The estimated relationship
Morten Frydenberg Linear and Logistic regression - Note 3 33 Morten Frydenberg Linear and Logistic regression - Note 3 34
The obesity, sex and age: version 2 The obesity, sex and age: version 2
) ) In(odds) = f3, + B, - woman + f3, - (age —45) + 3, - woman - (age — 45)
A more complicated model on the logit scale would be: Estimates log odds:
men: ]n(()dds) =o,+aq- (age —45) xi: logit obese i.sex*age45
. — . _ obese | Coef. std. Err. z P>|z]| [95% conf. Interval]
women: In(odds)=y,+7,-(age-45) | | obese | coef. std. Err. z  Plzl  [95% conf. Interval]
ici ians: _Tsex. 2 | 116797 .095034  1.23 0.219  -.069467 _ _.303061
This is based on one assumptions: age45 | —.0056849 .008372 -0.68 0.497  -.023095 _ _.010725
Proportionalty on logit scale: The contribution age is O g [ 08304T 1070643 -29.49  0.000  -3.37143 T-1.04383
proportional to it isvalue. [ e T
. . ) . e, - -T-TT-=====--=-=
It can be written in just one formula (with interaction): Men i Difference between women and men :

In(odds) = /3, + B, - woman + f3, - (age —45) + 3, - woman - (age — 45)

Wh ao = ﬁo a] = 182 obese | odds Ratio P>|z]| [95% conf. Interval]
ere: _ I S N (e ——— T 2
Yo=B+5 n=5+5 _Tsex 2 | 1.123891 . 0.219  .9328908 _ _1.353997

age4s 994331 0.497  .978147 1010783

_TIsexxage4~2_ |_1.068016 0.000  1.045763 _ _1,090743

Thatis: p=y-o, pB=1-q BNl Al fenilfee S

Morten Frydenberg Linear and Logistic regression - Note 3 35 Morten Frydenberg Linear and Logistic regression - Note 3 36
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The obesity, sex and age: version 2 The case control example
In(odds) = S, + B, - woman + f3, - (age —45) + f3, - woman - (age — 45) cabodds cancer age
Plot07 ) - men g — mn | 1  }|)---------——p—_———————————p -
—=" women / — = women age | cases controls odds [95% conf. Intervall
2 Y N et et R e e L L L ELLELEEE PR
-1 /’ // 25-34 | 2 116 0.01724 0.00426 0.06976
/ 3 / 35-44 | 9 190 0.04737 0.02427 0.09244
,/ ,/ 45-54 | 46 167 0.27545 0.19875 0.38175
/s / 55-64 | 76 6 0.45783 0.34899  0.60061
. J 2 / 65-74 | 55 106 0.51887 0.37463 0.71864
b yd s | / >=75 | 13 31 41935 0.21944  0.80138
[}
8 ,’ ] //’ ““““““““““““““““““““““““““““““““““
(=% . . 1
2] ~———d] / Few events in reference group= wide CI's
,’ o —— L/ tabodds cancer age,=orT
I, | H#M ————————————————————————————————————————————————————————
251 ,/ ! ,/’ age || odds Ratio chi2 P>chi2 [95% cConf.|Interval]
/ s - o Rt it bttt
/ g 25-34 || 1.000000 ) ) . .
/ 35-44 | 2.747368 1.76 0.1843 0.579474 13.025660
I _— o I 45-54 || 15.976048 24.18 0.0000 3.588609 71.123412
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70 55-64 | 26.554217 41.14 0.0000 5.834718 120.850133
Age in Years Age in Years 65-74 | 30.094340 43.99 0.0000 6.278745 144.243682
The estimated relationship o) e 2980 90000 LAanmeR M MR
Morten Frydenberg Linear and Logistic regression - Note 3 37 Morten Frydenberg Linear and Logistic regression - Note 3 38
The case control example , The case control example
char age [omit]l
xi:logit cancer 1i.smoker i.age,or
tabodds cancer age i.smoker _TIsmoker_0-1 (naturally coded; _Ismoker_0 omitted)
"""""""""""""""""""""""""" i.age _Iage_1-6 (naturally coded; _Iage_1 omitted)
age | cases controls odds [95% conf. Interval] Tteration O: Tog Tikelihood = -496.55682
""" S R A Iteration 1: Tog Tikelihood = -437.55133
25-34 | 2 116 0.01724 0.00426  0.06976 Iteration 2: Tlog likelihood = -429.86007 w " .
35-44 | 9 190 | 0.04737 0.02427  0.09244 Tteration 3: log likelihood = -428.99383 Many" iterations
45-54 | 46 167 0.27545 0.19875  0.38175 Iteration 4: Tog likelihood = -428.94473
55-64 | 76 166 0.45783 0.34899  0.60061 Iteration 5: Tog likelihood = -428.94432
65-74 | 55 0.51887 0.37463  0.71864 Iteration 6: loa Jikeljhood = -428.94432
>=75 | 13 31 41935 0.21944  0.80138 Logit estimates Number of obs = 977
_________________________________________________________________ LR chi2(6) = 135.23
L} U . U .
Many' events in reference group= narrow CI's Prob > chi2 = 0.0000
Log Tikelihood = -428.94432 Pseudo R2 = 0.1362
tabodds_cancer age orl base(3)| _________________________________________________________________________
——————————————————————————————————————————————————————————————————————— cancer | Oodds Ratio std. Err. z P>|z| [95% conf. Interval]
age || odds Ratio chi2 P>chi2 [95% conf.|Intervall | fe—emomooo e,
—————— R B B _tsmoker_1 |  2.350  .4513038 4.45  0.000 1.613342  3.424472
25-34 | 0.062594 24.18 0.0000 0.014060 | 0.278660 _Tage_2 | 2.832 2.24368 1.31 0.189 .5995103 13.3798
35-44 | 0.171968 25.86 0.0000 0.079661 v 0.371235 _Iage_3 | 16.58 12.17378 3.82 0.000 3.932286 69.91422
45-54 | 1.000000 . . : : _Iage_4 | 27.89 20.32374 4.57 0.000 6.691356 116.3235
55-64 | 1.662127 5.54 0.0186 1.083844 2.548952 _Tage_5 | 34.79 25.59029 4.83 0.000 8.231516 147.0764
65-74 | 1.883716 7.32 0.0068 1.181689  3.002809 _Tage_6 | 27.71 21.89267 4.21 0.000 5.891878 130.3509
>=75 | 1.522440 1.30 0.2546 0.734799 3.154365 | | =00 femmmmemmm e
/TA;FT_eF\_F;yJe_nB;r_g _________ Linear and Ijo_g_is_‘ri_c_r‘_e_glje_s;i_oa_-_l\l_o_fgé _____________________ 39 Morten Frydenberg Linear and Logistic regression - Note 3 40
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The case control example

char age [omit]3
xi:logit cancer i.smoker i.age,or

Thursday, 17 November 2005

i.smoker _Ismoker_0-1 (naturally coded; _Ismoker_0 omitted)
i.age Tage_1-6 (naturally coded; _Iage_3 omitted)
Iteration O: Tog 1ikelihood = -496.55682
Iteration 1: Tog likelihood = -437.55133
Iteration 2: Tog Tikelihood = -429.86007
Iteration 3: Tog Tikelihood = -428.99383
Iteration 4: Tog likelihood = -428.94473
Iteration 5: Jlog likelihood = -428,94432
Logit estimates Number of obs = 977
LR chi2(6) = 135.23
Prob > chi2 = 0.0000
Log Tikelihood = -428.94432 Pseudo R2 = 0.1362
cancer | odds Ratio std. Err z P>|z]| [95% conf. Interval]
___________ e
_Ismoker_1 | 2.3504 .451303 4.45 0.000 1.613343 3.424469
_Tage_1 | .0603 .0442767 -3.83 0.000 .0143051 .2542718
_Tage_2 | .1708 .0652397 -4.63 0.000 .0807999 .3610977
_Tage_4 | 1.6826 .3701188 2.37 0.018 1.093327 2.58953
_TIage_5 | 2.0984 .5042862 3.08 0.002 1.31025 3.360918
_Tage_6 | 1.6713 .6277714 1.37 0.171 .8005146 3.489699
Morten Frydenberg Linear and Logistic regression - Note 3 41

Things to look out for in the output

In general:

Wide CT's or large standard errors in a logistic regression
indicates that at least one group has few events!

Many iterations in a logistic regression indicates that some
of the parameters are hard to estimate.
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Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald to test if several
coefficients could be zero .

An other way to “"compare” two models is by a likelihood
ratio test.

In the logistic regression output from STATA we find a
likelihood ratio test comparing the fitted model with the
model with no dependent variables the constant odds model:

LR chi2(6) = 135.23
Prob > chi2 = 0.0000

The conclusion: The model with smoker and age is statistical
significant better, than a model assuming the same odds, risk
for everybody.
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Linear and Logistic Regression: Note 3

Comparing two models: the likelihood ratio test
One can compare two models with a likelihood ratio test if:
*The two models are fitted on exactly the same data set.

*The two models are nested, i.e. one can go from one model
to the other by setting some coefficients to zero.

In STATA the test is found in this way:
xi:logit cancer 1i.smoker i.age
estimates store modell

xi:logit cancer 1i.smoker

estimates store model2

Trtest mode1l model2

Output:
Tikelihood-ratio test LR chi2(5) = 120.82
(Assumption: model2 nested in modell) Prob > chi2 = 0.0000

i.age adds statistical significant information to the model
only containing smoking!

Morten Frydenberg Linear and Logistic regression - Note 3 44
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Logistic regression model in general

k
In(odds) = 3, +z,b’p ‘X,
p=1

This is based on three assumptions:

a. Additivity on log-odds scale: The contribution from each
of the independent variables are added.

b.Proportionalty: The contribution from independent variables
is proportional to it is value (with a factor f)

c. No effectmodification: The contribution from one
independent variables is the same whatever the values are
for the other.

Note a. can also be formulate as multiplicativity on odds scale
odds = odds, - OR" - OR* ---- OR}*
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Thursday, 17 November 2005

Logistic regression model in general
In(odds) = 3, +Zk: X,
If one consider two persons whlz;ldiffer' with
Ax;inx;, Ax, inx,..and Ax, in x;

then difference in the log odds is :
k
2,4,
p=l

Again we see that the contribution for each of the
explanatory variables:

are added,

are proportional to the difference

and does not dependent of the difference in the other

on the log odds scale.
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Logistic regression model in general
k
In(odds) = p3, +Z,BP ‘X,
If one consider two persons wh[é)ZIdiffer' with
Ax;inx,, Ax, inx, .. and Ax, in x,
then odds ratio :
OR = OR™ -OR}™---- OR™

Note the model might also be formulated:
k
exp(ﬁo + Zﬂp ’ ‘xp)
— -1 = p=1
ln(p)—ln(Pr[Y—l])— -
1+exp(ﬁ’0 +Zﬂp -xpj
p=1
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Linear and Logistic Regression: Note 3

Logistic regression model in general
k
In(odds) = f3, +z,5p ‘X,
p=1

The data: Y =1/0 dichotomous dependent variable

X}, X, .. X, independent/explanatory variables

Like in the normal regression models it is assumed that the ¥'s
are independent given the explanatory variables.

This assumption can, in general, only be checked by
scrutinising the design.

Look out for data sampled in clusters:
Patients within the same GP
Children within the same family

Twins.
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Logistic regression model in general
Estimation:

Excepting the two by two tables, there are no closed form for
the estimates.

The distribution of the estimates are not known.
Estimates are found by the method of maximum likelihood.
Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based
on asymptotics.

That is, all statistical inference are approximate.

The more data - the more events -the better the
approximations.
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