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Multiple linear regression 1 Why do we need a multiple regression
Morten Frydenberg ©
Institut for Biostatistik The simple linear regression model only models how the

dependent variable, y, depend on one independent variable

Why do we need multiple linear regression. -
(covariate) , x;.

An example ) ] ) )
Interpretation of the parameters We are often interested in how several independent variables,

The general model Xy , Xy .., %, influence the dependent variable , y.

The assumptions. Sometimes we want to adjust the influence of some of the
The parameters. information, such as age and sex, before we look at the
Estimation. ‘effect’ of other variables.

The distribution of the estimates
Confidence intervals
The F-test , R-squared

Checking the model
Fitted values, residuals and leverage
Extending the model
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A multiple linear regression model Interpretation of the coefficients O - the constant
We will here start by considering a random subsample In(sbp) B, -age+ f, - woman+ f5, -In(bmi) + E
consisting of 200 persons from the Frammingham data set The first coefficient (the constant term) is the expected
used in the book. In(sbp) for
A multiple linear regression model: a man (that is ok!)
In(sbp) = f, + 3, - age+ B, - woman+ [, -In(bmi) + E age=0 722222
Where the errors, E, are assumed to be independent and bmi=1 kg/m? 222222 (In(1)=0).
normal with mean zero and standard deviation o. As in the simple linear regression this not of any inferest.
Note, that variable woman is a dummy/indicator variable, But again we can control the interpretation, by choosing
that it is relevant reference values for age and bmi. E.g. i
one if the person is a woman and 1 _ mi
P n(sbp)=a,+ f -(age—45)+ f, -woman+ f, -In| — |+ E
zero if it is a man. (sbp)=a;,+ 5, (ag )+ 5 P 25
=] [ospurzs]
Morten Frydenberg Linear and Logistic regression - Note 2.1 3 Morten Frydenberg Linear and Logistic regression - Note 2.1 4

Linear and Logistic Regression: Note 2.1 1



Morten Frydenberg

Thursday, 17 November 2005

Interpretation of the coefficients 1
ln(sbp) =4, age+ f3, - woman+ f3, -ln(bmi) +E
The expected In(sbp) for a man with bmi=27 kg/m? is:
B+ B -age+ B, -In(27)
The expected In(sbp) for another man with the same bmi, but
I.7year older: s | 5 (age+1.7)+ B, In(27)
The difference is: 1.7/,
We see that this difference

-does not depend on the age of the first man.

-does not depend on the bmi as long as it is the same for the
two men.

‘would be the same if the two persons were women.
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Interpretation of the coefficients 2
In(sbp) =S, + p, -age woman+ f3,-In(bmi)+ E
The expected In(sbp) for a 50 year old man with bmi=27
kg/m? is: B+ B,-50+ 3, -n(27)
The expected In(sbp) for woman with the same age and bmi
B, + B,-50+ S, + B, -In(27)
The difference is: /3,
We see that this difference

-does not depend on the age as long as it is the same for the
two persons.

*does not depend on the bmi as long as it is the same for the
two persons.
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Interpretation of the coefficients 3
In(sbp)=f,+ f,-age+ f3, - womanln(bmi) +E
The expected In(sbp) for a woman who is 50 year old:
By + 5,50 + B, + f, - In(bmi)
The expected In(sbp) for another woman with the same age,
but with a bmi which is 10% higher:

Lo+ 5,50+ B, + B, -In(1.1-bmi)
The difference /3, [ In(1.1-bmi)—In(bmi) | = /3, -In(1.1)
We see that this difference

*does not depend on the bmi of the first woman.

-does not depend on the age as long as it is the same for the
two women.

‘would be the same if the two persons were men.
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Interpretation of the coefficients 4

In(sbp)=f,+ f,-age+ f3, - womanln(bmi)+E
f,-| In(1.1-bmi) —In(bmi) | = 8, -In(1.1)

As the bmi is introduced on the log-scale, then “differences "
of this variable is measured relatively.

So comparing a pair of persons how only differ in bmi .
One having bmi=25 kg/m? and the other bmi=27 kg/m? .

Then the expected difference in In(sbp) is:

B, -h{ﬁj _ 5,.0077
If the bmi's were 21 kg/m? and 25
23 kg/m? , then the expected

difference in In(sbp) would be: S, -In (%j = /3,-0.091
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Interpretation of the coefficients 5 The multiple linear regression in general
In(sbp)|= B, + B, - age+ 3, - woman + [3, - In(bmi) + E % the dependent variable
Taking the exponential we get: (X1, X5 5000X) the independent variables.
pr — 7/0 . ?/lage A 7/2w0man A bn/”/)’; 3 eXp(E)
S 2
where 7, =exp(/3,), 7 =exp( )and 7, =exp(3,) Y=8+Y B, x,+E E~N(0,0")
p=1
That is a non-linear model on the sbp scalel This model is based on the assumptions:
. T . k
The error is multiplicative. 1. The expected value of Yis /3 + Z X,
As medians are preserved by the exponential transformation p=l
then the estimates telling of effect on the median sbp. 2. The unexplained random deviations are independent.
An example: The age and bmi adjusted median is a factor » 3. The unexplained random deviations have the same
higher for man than for women. distributions.
4. This distribution is normal.
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The multiple linear regression in general The assumption of linearity
k
k
_ ) _ 2 The expected value of Yis S, + ) B, -x,
Y_/)’O+pz:;ﬂp x,+E E~N(0,07) P 0 pz:« o

We see that the assumptions fall is two parts: This is based on three (sub) assumptions:
a. Additivity: The contribution from each of the independent
and the three other which focus on the error, the unexplained variables are added.

random variation.

The first concerning the systematic part

b.Proportionalty: The contribution from independent variables
Before we turn to how one can check some of the assumptions is proportional to it is value (with a factor /)

we will take a closer look at the first assumption. . L
c. No effectmodification: The contribution from one

x independent variables is the same whatever the values are
The expected value of Yis /3 + Z B,-x, for the other.

p=1
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The assumption of linearity Estimation
k
The expected value of Yis  f5,+ > .53, -x It is almost impossible to find the estimates by hand, but easy
P P .
= if you use a computer.
If one consider two persons who differ with In STATA: regress 1nSBP age45 woman 1nBMI25
Ax, inx;, Ax, in x, .. and Ax, in x, (Note first we have to generate 1nSBP,age45, woman and
1nBMI25)

then differ‘ence in the expecTed value Of Yis: Source | Ss df MS Number of obs = 200
--------- e F( 3, 196) = 16.46
L Model | 1.05572698 3 .351908994 Prob > F = 0.0000
Zﬁ) . Ax Residual | 4.18969066 196 .021375973 R-squared = 0.2013
- F pe e o Adj R-squared = 0.1890
p= Total | 5.24541764 199 .026358883 RoOt MSE = .14621
Again we see ‘rhf:n” the contribution for each of the S PP T (5% conf. imterval]
explanatory variables: [T S
woman |  .0036329  .0208905 0.17 0.862  -.0375662  .0448319
are added, ] . age45 |  .0065384  .0012844 5.09  0.000 .0040053  .0090715
are proportional to the difference TnBMI25 |  .2583399  .0758295  3.41 0.001  .1087934  .4078864
and does not dependent of the differences in the other _eons 14850592 01206 i4-82  0.000 | 4826169 4887010

Morten Frydenberg Linear and Logistic regression - Note 2.1 13 Morten Frydenberg Linear and Logistic regression - Note 2.1 14

Estimation Estimated systematic part
The last part of the output: No CI for o! ( bmq
It can be calculated by hand In(sbp) = 4.857 +0.0065 - (age —45) +0.0036 - woman + 0.258 - In —
o "1 protot *1
| Root mse = .14621f /
TnsBP | coef std. Err t P>|t]| [95% Conf. Interval] 5 5 /
woman T .0036329 .0208905 -.0375662 .0448319 . _ /
age45 | .0065384 .0012844 . . .0040053 .0090715 & 4.9 & 4.9
Tnemr2s || .2583399 ||.0758295 3.41 \0.001 .1087934  .4078864 e Agg / ¢ “7|BMI /
_cons | 4.856592 .0154266 0.000 4.826169 4.887016 B 55 7 B ;5 /
_________________ N ______________________‘_______ ‘é’- 4.8+ 50 39)- 4.8
the f's The CI's ) as // * ] s ///
40
477 35 / 4.7 20
Test for S, =0 30
The hypothesis: "no difference in In(sbp) between men and o5 ol 12
women adjus-'-ed fOI" age and bmi” 15 20 Br%/ﬁ 30 35 40 25 30 35 40Age45 50 55 60
age=45 bmi=25 age=50 bmi=35
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The distribution of the estimates Confidence intervals
It can be shown that the estimates of the coefficients have Just like in the simple regression we get :
normal distributions, with means equal to the true values. (except we have n+k-1 degrees of freedom).

The formulas for the standard deviation of the estimates
are complicated, but they are estimated by the standard
errors given in the output.

Exact 95% confidence intervals , CT's, for /3, is found from
the estimates and standard errors

95% CI for 3, : 3, 21 -se( 3
The estimated standard deviation of the errors is given by: ’ Fyib, o (ﬂ])

Where 1)°7, is the upper 97.5 percentile in the t-
o o > The number of distribution n-k-1 degrees of freedom.
G ~—_—

n—k—1 x (n _Q/ parameters are k+1

Which gives the confidence interval:

These confidence intervals are found in the output.

Note that if n-k-1 is large then this percentile is close to
1.96 and one can use the approximate confidence intervals:

n—k-1 n—k-1
95% CI foro:6- ——F——<0<6 [——— . (A)
Zj_k_1(0-975) Zj_k_1(0~025) APPI"OX. 95% CI for ﬂ/) : ﬂ/) +1.96-se ﬂl
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The ANOVA table and the F-test The F-test and R-squared
The first part of the output: The F- test calculated as: F = w =16.16
. . . . 0.02138

An analysis of variance table dividing the variation iny

in two components: explained by the model (i.e. the 3 souree ss - s E‘(‘”‘b‘;'" °flgg§ R

variables) and the residual (the rest) Model | 1.05572698 3] [351908994 Prob > F = 0.0000

' Residual | 4.18969066 | 196| .021375973 [R=squared = 0.2013]
| O =S [AdL R-squared - 0.1890]

source | s aF s Number of obs - 200 Total | 5.24541764/199 .026358883 ROOt MSE = 14621

--------------------------------------- FC 3, 196) = 16.46 — ——
Mode1 T 1.05572698 3 .351908994 Prob > F = 0.0000 And under the hypothesis it follows an F-distribution
Residual | 4.18969066 196 .021375973 R- d = 0.2013 :
eI e Ad} Rosquared - 0.1890 with 3 and 196 degrees of freedom.
Total | 5.24541764 199 .026358883 RoOt MSE = .14621
The R-squared is the amount of the fotal variation explained

A F-test testing the hypothesis: “all (except £, ) is zero." by the model(=1.0557/5.2454).
Here the test is highly significant: The model explains a As this will increase if we include more variables in the model
statistically significant part of the variation in y! one can look at the adjusted R-squared.
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Predicted valuei, residuals and leverages
Y=+ 8, x,+E E~N(0,07)

p=1

As in the simple linear regression on can find predicted values,
residuals, leverages and standardized residuals:

A k A
yi :IBO+Z 4 .xpi

p=1

Predicted value:

k

Residual : L=y, =V = Y, —Z:,ﬁ,, "Xy
=
Leverage: h, = a complicated formula
Standardized-Residual: 7 =— i
o\1-h
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Leverage

Although the formula the leverage is complicated, the
interpretation of leverage is the same:

A high leverage indicates that the data point has extreme
values of the explanatory variables and hence a high influence
on the estimates.
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Checking the model 1:

As model is much more complicated than the simple linear
regression checking the model is also complicated

Again assumption no. 2: the errors should be independent, is
mainly checked by considering how the data was collected.

The distribution of the error is checked by the same type of
plot as for the simple linear regression.

*Histogram and qq-plot of the residuals.
*Plots of residuals versus fitted
*Plots of residuals versus each of the explanatory variables.

Data points that stick out is found by identifying points with
large leverages and/or large residuals.
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Linear and Logistic Regression: Note 2.1

Checking the model 2: Independent errors ?

Assumption no. 2: the errors should be independent, is mainly
checked by considering how the data was collected.

The assumption is violated if

some of the persons are relatives (and some are not) and the
dependent variable have some genetic component.

some of the persons were measured using one instrument and
others with another.

*in general if the persons were sampled in clusters.
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Checking the model 3: Extending the model

One should also try to checked the validity of the linearity
assumption that is the assumption of additivity,
proportionality and no effect modification (no interaction).

It can be done by:

1. Introducing an the explanatory variable in a different
scale, e.g. adding age? or log(age) ....

2. Introducing the explanatory variable as a categorical
variable instead e.g. use age in divided into agegroups
instead as age in years.

3. Introducing interaction between some of the eplanatory
variables.

4. ..
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