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Predicted values and residuals.

Do the errors have the same distribution?
Normal errors?

Two examples, where the model is not valid.
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Simple linear regression: The model

Let Y; and x; be the data for the ith person.
Y,=p,+pB x +E E ~N(0,0)

This model is based on the assumptions:

1. The expected value of Y is a linear function of x.

2. The unexplained random deviations are independent.

3. The unexplained random deviations have the same
distributions.

4. This distribution is normal.
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Checking the model: Independent errors ?

Assumption no. 2: the errors should be independent, is mainly
checked by considering how the data was collected.

The assumption is violated if

some of the persons are relatives (and some are not) and the
dependent variable have some genetic component.

some of the persons were measured using one instrument and
others using another.

*in general if the persons were sampled in clusters.
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Predicted values and residuals

Y= +pB x+E E ~N(0,0)
Based on the estimates we can calculate the predicted (fitted)
values and the residuals:

Predicted value: 3, =/, + 5 - x,
Residual: rz‘:yz‘_}A’izyt'_(ﬁo'i'B]'xi)

The predicted value is the best guess of y; (based on the
estimates) for the ith person.

The residual is a guess of E; (based on the estimates) for the
ith person.

STATA: predict PEFR_hat if e(sample), xb
predict PEFR_res 1f e(sample),resid
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Checking the model: Checking the model:
Linearity and identical distributed errors Linearity and identical distributed errors
. | No problems! Except this outlier
Assumption no. 1:
The expected value of Y is a linear function of x. 00T ot /
Assumption no. 3: 200 *¥ no83
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Checking the model: Checking the model: Normal errors ?
Linearity and identical distributed errors . o
Ty Assumption no. 4: the errors should be normal distibuted.
| i i - . .
| No problems! Exce/pf this outlier This is checked by making histograms or qq-plots of the
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Not perfect, a bit skew. Notice this point
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Assumptions violated: Example 2 Assumptions violated: Example 2
The relation between GFR and Serum Creatinine Checking the model Close to normal
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Clear!ly non-linear! Linear prediction Cr mg/100 ml
Clearly not constant mean!
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Assumptions violated: Example 3 Assumptions violated: Example 3
The relation between GFR and 1/Serum Creatinine Checking the model Close to normal
200 30
Plot06
1507 § 10- g
E 01, -100-
£ 100 -100 50 0 50 50 0 50
E Plot07 Residuals Inverse Normal
(0
1004 100
50
504 . 504
S oo . 2 oq
07 T T &) e ?.. ° &)
0 5 1 15 2 25 507 . 50
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Linear prediction 1/Cr (100ml/mg)
Increasing vamahon!l Increasing variaﬁon!l |Incr'easing variafion!l
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Influential data points: Example 4 Influential data points: Leverage

The influence of a data point is sometime measured
by its | : —
y its leverage 1 (x - x)2
26 h=—+—u"w -
Plot08 " on % —\?
2(x,-%)
j=1
Large values imply that the estimates and/or the standard
errors is highly influenced by this observation.

Not all data points have the same influence on the estimates:

24+

Fitted line with
all the points

22 | included 0<h,;<l1
Fitted line with the Notice, it is a function only of the independent variable, x and
red point excluded the sample size.
207 ° . .
‘ ‘ ‘ ‘ ‘ The leverage for a given data point depends on how far away
4 6 8 10 12 its independent variable is from the average value.
The data point works like a leverage (veegtstang). STATA: predict PEFR_lev if e(sample), leverage
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Influential data points Leverage Types of residuals: Standardized residuals
A leverage versus independent variable for the The (unstandardized) residual: L=y, = ( B, + 5 -xl.)
example on page 13.
T 0 Plot09 Has mean zero but non-constant variance: sd(r,)=0o41-1h
7] I. e. residuals from points with high leverage have smaller
g variance, than residuals from points with small leverage.
g a . . .
3 ° Due to this one often use the standardized residual:
.25+ ’,;
7 =
eeo’ i ~
oo 64\1-h,
07 T T T T T
4 6 8 10 12 . . . . .
x This will have variance 1, if the model is true.
I. . [} 1
T.he data point with the ‘extreme’x value has very STATA: predict PEFR_zres if e(sample),rstandard
high leverage - as expected. _
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Influential data points? Example 5
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Small leverage but standardized residual large!
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Influential data points? Example 4
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Standardized residuals
Large leverage and standardized residual large!
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Influential data points? Example 6
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Standardized residuals
Large leverage but standardized residual ok!
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Influential data points? Example 6

Results with using all data:

Root MSE = 1.0282
777777 y | coef. std. Eer.  t  Pslt|  [95% Conf. Intervall
777777 | aeasea 1ssasis .62 0.002  asedoas  1.113452
cons | 16.1386 1.78019 9.07 0.000 11.92912 20.34808
Results without the point with high leverage:
Root MSE = 1.1099
777777 y | Coef. std. Ere.  t  P>ltl  [95% Conf. Interval]
77777777 T T
x | .8080605 .8563254 0.94 0.382 -1.287292 2.903413
|

_cons 15.2985 10.02669 ‘\153 0.178 -9.235928 39.83292

Point estimates unchanged | Standard errors much larger.

Confidence intervals much
wider.
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The PEFR example: leverage and standardized residuals
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Leverages are small, observation no. 83 has large residual
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The PEFR example: Excluding observation no 83
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Some comments on checking a (simple) linear regression
Always consider the design: How was the data collected?
This has implications for the validity of the statistical model.
And it has implications for the interpretation of the results.

Observations with high leverages have ‘extreme’ values of the
independent variable.

These observation will have high impact on the results, but
might not be 'representative’.

Sometimes it is best to exclude these from the analysis.

Observation with large residuals, that is observed y value far
away from expected, should be checked for errors.
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Prediction interval for future value
The true line is given as : y=p08,+p5x
and estimated by plugging in the estimates = ,5’0 + ,31 - X
The standard deviation for a new observation is given by:

sd(,@ﬁﬁ’l -x+E)=6'\/1+%+£z;—f);)2

with the 95% (pointwise) prediction interval
B+ B x £t -sd(,bA’0 + - x+ E)

Many programs can make a plot with the fitted line and its
prediction limits.

In STATA its done by the 1fitci and graph command, the
option stdf
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Prediction interval for future value

twoway ///
(scatter PEFR height, mco(blue) msym(O)) ///
(lfitci PEFR height, stdf clpat(l) cip(rline) ) ///
,legend (off) ytit ("PEFR (1/min)")
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