

Regression
Simple Linear regression
Morten Frydenberg ©
Institut for Biostatistik

Regression in general

Simple linear regression.

- The model.
- The assumptions.
- The parameters.
- Estimation.
- The distribution of the estimates
- Confidence intervals
- Changing the reference value and scale for x
- Tests

The example: Summarising

Morten Frydenberg Linear and Logistic regression - Note 1.1 1

Regression in general

A regression model can be many things!

In general it **models** the relationship between:

y : **dependent/response**
and a set of
 x 's: **independent/explanatory variables**.

The dependent variable is **modelled** as a function of the independent variable plus some unexplained random variation:

$y = f(x; \theta) + e(\sigma)$

Systematic part Random part

Unknown Parameters Unknown Parameters

Morten Frydenberg Linear and Logistic regression - Note 1.1 2

Regression in general

$$y = f(x; \theta) + e(\sigma)$$

Some examples:

$$pefr = \beta_0 + \beta_1 \cdot height + E$$

$$pefr = \beta_0 + \beta_1 \cdot height + \beta_2 \cdot height^2 + E \quad \text{and } E \sim N(0, \sigma^2)$$

$$gfr = \exp(\beta_0 + \beta_1 \cdot \ln[Cr]) + E$$

$$conc(t) = dose \cdot V \cdot [\exp(-\lambda_{abs} \cdot t) - \exp(-\lambda_{eli} \cdot t)] + E$$

The first two are **linear** regressions, the last two **non-linear**.

In this course we will **focus** on the **linear** regressions.

Morten Frydenberg Linear and Logistic regression - Note 1.1 3

Simple linear regression

The relationship between measured **PEFR** and **height** in 101 medical students.

A model: $PEFR = \text{line} + \text{some random variation}$ seems to be valid.

Morten Frydenberg Linear and Logistic regression - Note 1.1 4

Simple linear regression: The model

Let $PEFR_i$ and $height_i$ be the data for the i th person.

$$PEFR_i = \beta_0 + \beta_1 \cdot height_i + E_i \quad E_i \sim N(0, \sigma^2)$$

This model is based on the **assumptions**:

1. The **expected** value of $PEFR$ is a **linear function** of $height$.
2. The **unexplained** random deviations are **independent**.
3. The unexplained random deviations have the **same distributions**.
4. This distribution is **normal**.

Morten Frydenberg

Linear and Logistic regression - Note 1.1

5

Simple linear regression: The parameters

$$PEFR_i = \beta_0 + \beta_1 \cdot height_i + E_i \quad E_i \sim N(0, \sigma^2)$$

The model have **three** unknown **parameters**:

1. The **intercept** β_0
2. The **slope** (or **regression coefficient**) β_1
3. The **residual variance** σ^2 or **residual standard deviation** σ .

The **interpretation** of the parameters:

β_0 is expected $PEFR$ of a person with $height=0$.

Obviously, this does not make sense.

We will later look at how one can get a meaning full estimate of the general level of $PEFR$!

Morten Frydenberg

Linear and Logistic regression - Note 1.1

6

Simple linear regression: The parameters

$$PEFR_i = \beta_0 + \beta_1 \cdot height_i + E_i \quad E_i \sim N(0, \sigma^2)$$

β_1 is the **expected difference** in $PEFR$ for two persons who differ with **one unit** (here cm) in $height$.

If a person is 6 cm higher than another, then we will expected that his $PEFR$ is $6\beta_1$ higher than the other.

σ is best understood by the fact that a **95%-prediction** interval around the line is given by $\pm 1.96\sigma$.

Morten Frydenberg

Linear and Logistic regression - Note 1.1

7

Simple linear regression: The estimates (by hand)

$$PEFR_i = \beta_0 + \beta_1 \cdot height_i + E_i \quad E_i \sim N(0, \sigma^2)$$

The estimates of the parameters are found by the method of **least square**, which, for this model, is equivalent to the **maximum likelihood** method.

The estimates can be calculated in hand, but they are of course found much easier by using a computer program.

$$\hat{\beta}_1 = \frac{\sum (y_i - \bar{y})(x_i - \bar{x})}{\sum (x_i - \bar{x})^2} \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \cdot \bar{x}$$

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 \cdot x_i)^2 = \frac{1}{n-2} \sum r_i^2$$

Morten Frydenberg

Linear and Logistic regression - Note 1.1

8

Simple linear regression: The estimates (by computer)

In STATA we fit the model by the command

```
regress PEFR height
```

n: Always check this

Source	SS	df	MS
Model	226303.854	1	226303.854
Residual	320519.473	99	3237.57044
Total	546823.327	100	5468.23327

Number of obs = **101**
 $F(1, 99) = 69.90$
 $P > F = 0.0000$
 $R\text{-squared} = 0.4139$
 $Adj R\text{-squared} = 0.4079$
 $Root MSE = 56.9$

PEFR	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
height	5.711578	.6831558	8.36	0.000	4.356049 7.067107
_cons	-456.9205	117.9567	-3.87	0.000	-690.9721 -222.869

$\hat{\beta}_1$ $\hat{\beta}_0$ $\hat{\sigma}$
Standard errors **95% confidence intervals**

Morten Frydenberg Linear and Logistic regression - Note 1.1 9

Simple linear regression: The distribution of the estimates

$$\hat{\beta}_1 \sim N\left(\beta_1, \sigma^2 \frac{1}{\sum(x_i - \bar{x})^2}\right)$$

$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum(x_i - \bar{x})^2} \right]\right)$$

$$se(\hat{\beta}_1) = \hat{\sigma} / \sqrt{\sum(x_i - \bar{x})^2}$$

$$se(\hat{\beta}_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum(x_i - \bar{x})^2}}$$

$$\hat{\sigma}^2 \sim \frac{\sigma^2}{n-2} \chi^2(n-2)$$

Some comments:

The precision of the estimates of β_1 and β_0 depends on the size of the variation around the line.

The precision of the estimate of β_1 increases with the variation of x 's

Morten Frydenberg Linear and Logistic regression - Note 1.1 10

Simple linear regression: Confidence intervals

Exact 95% confidence intervals, CI's, for β_0 and β_1 are found from the estimates and standard errors

$$95\% \text{ CI for } \beta_1: \hat{\beta}_1 \pm t_{n-2}^{0.975} \cdot se(\hat{\beta}_1)$$

$$95\% \text{ CI for } \beta_0: \hat{\beta}_0 \pm t_{n-2}^{0.975} \cdot se(\hat{\beta}_0)$$

Where $t_{n-2}^{0.975}$ is the upper 97.5 percentile in the t-distribution $n-2$ degrees of freedom.

These confidence intervals are found in the output.

Note that if n is large then this percentile is close to 1.96 and one can use the **approximate confidence intervals**:

$$\text{Approx. } 95\% \text{ CI for } \beta_1: \hat{\beta}_1 \pm 1.96 \cdot se(\hat{\beta}_1)$$

$$\text{Approx. } 95\% \text{ CI for } \beta_0: \hat{\beta}_0 \pm 1.96 \cdot se(\hat{\beta}_0)$$

Morten Frydenberg Linear and Logistic regression - Note 1.1 11

Simple linear regression: Confidence intervals

Exact 95% confidence intervals, CI's, for σ using the χ^2 distribution with $n-2$ degrees of freedom.

$$95\% \text{ CI for } \sigma: \hat{\sigma} \cdot \sqrt{\frac{n-2}{\chi_{n-2}^2(0.975)}} \leq \sigma \leq \hat{\sigma} \cdot \sqrt{\frac{n-2}{\chi_{n-2}^2(0.025)}}$$

Where $\chi_{n-2}^2(0.975)$ is the upper 97.5 percentile and $\chi_{n-2}^2(0.025)$ the lower 2.5 percentile in the χ^2 -distribution $n-2$ degrees of freedom.

This confidence interval is **rarely** given in the output!

Using STATA we find:

```
display 56.9*sqrt(99/invchi2(99,0.975))
49.95859
display 56.9*sqrt(99/invchi2(99,0.025))
66.099322
```

Morten Frydenberg Linear and Logistic regression - Note 1.1 12

Changing the reference value and scale for x

$$PEFR_i = \beta_0 + \beta_1 \cdot height_i + E_i \quad E_i \sim N(0, \sigma^2)$$

In this model the parameter β_0 does not make sense.

But if we consider the **equivalent** model:

$$PEFR_i = \alpha_0 + \alpha_1 \cdot (height_i - 170\text{cm}) + E_i \quad E_i \sim N(0, \sigma^2)$$

then α_0 is the expected PEFR of a person with height 170cm.

The two other parameters are unchanged, i.e. $\beta_1 = \alpha_1$ and $\sigma = \sigma$.

If **HEIGHT** denote the height in m, i.e. **HEIGHT** = $height/100$

and we consider the equivalent model:

$$PEFR_i = \gamma_0 + \gamma_1 \cdot HEIGHT_i + E_i \quad E_i \sim N(0, \sigma^2)$$

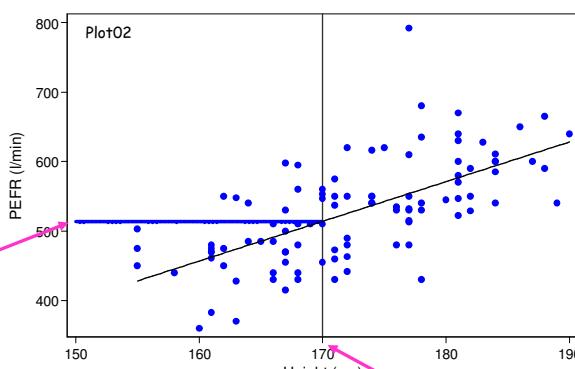
then $\gamma_1 = 100 \cdot \beta_1$, $\gamma_0 = \beta_0$ and $\sigma = \sigma$

Morten Frydenberg

Linear and Logistic regression - Note 1.1

13

Expected PEFR for a person with height=170cm



New reference for height

Morten Frydenberg

Linear and Logistic regression - Note 1.1

15

Simple linear regression: The intercept

Let us fit the model with a **meaningful** intercept/constant:

generate `height170=height-170`

`regress PEFR height170`

Source	SS	df	MS	Number of obs	101
Model	226303.854	1	226303.854	F(1, 99)	= 69.90
Residual	320519.473	99	3237.57044	Prob > F	= 0.0000
				R-squared	= 0.4139
				Adj R-squared	= 0.4079
Total	546823.327	100	5468.23327	Root MSE	= 56.9
PEFR	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
height170	5.7115	.6831558	8.36	0.000	4.356 7.0671
_cons	514.0477	5.906923	87.02	0.000	502.32 525.76

Nothing is changed except this

The expected PEFR for a person with height=170cm is:

514 (502;526) l/min

Morten Frydenberg

Linear and Logistic regression - Note 1.1

14

Confidence interval for the estimated line

The **true line** is given as :

$$y = \beta_0 + \beta_1 \cdot x$$

and **estimated** by plugging in the estimates

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$$

The standard error of this estimate is given by:

$$se(\hat{\beta}_0 + \hat{\beta}_1 \cdot x) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum(x_i - \bar{x})^2}}$$

with the 95% (pointwise) confidence interval

$$\hat{\beta}_0 + \hat{\beta}_1 \cdot x \pm t_{n-2}^{0.975} \cdot se(\hat{\beta}_0 + \hat{\beta}_1 \cdot x)$$

Many programs can make a plot with the fitted line and its confidence limits.

In STATA its done by the `lfitci` graph command.

Morten Frydenberg

Linear and Logistic regression - Note 1.1

16

