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When one might use logistic regression.

Some examples:
One binary independent variable. (one odds ratio).
Probabilities, odds and the logit function
One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and continuous
independent variable no interaction.

One binary independent variable and continuous
independent variable with interaction.
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Watch out for 'small' reference groups
The likelihood ratio test: comparing two nested models.
The logistic regression model in general

The model and the assumptions.

The data and the assumption of independence.

Estimation and inference
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Logistic regression models: Introduction

A logistic regression is a possible model if the dependent
variable (the response) is dichotomous dead/alive obese/not
obese etc.

Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

When working with binary response it is custom to code the
“positive” event (eg. dead) as 1 and a "negative” event alive
as 0.

A logistic regression models the probability of a "positive
event” via odds.

And the associations via odds ratio.
If the event is rare then odds ratios estimate the relative

risk.
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Logistic regression models: Introduction

A logistic regression can also be used to estimate the odds
ratios in a unmatched case-control study.

For such data the constant terms have no meaning.

And the odds ratios comparable odds ratio from a follow-up
study.

Many other epidemiological design are analyzed by logistic
regression models.
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Estimating one odds ratio using logistic regresion

We are how considering a larger part of the Frammingham
data set, consisting of 4690 person with known BMI at the
start.

We will focus on the risk obesity (BMI>30 kg/m?) .
Out of the 4690 persons 601 = 12.8% were obese.
Divided into gender

Obese Not-Obese
Women |375 (14.2%) |2268
Men 226 (11.0%) |1821

We see a higher prevalence among women: OR: 1.33 (1.12;1.59).

That is the odds of being obese is between 12 and 59 percent
higher for women.( x?>=10.2 p-value=0.001)
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Finding an odds ratio using logistic regresion

odds,
The odds ratio is defined as: OR =— "t
odds,,,,
So applying the logarithm we get:
In(OR) = In| 9% wsmes | 11 (odds,,, )~ 1n(odds,,, )
odds,,,,

And rearranging terms :
In(odds,,,,, ) = In(odds,,,, ) +1n(OR)
That is the log-odds obesity for the women can be written as
the sum of fwo terms:
*The log-odds in reference group (men)
*The log of the odds ratio
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Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
In(odds,,,,, ) = In(odds,,,, )+ 1n(OR) In(odds) = S, + f3, - woman
If we again let women be a indicator/dummy variable, then we In(odds,y,, ) In(OR)
can consider the model:
In(odds) = f, + f,- woman Or to be more precise: B, =10(OR, 1)
For men we get: In(odds) = f, So if we can fit the model above to the data, then we can

get an estimate of the log(OR) and hence of ORI
And for women: In(odds)= S, + 5,

Comparing with the equation on top we get:

B, =n(odds,,,)

and 5 =In(OR)
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Probabilities and odds Probabilities and odds
If p denote the probability of and event (the risk, the
prevalence proportion or cumulated incidence proportion) 1
then the odds is given by :
odds =—L— 8
I-p
Note: odds=1 < p=0.5 < In(odds)=0 =
g 4
In(odds) = 1n(”}
1-p 2
In mathematics the last function of p is called the “logit"
function. -
p -5 -4 -3 -2 -1| " |£(odds)1 2 3 4 5
logit =In| — ogit=
git(p)=n| = .
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Probabilities and odds Finding an odds ratio using logistic regresion

‘ln(odds) —h+B <wamun‘ logit(p)=1In(odds)= B, + B, - woman

Back to finding the estimates.
So modelling the log-odds is the same as modelling logit(p) In STATA:

and model from before could be written. char sex[omit]1
xi: logit obese 1i.sex

‘IOglt(p) = ﬁo + ﬁl . Woman‘ i.sex _Tsex_1-2 (naturally coded;
Tteration 0: 1log likelihood — -1795.5437

= -1790.370

Iteration 3: log likelihood

. ews odds Logit estimates Number of obs = 4690
Going from odds to probabilities: p=—— RPN = R |

1+ odds Prob > chi2 - 0.0013

Log likelihood = -1790.3703 Pseudo R2 - 0.0029

The model on probability scale is :

obese | Coef. std. Err. z P>|z| [95% Conf. Interval]

ex + b -woman) | |7 T T T T e e

— p(ﬁ” 'B' ) _Isex_2 | .2868784  .0898972 3.19  0.001 1106831 4630738

1+exp(/, + f, - woman) | eone [ TEesoe O7Ree R DOOD TEemER LR
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Finding an odds ratio using logistic regresion Finding an odds ratio using logistic regresion
logit(p) =In(odds) = j3, + j3, - woman logit(p) =In(odds) = S, + B, - woman
A — o An easier way to obtain the odds ratio.
ﬁl =ln(0R) 95% CI for 1{1(0R) xi: logit obese i.sex
obese | \COEEA std. Err. z P>z [95% CA\nf. Interval] i.sex _Isex_1-2 (naturally coded; _Isex_l omitted)
,,,,,,,, PO M _______ Iteration 0: log likelihood = -1795.5437
_Isex_ 2 | .0898972 [ 3.19 0.001 ] [A1106831 .4630738 ] Iteration 3: log likelihood = -1790.3703
_cons ~ .070526 729A59t 0.000 -2.224835 -1.948378 Logit estimates Number of obs = 4690
LR chi2 (1) = 10.35
// l Prob > chi2 = 0.0013
—~ o, Log likelihood = -1790.3703 Pseudo R2 = 0.0029
OR =exp(0.2868784) =1.33 95% CIL: (1.12;1.59).
obese Odds Ratio N?’{ z P>|z| [95% Conf. Interval]
Test for the hypothesis : In(OR)=0 < OR=1 _1sex_2 | 1.332262 |.147  3.19  0.001 1.117041  1.588951
Odds in reference group (men) = exp(-2.086606)=0.1241
95% CT :(0.1081:0.1425). Note, we cannot find any information about the reference
group , i.e. the odds and prevalence among men!
Prevalence among men: 0.1104 (0.0975;0.1247).
Morten Frydenberg Linear and Logistic regression - Note 3.1 13 Morten Frydenberg Linear and Logistic regression - Note 3.1 14
The obesity and age: version 1 The obesity and age: version 1
In the previous section we saw that the prevalence of obesity logit(p) =In(odds) =, + J5, - (age —45)
was different between men and women. . .
| 4 with age? The interpretation of the parameters:
Is it also associated with age:
9 [ + the log odds for 45 year old person.
The simplest model on the logit scale would be: . .
f, : the log odds ratio, when comparing two persons who
logit(p) =In(odds)= j3,+ j, - age differ 1year in age.
That is a linear relation on the log-odds scale. exp(p, ): the odds ratio, when comparing two persons who
. T differ 1 year in age.
As we have seen before using age implies that /3 references to iffer 1year in ag
a newborn (age=0). Note, that this odds ratio is assumed to be the same no
matter what age the two persons have, as long as they differ
So we will chose age=45 reference instead: by one year!
The log odds ratio is proportional to the age differences,
logit(p)=In(odds)= S, + f5, - (age —45) I prop I
e.g. OR increases exponentially with the age differences.
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =1In(odds) = S, + /3, - (age — 45) logit(p) =1In(odds) = 3, + f3, - (age — 45)
Obtaining the estimates in STATA: )
9 Estimate: /3, : —1.985 (—2.0767;—1.8951)
gene age45=age-45 .
logit obese ageds The odds for obesity for among 45 year old:
Iteration 0:  log likelihood = -1795.5437 0.1373 (0'1253;0'1503)
o o e T et of obs - 1690 The prevalence of obesity for among 45 year old:
LR chi2 (1) - 46.32
Prob > chiz = 0.0000 0.1207 (0.1114;0.1307)
Log likelihood = -1772.3839 Pseudo R2 = 0.0129
obese | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
aged5 | .0348023 .0051296 I 6.78 0.000 I .0247484 .0448561
_cons | -1.985922 .0463594 -42.84 0.000 -2.076785 -1.895059
,,,,,,,,,,,,,,,,,,,,, N\
Test for no association with age
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The obesity and age: version 1 The obesity and age: version 1
logit(p)=1In(odds)= S, + B, - (age —45)
Estimates: £, +0.0348 (0.0247;0.0449)
The odds ratio for being obese is 1.0354 (1.0251;1.0459)

when comparing the old person to the young person, if they
differ with one year in age.

Estimated relationship: In(odds)=-1.986+0.0348-(age—45)

-1

If they differ with 4.5 years then the odds ratio is 3
1.035443 (1.025143;1.04594%)=1.17 (1.12;1.22) g
2
In STATA:
logit obese age45,or
will give you the OR for one year age difference directly. el
obese | Odds Ratio d. r. z P>|z| [95% Conf. Intervall] ® % 0 “® Age\r?oYears % o0 % &
aged5 | 1.035415 /MSN 6.78 0.000 1.025057 1.045877
;A;;tiz;\iFir‘;c;e;;);rjg 77777777 Linear and Lagistic regression -Note 31 1797 Morten Frydenberg Linear and Logistic regression - Note 3.1 20
The obesity and age: version 1 The obesity and age: version 2
Estimated relationship:
exp(~1.986+0.0348 - (age - 45)) In(odds) = 5, + 5 - (age - 45)
prevalence = 1+exp(~1.986 +0.0348  (age — 45)) This model assumes that one year of age difference is
o associated with the same odds ratio irrespectively of the age.
An other way to model the prevalence could be to assume a
N step function that is to categorize age.
We will here look at age divided in seven five-years groups:
154 egen agegrp’=cut (age), at(0,35,40,45,50,55,60,120) label

prevalence

With this command the youngest age group will be number O

o / the second youngest: 1 and the oldest: 6

T T T T T
30 35 40 45 50 55 60 65 70

Agein Years
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The obesity and age: version 2 The obesity and age: version 2
fable agegrel selmin age max age count obese sum obese)row In(odds) =, + Y. @, - agei
egegrp? | min(age)  max(age)  N(obese) sum(obese) The interpretation of the paratieters:
,,,,,,,,,, .
0- | 30 34 352 23 . .
35| 35 s 573 loe &, : the log odds in reference group=the youngest.
40- | 40 44 885 93 . . .
a5 | a5 49 799 95 o : the log odds ratio, when comparing one person in age
50— 50 54 733 115 . . H
o o5 oo o o group i with one in the reference group=the youngest.
60— | 60 66 335 75
| char agegrp7[omit]0
Total | 30 66 4,690 601 xi: logit obese i.agegrp? Not all output
. . obese | Coef. std. Err. z P>z| [95% Conf. Interval]
A model that have different odds in each age group: | [ e e
6 _Iagegrp7_1 | .54833 .23915 2.29 0.022 .079603 1.017061
ln(odds):au +Za -agei _Tagegrp7_2 |  .51860  .24193  2.14  0.032 .0444155 .992787
il ! _Tagegrp7_3 | .65766 .24179 2.72 0.007 .1837537 1.13157
. . . . . . _Tagegrp7_4 | .97900 .23839 4.11 0.000 .5117642 1.44625
Where agei is an indicator for being in the ith age group _Tagegrp7.5 |  .96446  .24284  3.97  0.000 .4884941  1.440436
_Iagegrp7_6 | 1.41737 .25238 5.62 0.000 .9227081 1.912032
_cons | -2.66056 .21567 -12.34 0.000 -3.083288 -2.237839
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The obesity and age: version 2 The obesity and age: version 2
6
ln(()dds):a(,+2ﬁ,magez ln(odds)=05(,+2a/,-agei
i=1 . . i=1 . .
xi: logit obese i.agegrp?,or Not all output The output contains six tests of no difference in risk -
””” e comparing each of the six groups with the reference (the
,,,,,,,,,,,, e N e youngest) group.
_Tagegrp7_1 | 1.730365 . 2.29 0.022 1.082857 2.765057
_lagegrp7_2 | 1.679677 2.14 0.032 1.045417 2.698747 The Command: testparm _Iagegrp*
_Tagegrp7_3 | 1.930274 2.72 0.007 1.20172 3.100522 . . " " .
Lo a2 celal Y1 0000 1 W oaes will give a "Wald test” of no difference between the seven
_lagegrp7_5 | 2.623384 3.97 0.000 1.62986 4.222538 gr‘oups .
_Tagegrp7_6 | 4.126254 5.62 0.000 2.516095 6.766825
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (1) _Tagegrp7_1 =0
( 2) _TIagegrp7_2 =0
The OR between the second oldest and the youngest: ( 3) _lagegrp?_3 = 0
. ( 4) _Tagegrp7_4 = 0
2.62 (1.63;4.22) (5) _Tagegrpl 5 = 0
(6) Tagegrp7 6 = 0 - —
Between a 63 and 322 percent increase in odds. chi2( 6) =  55.26 Highly significant
Prob > chi2 = 0.0000 d|fferences
Small prevalence: 63 and 322 percent increase in prevalence.
A statistical significant difference in prevalence!
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The obesity and age: version 2 The obesity and age: version 2
Using the age group 45-49 as reference
-1 .25
char agegrp7lomit]3
xi: logit obese i.agegrp7,or Not all output
obese |0dds Ratio Std. E% z P>|z| [95% Conf. Interval] 2
_Tagegrp7_0 | .518061 .N52¢43 -2.72 0.007 .3225264 .8321407 ©
_Tagegrp7_1 | .896434 .1 312 -0.73 0.467 .6675609 1.203778 %
_Tagegrp7_2 | .870175 005 -0.90 0.369 .6424561 1.17861 g 15
Tagegrp7 4 | 1.378981 205 N36 2.15 0.031 1.029347 1.847385 %’.
Tagegrp7 5 | 1.359073 4123097 1.96  0.050  1.000625 1.845927
_Tagegrp7_6 | 2.137652 /364820‘ 4.45 0.000 1.529915 2.986803
1
The OR between the second oldest and the 45-49 old:
1.36 (1.00;1.85) 3 05
3 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70
Age in Years Age in Years

Between a no and 85 percent increase in (odds) prevalence.

A borderline significant different in prevalence! Estimated relationship
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The obesity and age: version 1 and 2 The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at

T — modeit 251 — modett Gge.
——- modei2 ——- model2

7 Let us try to look at those two at the same time
The simplest model on the logit scale would be:

In(odds) = B, + /3, - woman + j3, - (age — 45)
This is based on three assumptions:

log odds
prevalence
&

Additivity on logit scale: The contribution from sex and age
are added.

-
|
|
]
)

Proportionalty on logit scale: The contribution from age is
3 _ S proportional to it is value.

5 55 60 65 70 3 35 40 45 5 55 60 65 70 p. . . . .
oin Years Agen Yeas No effectmodification on logit scale: The contribution from
one independent variable is the same whatever the value is
for the other.
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The obesity, sex and age : version 1
In(odds) = B, + B, - woman + 3, - (age —45)

The interpretation of the parameters:
S, : the log odds for 45 year old man.

B, : the log odds ratio, when comparing a woman to a man of
the same age.

5, : the log odds ratio, when comparing two persons of the
same sex, where the first is one year older than the
other.

B, *Aage: the log odds ratio, when comparing two persons of
the same sex, where the first is Aage years older than
the other.
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The obesity, sex and age : version 1
In(odds) = B, + /3, - woman + j3, - (age — 45)
Obtaining the estimates in STATA:

xi:logit obese i.sex age45

i.sex _Isex_1-2 (naturally coded; | Isex_1 omitted)

The obesity, sex and age : version 1
In(odds) = S, + B, - woman+ B3, - (age — 45)

xi:logit obese i.sex age45, or

obese | Odds Ratio  Std. Err. z P>z| [95% Conf. Interval
,,,,,,,, o e R
_Isex_2 | 1.315738  .1188618 3.04  0.002 1.102232 1.5706

age45 | 1.035073  .0053155 6.71  0.000 1.024707 1.045544

OR for women compared to men “adjusted for age" :
1.32 (1.10;1.57)
1.33 (1.12;1.59).

OR for one year age difference "adjusted for sex”:
1.04 (1.02;1.05)
1.04 (1.03;1.05)

The unadjusted was

The unadjusted was
Not much has changed!
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Iteration 0: log likelihood = -1795.5437
Iteration 3: log likelihood = -1767.701%
Logit estimates Number of obs = 4690]
LR chi2(2) = 55.68
Prob > chi2 = 0.0000
Log likelihood = -1767.7019 Pseudo R2 = 0.0155
obese | Coef. std. Err. z P>z [95% Conf. Interval]
,,,,,,,, e T T
_Isex_2 | .2743977 .0903385 04 000 .0973375 .451458
aged5 | .0344723 .005135 6.71 0.000 .0244072 .0445374
_cons | -2.147056 .07219¢1 |-29.74 0.000 ‘\TZ?Qﬁééfl -2.00555
7
Tests: | No association with sex | No association with age
H ©
| Prevalence is 50% among 45 year old men |
Morten Frydenberg Cifear-and CogisTic regression = INoTe 3tT 32
The obesity, sex and age : version 1
In(odds) = B, + /3, - woman + j3, - (age — 45)
-1 .25°
men men
—— women . —— women
15 2
o 8
3 H
g -2 g 15
g
-25 1
3 .05
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
AgeinYears . . Agein Yeas
The estimated relationship
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The obesity, sex and age: version 2

A more complicated model on the logit scale would be:
men:  In(odds) =, + e, - (age—45)
women: In(odds) =y, +7,-(age—45)

This is based on one assumptions:

Proportionalty on logit scale: The contribution age is
proportional to it is value.

Tt can be written in just one formula (with interaction):
In(odds) = B, + f3,- woman + j3, -(age — 45) + 3, - woman - (age — 45)
o, =p, o =p,

Where: n=5+5 vi=p5+p

Thatis: f=7-¢a, Bi=r-«
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The obesity, sex and age: version 2
In(odds) = S, + f3,- woman + j3, -(age — 45) + 3, - woman - (age — 45)
Estimates log odds:

xi: logit obese i.sex*age45

obese | Coef. Std. Err. z P>z| [95% Conf. Interval]
,,,,,,,,,,,,, N CoT
_Isex 2 |_ 116797  .095034 1.23  0.219 -.069467 _ _.303061
aﬁe45 | —.0056849 .008372 -0.68 0.497 -.022095 .010725
_IsexXaged~2 | 065803 .01074 6.13  0.000 044747 _ _.0868588
_cons |-2.083041 .070643 -29.49 0.000 -2.22149 -1.944583
P S
Men ; Difference between women and men:
Estimates odds ratios:
obese | Odds Ratio \Std. Err z P>|z| [95% Conf. Intervall]
_Tsex 2 | 1.123891 .1 1.23  0.219 .9328908 _ _1.353997
age45 | .994331 .0 2 -0.68 0.497 .978147 1.010783
_IsexXaged~2 | 1.068016 114 6.13  0.000 1.045763 _ _1.090743
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The case control example

tabodds cancer age

age | cases controls odds [95% Conf. Interval]
—————— +

25-34 | 2 116 0.01724 0.00426  0.06976
35-44 | 9 190 0.04737 0.02427  0.09244
45-54 | 46 167 0.27545 0.19875  0.38175
55-64 | 76 § 0.45783 0.34899  0.60061
65-74 | 55 106 0.51887 0.37463  0.71864
>=75 | 13 31 W% 0.21944  0.80138

Few events in reference group= wide CI's

tabodds cancer age,~oT

-5 4
— men — men
—=—" women ' —— women
7/
/
1 / /
/ i /
/ 3 /
/ /
/ /
/ 7
15 /
@ 7
B 2
g // g /
5
2 \L\ V4
/
/
/I
-25 /
4
/
/
3 o4
30 35 4 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
Age in Years Age in Years
The estimated relationship
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The case control example
tabodds cancer age
age | cases controls odds [95% Conf. Interval]
,,,,,, e e
25-34 | 2 116 0.01724 0.00426 0.06976
35-44 | 9 190 0.04737 0.02427 0.09244
45-54 | 46 167 0.27545 0.19875 0.38175
55-64 | 76 166 0.45783 0.34899 0.60061
65-74 | 55 0.51887 0.37463 0.71864
>=75 | 13 31 41935 0.21944 0.80138
' ' . '
I Many' events in reference group= narrow CI's
tabodd ancer age r| base (3)
age || Odds Ratio chi2 P>chi2 [95% Conf.|Interval]
25-34 | 0.062594 24.18 0.0000 0.014060 0.278660
35-44 | 0.171968 25.86 0.0000 0.079661 0.371235
45-54 | 1.000000 . . g
55-64 | 1.662127 5.54 0.0186 1.083844 2.548952
65-74 | 1.883716 7.32 0.0068 1.181689 3.002809
>=75 | 1.522440 1.30 0.2546 0.734799 3.154365
Morten Frydenberg Linear and Logistic regression - Note 3.1 39

age || Odds Ratio chi2 P>chi2 [95% Conf.| Interval
25-34 | 1.000000 . .
35-44 | 2.747368 1.76 0.1843 0.579474 13.025660
45-54 | 15.976048 24.18 0.0000 3.588609 71.123412
55-64 | 26.554217 41.14 0.0000 5.834718 120.850133
65-74 | 30.094340 43.99 0.0000 6.278745 144.243682
>=75 | 24.322581 29.40 0.0000 4.402342 134.380270
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The case control example
char age [omit]l
xi:logit cancer i.smoker i.age,or
i.smoker _Ismoker_0-1 (naturally coded; _Ismoker_0 omitted
i.age Tage 1-6 (naturally coded; _Iage_1l omitted)
Iteration 0: log likelihood = -496.55682
Iteration 1: log likelihood .55133
Iteration 2: log likelihood .86007 “ " e .
Iteration 3: log likelihood .99383 Many iterations
Iteration 4: log likelihood = .94473
Iteration 5: log likelihood .94432
Iteration 6: log likelihood 294432
Logit estimates Number of obs = 977
LR chi2(6) = 135.23
Prob > chi2 = 0.0000
Log likelihood = -428.94432 Pseudo R2 = 0.1362
cancer | Odds Ratio  Std. Err. z P>|z| [95% Conf. Interval]
+
_Ismoker_1 | 2.350 .4513038 4.45 0.000 1.613342 3.424472
_Iage_2 | 2.832 2.24368 1.31 0.189 .5995103 13.3798
_Tage_3 | 16.58 12.17378 3.82 0.000 3.932286 69.91422
_Tage_4 | 27.89 20.32374 4.57 0.000 6.691356 116.3235
_Tage_5 | 34.79 25.59029 4.83 0.000 8.231516 147.0764
_Tage_6 | 27.71 21.89267 4.21 0.000 5.891878 130.3509
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The case control example
char age [omit]3
xi:logit cancer i.smoker i.age,or
i.smoker _TIsmoker_0-1 (naturally coded; _Ismoker_0 omitted)
i.age Tage 1-6 (naturally coded; _Iage_3 omitted)
Tteration 0: log likelihood = -496.55682 -
Iteration 1: log likelihood = -437.55133
Iteration 2: log likelihood = -429.86007
Iteration 3: log likelihood = -428.99383
Iteration 4: log likelihood = -428.94473
Iteration O: log likelihood = -428,94432
Logit estimates Number of obs = 977
LR chi2(6) = 135.23
Prob > chi2 = 0.0000
Log likelihood = -428.94432 Pseudo R2 = 0.1362
cancer | Odds Ratio std. Err. z P>|z| [95% Conf. Interval]
+
Ismoker_1 | 2.3504 .451303 4.45 0.000 1.613343 3.424469
_Tage_1 | .0603 .0442767 -3.83 0.000 .0143051 .2542718
_Tage_2 | .1708 .0652397 -4.63 0.000 .0807999 .3610977
Tage_4 | 1.6826 .3701188 2.37 0.018 1.093327 2.58953
Tage_5 | 2.0984 .5042862 3.08 0.002 1.31025 3.360918
Tage_6 | 1.6713 .6277714 1.37 0.171 .8005146 3.489699
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Things to look out for in the output

In general:

Wide CI's or large standard errors in a logistic regression
indicates that at least one group has few events!

Many iterations in a logistic regression indicates that some

of the parameters are hard to estimate.
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Comparing two models: the likelihood ratio test Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald to test if several One can compare two models with a likelihood ratio test if:

coefficients could be zero . *The two models are fitted on exactly the same data set.

An other way to "compare” two models is by a likelihood

. *The two models are nested, i.e. one can go from one model
ratio test.

to the other by setting some coefficients to zero.
In STATA the test is found in this way:

xi:logit cancer i.smoker i.age

In the logistic regression output from STATA we find a
likelihood ratio test comparing the fitted model with the

model with no dependent variables the constant odds model: estimates store modell
LR chi2 (6) - 135.23 xi:logit cancer i.smoker
Prob > chi?2 _ 0.0000 estimates store model2
lrtest modell model2
The conclusion: The model with smoker and age is statistical Output:
significam bETTEP, than a model assuming the same OddS, risk likelihood-ratio test LR chi2(5) = 120.82
for everybody. (Assumption: model2 nested in modell) Prob > chi2 = 0.0000

i.age adds statistical significant information to the model
only containing smoking!
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Logistic regression model in general Logistic regression model in general
k
k 1 ( —
n(odds)= /3 +Zﬂ - X
_ . () p M
In(odds) = S, + Z,b’ﬂ x, po
pel If one consider two persons who differ with

This is based on three assumptions: . . .
P Ax;inx;, Ax, inx, .. and Axy in x;

_ Additivi _ T _—
a. Additivity on log-odds scale: The contribution from each then difference in the log odds is -
k

of the independent variables are added.

b.Proportionalty: The contribution from independent variables Zﬁ/, Ax,

is proportional fo it is value (with a factor ) =l
Again we see that the contribution for each of the

c. No effectmodification: The contribution from one explanatory variables:

independent variables is the same whatever the values are are added,

for the other. are proportional to the difference
Note a. can also be formulate as multiplicativity on odds scale and does not dependent of the difference in the other

odds = odds, - OR" - OR;* ---- OR* on the log odds scale.
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Logistic regression model in general Logistic regression model in general
k k
In(odds)=f,+ ., x, In(odds)= 5, +> .5, x,

p=! p=1
If one consider two persons who differ with '

Ax;inx;, Ax, inx, .. and Ax, in x;
then odds ratio :

The data:  Y=1/0 dichotomous dependent variable

X; . X, .. X independent/explanatory variables

OR =OR -OR"---- OR™ Like in the normal regression models it is assumed that the ¥'s
are independent given the explanatory variables.
Note the model might also be formulated: This ass‘umP‘rion can, in general, only be checked by
scrutinising the design.
k
exp(ﬁ” + Zﬁﬂ 'X,,] Look out for data sampled in clusters:
= =1])= rl Patients within the same 6P
In(p) ln(Pr[Y 1]) .
1+exp| B, + Zﬁp X, Children within the same family
- Twins.
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Logistic regression model in general
Estimation:

Excepting the two by fwo tables, there are no closed form for
the estimates.

The distribution of the estimates are not known.
Estimates are found by the method of maximum likelihood.
Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based
on asymptotics.

That is, all statistical inference are approximate.

The more data - the more events -the better the
approximations.
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