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Why do we need a multiple regression

The simple linear regression model only models how the
dependent variable, y, depend on one independent variable
(covariate) , x;.

We are often interested in how several independent variables,
X, , X5 .., X , influence the dependent variable , y.

Sometimes we want to adjust the influence of some of the
information, such as age and sex, before we look at the
‘effect’ of other variables.
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A multiple linear regression model

We will here start by considering a random subsample
consisting of 200 persons from the Frammingham data set
used in the book.

A multiple linear regression model:

In(sbp) = f3,+ B, - age+ f3, - woman + J3, - In(bmi) + E

Where the errors, E, are assumed to be independent and
normal with mean zero and standard deviation .

Note, that variable woman is a dummy/indicator variable,
that it is one if the person a woman and zero if it is a man.
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Interpretation of the coefficients O - the constant
In(sbp) = f3, + B, -age+ f3, - woman+ B, -In(bmi)+ E

The first coefficient (the constant term) is the expected
In(sbp) for

a man (that is ok!)

age=0 2727777

bmi=1 kg/m? 2227?7? (In(1)=0).
As in the simple linear regression this not of any interest.

But again we can control the interpretation, by choosing a
relevant reference value for age and bmi. E.g.

In(sbp) = @, + 3, - (age —45)+ B, - woman + J, ~1n(b7";lj+’5

10gBMI25
4

Morten Frydenberg Linear and Logistic regression - Note 2.1

Interpretation of the coefficients 1
In(sbp) = S, + B, - age+ f3, - woman + J3, - In(bmi) + E
The expected In(sbp) for a man with bmi=27 kg/m? is:
B, + B, -age+ f3,-1n(27)
The expected In(sbp) for another man with the same bmi, but
I-7year older: 5 | 5 (age+1.7)+ B, In(27)
The difference is: 1.74,
We see that this difference

-does not depend on the age of the first man.

-does not depend on the bmi as long as it is the same for the
two men.

would be the same if the two persons were women.
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Interpretation of the coefficients 2
In(sbp) =3, + B, - age+ f3, - woman + f3, - In(bmi) + E
The expected In(sbp) for a 50 year old man with bmi=27
kg/m? is: B+ 3,50+ B, -n(27)
The expected In(sbp) for woman with the same age and bmi
B+ B,-50+ B,+ B, -In(27)
The difference is: £,
We see that this difference

+does not depend on the age as long as it is the same for the
two persons.

+does not depend on the bmi as long as it is the same for the
two persons.
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Interpretation of the coefficients 3
In(sbp) = f3, + f5, -age + f3, - woman+ B, - In(bmi) + E
The expected In(sbp) for a woman who is 50 year old:
B+ B,-50 + 5, + B, - In(bmi)
The expected In(sbp) for another woman with the same age,
but with a bmi which is 10% higher:

B+ 5,50+ 5, + B, -In(1.1-bmi)
The difference  f3,-[In(1.1-bmi)—In(bmi) | = 5, -In(1.1)
We see that this difference
-does not depend on the bmi of the first woman.

-does not depend on the age as long as it is the same for the
two women.

would be the same if the fwo persons were men.
Morten Frydenberg Linear and Logistic regression - Note 2.1 7

Friday, 30 April 2004

Interpretation of the coefficients 4
In(sbp) = f3, + B, -age+ f3, - woman+ S, - In(bmi)+ E

B, -[In(1.1-bmi)—In(bmi) | = B, -In(1.1)
As the bmi is introduced on the log-scale, then "differences *
of this variable is measured relatively.

So comparing a pair of persons how only differ in bmi .
One having bmi=25 kg/m? and the other bmi=27 kg/m? .

Then the expected difference in In(sbp) is
27
‘In| — |=£.-0.077
pom(22)=5

If the bmi's were 21 kg/m? and

2.3 kg/m? , T.hen the expected B, ,ln(ﬁj = ,-0.091
difference in In(sbp) would be 21
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Interpretation of the coefficients 5
In(sbp) = f3, + f5, - age + f3, - woman+ B, - In(bmi) + E
Taking the exponential we get:
sbp =7, 7, - 1, - bmi" -exp(E)
where 7, =exp(/)). 7, =exp(/,)and 7, =exp(5,)
That is a non-linear model on the sbp scale!

The error is multiplicative.

As medians are preserved by the exponential transformation
then the estimates telling of effect on the median sbp.

An example: The age and bmi adjusted median is a factor
higher for man than for women.
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The multiple linear regression in general
Y the dependent variable

(X1, Xy 50 Xy) the independent variables.

Yzﬁ(,+i,b’/,~xp+E E~N(0,07)

p=l
This model is based on the assumptions:
k
1. The expected value of Yis S + Z,b’” "X,
p=l
2. The unexplained random deviations are independent.

3. The unexplained random deviations have the same
distributions.

4. This distribution is normal.
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The multiple linear regression in general

Y=,6’U+Zk:ﬂp-xp+E E~N(0,06%)

p=1
We see that the assumptions fall is two parts:
The first concerning the systematic part

and the three other which focus on the error, the unexplained
random variation.

Before we turn to how one can check some of the assumptions
we will take a closer look at the first assumption.

k
The expected value of Yis /3 + Z,b’” ‘X,

p=l
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The assumption of linearity

k

The expected value of Yis 5, + Zﬁp X,
p=1

This is based on three (sub) assumptions:

a. Additivity: The contribution from each of the independent
variables are added.

b.Proportionalty: The contribution from independent variables
is proportional to it is value (with a factor )

c. No effectmodification: The contribution from one
independent variables is the same whatever the values are
for the other.
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The assumption of linearity Estimation
k
The expected value of Yis /3, + Zﬁ” X, It is almost impossible to find the estimates by hand, but easy
=l if you use a computer.
If one consider two persons who differ with In STATA: regress 1nSBP age45 woman 1nBMI25
Ax, inx,, Ax, inx, .. and Ax, in x, (Note first we have to generate 1nSBP, age45 woman and
1nBMI25 )
then difference in the expected value of Yis : source | ss ar us Number of obs = 200
777777777 e F( 3, 196) = 16.46
k Model | 1.05572698 3 .351908994 Prob > F = 0.0000
Zﬂ AX Residual | 4.18969066 196 .021375973 R-squared = 0.2013
- r ? Adj R-squared = 0.1890
p= Total | 5.24541764 199 .026358883 Root MSE = .1l4621
Agaln we See Thaf The ConTrlbUTlon fOr eGCh Of fhe 1nSBP | Coef. Std. Err. t P>|t| [95% Conf. Interval]
explanatory variables: | e T
are qdded woman | .0036329 .0208905 0.17 0.862 -.0375662 .0448319
‘ . . aged5 | .0065384 .0012844 5.09 0.000 .0040053 .0090715
are PI"OPOI"TIONQ| to the dlffer‘ence 1nBMI25 | .2583399 .0758295 3.41  0.001 .1087934 .4078864
and does no-'- dependen* of The dlfference |n The Oﬂ’\el" _cons | 4.856592 .0154266 314.82 0.000 4.826169 4.887016
Morten Frydenberg Linear and Logistic regression - Note 2.1 13 Morten Frydenberg Linear and Logistic regression - Note 2.1 14
Estimation The distribution of the estimates
The last part of the output: No CI for o! It can be shown that the estimates of the coefficients have
It can be calculated by hand normal distributions, with means equal to the true values.
G The formulas for the standard deviation of the estimates
[_Roor use - a6z are complicated, but they estimated by the standard errors
1nSBP | Coef. std. Err. t P>|t| [95% Conf. Interval] giVCH in The OUTPUT.
woman | [ 0036329 ||.0208905 . 0.862| [-.0375662  .0a48310 The estimated standard deviation of the errors is given by:
aged5 | .0065384 .0012844 . .0040053 .0090715
1nBMI25 | .2583399 .0758295 .1087934 .4078864
_cons | 4.856592 .0154266 4.826169 4.887016 6’2 5 gz Zz(n—@) The number of
the ,é"s the se's TheCI's n—k—1 " parameters are k+1
Which gives the confidence interval:
Test for S, =0
The hypothesis: "no difference in In(sbp) between men and . n—k—1 N
womer)\,‘:xd'usfed for age and bmi" oo 95% CIL for 0:G- | o SOSG |
J zn—k—l (0975) In—k—l (0025)
Morten Frydenberg Linear and Logistic regression - Note 2.1 15 Morten Frydenberg Linear and Logistic regression - Note 2.1 16
Confidence intervals The ANOVA table and the F-test
Just like in the simple regression we get : The first part of the output:
expect we have n+k-1 degrees of freedom). - - L .
(exp 9 ) An analysis of variance table dividing the variation iny
Exact 95% confidence intervals , CT's, for /3, is found from in two components: explained by the model (i.e. the 3
the estimates and standard errors variables) and the residual (the rest)
. 0.975 o
95% CI for f3,: B, +1°F, -se( ) /
Source | SS df MS Number of obs = 200
0975 - . . F( 3, 196) = 16.46
Where 1,7,", is the upper 97.5 percentile in the 1- Model | 1.05572698 3 .351908994 |Prob > F - 0.0000
distribution n-k-1 degr‘ees of freedom. Residual | 4.18969066 196 .021375973 R-squared = 0.201
,,,,,,,,, b Adj R-squared = 0.1890
These confidence intervals are found in the output. fotal | 5.2454176¢ 199 026358883 / Root MSE Tt
Note that if n is large ‘rhen"rhis percef\‘rile is f:lose to 1.96 A F-test testing the hypothesis: “all (except f,) is zero."l
and one can use the approximate confidence intervals:
. R Here the fest is highly significant: The model explains a
Approx. 95% CI for f,: 5, 11.96.58(/31) statistically significant part of the variation in y!
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The F-test and R-squared Predicted values residuals and leverages
The F- fest calculated as:  F = 035519 16.16 Y =4 ""Zﬁ X, +E E~ N(O o )
0.02138 . .
As in the simple linear regression on can find predicted values
Source | N”‘“b” of obs = 200 , residuals, leverages and standardized residuals:
————————— +,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 3, 196) = 16.46
Model | 1.05572698 w Prob > F -~ 0.0000 P
Residual | 4.18969066 196 021375973 R d = 0.2013 H . ~ o Po. Pod
B Adjq:aZ:uared = 0.1890 Predicted value: Vi = /BU +Zﬁ,; “Xpi

Total | 5.24541764 199 .026358883 Root MSE .14621 p=1

And under the hypo‘rhes:s it follows an F-distribution Resi . o
esidual: L=y, =39, =y-
with 3 and 196 degrees of freedom. = Z‘ﬂ’
. e . Leverage : h, = a complicated formula
The R-squared is the amount of the total variation explained
by the model(=1.0557/5.2454). Standard-Residual : =i
As this will increase if we include more variables in the model oyl=h
one can look at the adjusted R-squared.
Morten Frydenberg Linear and Logistic regression - Note 2.1 19 Morten Frydenberg Linear and Logistic regression - Note 2.1 20
Leverage Checking the model: Independent errors ?

Although the formula the leverage is complicated, the Assumption no. 2: the errors should be independent, is mainly
interpretation of leverage is the same: checked by considering how the data was collected.
A high leverage indicate that the data point has extreme The assumption is violated if

values of the explanatory variables and hence a high influence

on the estimates. some of the persons are relatives (and some are not) and the

dependent variable have some genetic component.

some of the persons were measured using one instrument and
others with another.

+in general if the persons were sampled in clusters.
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Checking the model 1: Checking the model 2:

As model is much more complicated than the simple linear One should also try to checked the validity of the linearity

regression checking the model is also complicated assumption that is the assumption of additivity,

Again assumption no. 2: the errors should be independent, is proportionality and no effect modification (no interaction).

mainly checked by considering how the data was collected. It can be done by:

The distribution of the error is checked by the same type of 1. Introducing an the explanatory variable in a different
plot as for the simple linear regression. scale, e.g. adding age? or log(age) ...

‘Histogram and qq-plot of the residuals. 2. Introducing the explanatory variable as a categorical

-Plots of residuals versus fitted variable instead e.g. use age in divided into agegroups

instead as age in years.
*Plots of residuals versus each of the explanatory variables. geiny
3. Introducing interaction between some of the eplanatory

Data points that stick out is fognd by identifying points with variables.
large leverages and/or large residuals.
4. ..
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