Simple Linear regression
Checking the model
Morten Frydenberg ©
Institut for Biostatistik

The assumptions.

Independent errors?

Predicted values and residuals

Do the errors have the same distribution?

Normal errors?

Two examples, where model is not valid

Leverage: a measure of influence

Standardized residuals.

Morten Frydenberg

Linear and Logistic regression - Note 1.2

Simple linear regression: The model

Let Y_i and x_i be the data for the *i*th person.

$$Y_i = \beta_0 + \beta_1 \cdot x_i + E_i \quad E_i \sim N(0, \sigma^2)$$

This model is based on the assumptions:

- 1. The expected value of Y is a linear function of x.
- 2. The unexplained random deviations are independent.
- The unexplained random deviations have the same distributions.
- 4. This distribution is normal.

Morten Frydenberg

Linear and Logistic regression - Note 1.2

Checking the model: Independent errors?

Assumption no. 2: the errors should be independent, is mainly checked by considering how the data was collected.

The assumption is violated if

·some of the persons are **relatives** (and some are not) and the dependent variable have some **genetic** component.

•some of the persons were **measured** using one instrument and others with another.

in general if the persons were sampled in clusters.

Morten Frydenberg

Linear and Logistic regression - Note 1,2

Predicted values and residuals

$$Y_i = \beta_0 + \beta_1 \cdot x_i + E_i \quad E_i \sim N(0, \sigma^2)$$

Based on the estimates we can calculate the **predicted** (fitted) values and the **residuals**:

Predicted value: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_i$

Residual: $r_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 \cdot x_i)$

The **predicted value** is the best guess of y_i (based on the estimates) for the ith person.

The **residual** is a guess of E_i (based on the estimates) for the ith person.

STATA:

predict PEFR_hat if e(sample),xb
predict PEFR_res if e(sample),resid

Morten Frydenberg Linear and Logistic regression - Note 1.2

Checking the model: Linearity and identical distributed errors

Assumption no. 1:

The expected value of Y is a linear function of x. Assumption no. 3:

The unexplained random deviations have the same distributions.

These are checked by inspecting the following plots of:

- · Residuals versus predicted
- Residuals versus x

Morten Frydenberg Linear and Logistic regression - Note 1.2

Influential data points: Leverage

The influence of a data point is sometime measured by its **leverage**: $-\sqrt{2}$

 $h_i = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{i=1}^{n} (x_j - \overline{x})^2}$

Large values imply that the estimates and/or the standard errors is highly influenced by this observation.

$$0 \le h_i \le 1$$

Notice, it is a function only of the **independent** variable, \boldsymbol{x} and the sample size.

The leverage for a given data point depends on how far away its independent variable is from the average value.

STATA: predict PEFR_lev if e(sample), leverage
Morten Frydenberg Linear and Logistic regression - Note 1.2 14

Types of residuals: Standardized residuals

The (unstandardized) residual: $r_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 \cdot x_i)$

Has mean zero but **non-constant** variance: $sd(r_i) = \sigma \sqrt{1 - h_i}$

That is residuals from points with high leverage have smaller variance, than residuals from points with small leverage.

Due to this one often use the standardized residual:

$$z_i = \frac{r_i}{\hat{\sigma}\sqrt{1 - h_i}}$$

This will have variance 1, if the model is true.

STATA: predict PEFR_zres if e(sample), rstandard

Morten Frydenberg Linear and Logistic regression - Note 1.2

Some comments on checking a (simple) linear regression

Always consider the design: How was the data collected?
This has implications for the validity of the statistical model.
And it has implications for the interpretation of the results.

Observations with **high leverages** have 'extreme' values of the **independent** variable.

These observation will have **high impact** on the results, but might not be 'representative'.

Sometimes it is best to exclude these from the analysis.

Observation with large residuals, that is observed y value far away from expected, should be checked for errors.

Morten Frydenberg Linear and Logistic regression - Note 1,2 2

Prediction interval for future value

The **true line** is given as:

 $y = \beta_0 + \beta_1 \cdot x$

and **estimated** by plugging in the estimates

 $\hat{y} = \beta_0 + \beta_1 \cdot x$

The standard deviation for a new observation is given by:

$$\operatorname{sd}\left(\hat{\beta}_{0} + \hat{\beta}_{1} \cdot x + E\right) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{\left(x - \overline{x}\right)^{2}}{\sum \left(x_{i} - \overline{x}\right)^{2}}}$$

with the 95% (pointwise) prediction interval

$$\hat{\beta}_0 + \hat{\beta}_1 \cdot x \pm t_{n-2}^{0.975} \cdot \operatorname{sd}\left(\hat{\beta}_0 + \hat{\beta}_1 \cdot x + E\right)$$

Many programs can make a plot with the fitted line and its prediction limits.

In STATA its done by the $\emph{1fitci}$ and graph command, the option \emph{stdf}

rten Frydenberg Linear and Logistic regression - Note 1,2 24

