

POSTGRADUATE COURSE IN
LINEAR AND LOGISTIC REGRESSION
Home work

The home exercise is divided into two. The first part is a follow-up on Day 1 and 2, and the second part is an introduction to Day 3 and 4. Datasets are available at the homepage.

Part One: Multiple regressions.

Consider the dataset: “serumchol.dta”, which is a subset of the dataset 2.20.framingham.dta used in Dupont. In this exercise focus is on the dependent variable serum cholesterol (scl) and possible explanatory variables systolic blood pressure (sbp), diastolic blood pressure (dbp), Body Mass Index (bmi), and sex (sex=1 men, sex=2 women). See Dupont chapter 2 and 3 for help and inspiration.

- 1.1 Create a categorical variable from bmi according to the WHO definitions by
`egen bmi_who=cut(bmi), at(10, 18.5, 25, 30, 60) label`
Is the distribution of scl the same in the groups defined by bmi_who?
(Hint: make a box plot or histogram of scl for each category of bmi_who).
- 1.2 Estimate a model (**Model 1**) with scl as the dependent variable and sbp, bmi_who and sex as the independent variables.
bmi_who and sex should be entered as a categorical variable in the model
(Hint: use the prefix `xi:` to the `regress` command).
- 1.3 Explain the coefficients for sbp, bmi_who=3 and sex=2.
- 1.4 Find the expected value with 95% confidence interval for a subject with sbp=85, sex=2 and bmi_who=1.
(Hint: make the reference group equal to subjects with the given values).
- 1.5 Here we focus on the independent variables sbp and dbp. Estimate 3 models (**Model 1, 2, 3**) with scl as the dependent variable and the following independent variables:

Model 1: sbp, bmi_who, sex
Model 2: sbp, dbp, bmi_who, sex
Model 3: dbp, bmi_who, sex

Compare the coefficients and standard errors for sbp in **Model 2** and **Model 1**.
Compare the coefficients and standard errors for dbp in **Model 2** and **Model 3**.

What do you see? And why does this happen.

(Hint: What is the relation between `sbp` and `dbp`)

1.6 Create a new variable `sbp2` equal to the square of `sbp`.

Add `sbp2` to **Model 1** and estimate this model (**Model 4**).

Explain the coefficient of `sbp2`. Find the expected value with 95% confidence interval for a subject with values given in 1.4. Compare the result with the one you found in 1.4.

1.7 Estimate a model (**Model 5**) with `scl` as the dependent variable and `sbp`, `sex` and `bmi` as independent variables. Decide from plots and the estimates (from **Model 1** and **5**) whether `bmi` as a continuous variable is preferable to/as good as `bmi` as a categorical variable.

1.8 Use the explanatory variables in **Model 1** as a basis for an investigation of whether the dependent variable would benefit from a transformation. (Hint: plots of the distribution of the residuals, residual versus fitted values, and residual versus independent variable should be performed.)

1.9 In order to estimate more realistic model possible interactions should perhaps be included. Here we focus on two: an interaction between `sex` and `sbp` and an interaction between `sex` and `bmi_who`. Estimate a model (**Model 6**) with `ln(scl)` as the dependent variable and `sbp`, `bmi_who`, `sex` and both interactions as independent variables. (Hints: the interactions can be create as dummy variables or by including the products `i.sex*sbp` and `i.sex*i.bmi_who` as independent variables in the `regress` command)

1.10 Explain the coefficient to the interaction between `sex` and `sbp`. Test the hypothesis that the interaction is zero.

1.11 Explain the coefficient to the interaction between `sex` and `bmi_who=2`. Test the hypothesis that all coefficients to the interaction between `sex` and `bmi_who` are zero. (Hints: use the command `testparm`)

Part Two: Logistic regression.

First a short introduction to or a reminder of case-control studies are given. Here, let a case denote a subject with the disease of interest, a control a subject without the disease, and let exposure denote whether the subject has experienced a possible cause of the disease or not. The case-control study is a retrospective study i.e. both cases and controls are asked if they have experienced the possible cause of the disease at some point in their life. The interest is on estimating an association between the exposure and the disease. The preferable association relative risk ratio (i.e. the risk of getting the disease among the exposed relative to the risk of getting the disease among the non-exposed) cannot be estimated because the cases together with the controls is not representative for the population. An approximation to RR in the form of an odds ratio (OR) can be estimated when the disease of interest is rare.

For further information, see, Bland p. 37-40 and Dupont p. 131-133.

2.1 Read parts 4.1.9.1 and 4.1.9.2 in the book.

The formulas of how to estimate OR and 95% confidence intervals are listed below the table.

exposure	case	control	total
yes	a_1	b_1	a_1+b_1
No	a_0	b_0	a_0+b_0
Total	a_1+a_0	b_1+b_0	N

$$OR = \frac{odds_{case}}{odds_{control}} = \frac{a_1/b_1}{a_0/b_0} = \frac{a_1 * b_0}{a_0 * b_1}$$

$$se(\ln OR) = \sqrt{1/a_1 + 1/b_1 + 1/a_0 + 1/b_0}$$

$$95\% CI(\ln OR) = \ln OR \pm 1.96 * se(\ln OR)$$

$$95\% CI(OR) = \exp(\ln OR \pm 1.96 * se(\ln OR))$$

$$odds = \frac{p}{1-p}, p = \frac{odds}{odds+1}$$

A 2x2 table with esophageal cancer and severe smokers in age group 45-54 years:

Age 45-54 years

cancer	severe smoker		total
	0-19 gm/day	≥ 20 gm/day	
no	134	33	167
yes	27	19	46
total	161	52	213

- 2.1 Calculate, by hand, the OR with 95% confidence intervals from the above table.
- 2.2 Use the dataset `case_control.dta`.
 Run command `cc cancer smoker if age==3, woolf` in STATA.
 What do you get?
 Run command `logistic cancer smoker if age==3` in STATA.
 What do you get?

This was the OR in agegroup 45-54 years.

A crude/unadjusted OR not adjusting for age, can be found using same two commands without “`if age==3`”.

- 2.3 Do this!

In the example above age is a possible confounder, and we wish to estimate an OR adjusted for age.

The classical method for obtaining such an estimate is the Mantel- Haenszel method. For the 6 age groups the data summarize to the table given below.

Age in years

		severe smoker		total	OR=3.14 95% CI=(0.19 ; 51.90)
		0-19 gm/day	>= 20 gm/day		
25-34:	cancer	88	28	116	
	no	1	1	2	
	total	89	29	118	
35-44:		severe smoker		OR=1.82 95% CI=(0.44 ; 7.58)	
		0-19 gm/day	>= 20 gm/day		
no	149	41	190		
yes	6	3	9		
45-54:		155	44	199	
cancer	severe smoker				
no	134	33	167	OR=2.86 95% CI=(1.42 ; 5.75)	
55-64:		0-19 gm/day	>= 20 gm/day		
		yes	27	19	
		total	161	52	
		severe smoker		OR=2.44 95% CI=(1.33 ; 4.47)	
		0-19 gm/day	>= 20 gm/day		
		no	134	32	
		yes	48	28	
		total	182	60	

		severe smoker		total	OR=2.19 95% CI=(0.91 ; 5.26)
		0-19 gm/day	>= 20 gm/day		
cancer	no	94	12	106	OR=0.95 95% CI=(0.16 ; 5.63)
	yes	43	12	55	
	total	137	24	161	

		severe smoker		total	OR=0.95 95% CI=(0.16 ; 5.63)
		0-19 gm/day	>= 20 gm/day		
>= 75:	no	26	5	31	OR=0.95 95% CI=(0.16 ; 5.63)
	yes	11	2	13	
	total	37	7	44	

- 2.4 Write the following command in STATA:

cc cancer smoker, by(age) woolf

Find the OR and 95% CI for each age group in the output.

- 2.5 Find the crude OR in the output.

What is the adjusted (Mantel-Haenszel) estimate

Compare the crude and the MH estimate of OR.

Is age a ‘confounder ‘variable for which there should be adjusted?

- 2.6 Write the following commands in STATA:

xi: logistic cancer smoker i.age

Compare the ‘coefficient’ for cancer with Mantel-Haenszel estimate.