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Logit estimates                              Number of obs   =       4690
LR chi2(2)      =      55.68
Prob > chi2     =     0.0000

Log likelihood = -1767.7019                  Pseudo R2       =     0.0155
-------------------------------------------------------------------------
obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

--------+----------------------------------------------------------------
sex |
1  |  (base)   
2  |   .2743976   .0903385     3.04   0.002     .0973374    .4514579

|
age45 |   .0344723   .0051354     6.71   0.000     .0244072    .0445374
_cons |  -2.147056   .0721981   -29.74   0.000    -2.288561    -2.00555

-------------------------------------------------------------------------

A common, and to some extend informative, test of fit is the 
Hosmer-Lemeshow test.

Consider the model for obesity from Day 4

Logistic regression models: Test of fit

Significantly better than nothing – but is it good?

( )( ) ( )0 1 2logit 45Pr obese woman ageβ β β= + ⋅ + ⋅ −
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What about comparing the estimated prevalence with the 
observed prevalence?

In the Hosmer-Lemeshow test the data is divided into groups 
(traditionally 10) according to the estimated probabilities

and the observed and expected counts are compared in these 
groups by a chi-square test.

Most programs, that can fit a logistic regression model, can 
calculate this test.

In Stata it is done by (after fitting the model):

estat gof, group(10) table

The data is divided into deciles after the estimated 
probabilities.

Logistic regression models: Test of fit
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OUTPUT
Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)
+--------------------------------------------------------+
| Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------+--------+-------+-------+-------+-------+-------|
|     1 | 0.0841 |    64 |  40.9 |   462 | 485.1 |   526 |
|     2 | 0.0953 |    43 |  45.5 |   453 | 450.5 |   496 |
|     3 | 0.1045 |    44 |  44.6 |   398 | 397.4 |   442 |
|     4 | 0.1112 |    42 |  50.3 |   422 | 413.7 |   464 |
|     5 | 0.1217 |    44 |  51.4 |   394 | 386.6 |   438 |
|     6 | 0.1332 |    52 |  63.0 |   441 | 430.0 |   493 |
|     7 | 0.1456 |    53 |  61.7 |   389 | 380.3 |   442 |
|     8 | 0.1592 |    62 |  69.8 |   392 | 384.2 |   454 |
|     9 | 0.1834 |    98 |  89.9 |   424 | 432.1 |   522 |
|    10 | 0.2407 |    99 |  83.8 |   314 | 329.2 |   413 |
+--------------------------------------------------------+

number of observations =      4690
number of groups =        10

Hosmer-Lemeshow chi2(8) =        26.01
Prob > chi2 =         0.0010

One problem: 
Too many in 
the tails

Logistic regression models: Test of fit

Significant difference between observed and expected!
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logit obese i.sex##age45logit obese i.sex##age45logit obese i.sex##age45logit obese i.sex##age45
estat gof, group(10) table
Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)
+--------------------------------------------------------+
| Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------+--------+-------+-------+-------+-------+-------|
|     1 | 0.0796 |    36 |  35.9 |   466 | 466.1 |   502 |
|     2 | 0.1011 |    42 |  41.1 |   406 | 406.9 |   448 |
|     3 | 0.1053 |    49 |  49.6 |   429 | 428.4 |   478 |
|     4 | 0.1096 |    50 |  54.8 |   458 | 453.2 |   508 |
|     5 | 0.1124 |    52 |  54.2 |   436 | 433.8 |   488 |
|     6 | 0.1153 |    51 |  46.4 |   355 | 359.6 |   406 |
|     7 | 0.1182 |    52 |  53.9 |   410 | 408.1 |   462 |
|     8 | 0.1590 |    76 |  70.3 |   428 | 433.7 |   504 |
|     9 | 0.2133 |    96 |  91.8 |   391 | 395.2 |   487 |
|    10 | 0.3310 |    97 | 103.0 |   310 | 304.0 |   407 |
+--------------------------------------------------------+

number of observations =      4690
number of groups =        10

Hosmer-Lemeshow chi2(8) =         2.43
Prob > chi2 =         0.9650

The model ‘fits’ – when we look at it this way !!!!!!!

Logistic regression models: Test of fit
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Used in two situations:

1.Matched studies (binary response).

2.Unmatched studies with a confounder with many 
distinct values.

In 1. the models correspond to the way data was collected.

In 2. the method adjust for a ‘mathematical’ flaw in the 
unconditional method.

An example of situation 2:
The confounder is “kommune”  having 275 distinct values. 

Conditional logistic regression
When
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The logistic regression model (outcome disease yes/no):

ln(odds) in reference ln(odds ratios)

Conditional logistic regression
What

Suppose the model above hold in each strata:
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ln(odds) in reference
different in each strata

ln(odds ratios)
the same in each strata
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ln(odds) different in each strata

We are not interested in these !

In a matched study these are ‘controlled’.

In a conditional logistic regression one ‘condition on the
odds in each strata’ , i.e. the case/control ratio.

In the conditional model the α ’s disappear !

The β ’s , the log OR’s, are still in and can be estimated.
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Conditional logistic regression
What
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A study of cancer in the oral cavity

Matched on gender and 10-year age groups

Ten strata (genage)

Here we focus on 

textile-worker and 

life time consumption of alcohol (three groups)

Conditional logistic regression
How
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cancer | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

textile |   1.652484   .6843458     1.21   0.225     .7338846    3.720889
|

alkcon |
0  |          1  (base)
1  |   1.588614   .4485983     1.64   0.101     .9133833    2.763017
2  |   15.12845   4.890496     8.40   0.000     8.028433    28.50742

|
genage |

1  |          1  (base)
2  |   1.277731   1.598937     0.20   0.845     .1099655    14.84645
3  |   .6101724   .3357944    -0.90   0.369     .2074977    1.794287
4  |   1.196961   .7668028     0.28   0.779     .3410196    4.201272
5  |   .7482746   .4102097    -0.53   0.597     .2555206    2.191271
6  |   1.237034   .7746878     0.34   0.734     .3625102    4.221272
7  |   .7940664   .4252551    -0.43   0.667     .2779736     2.26835
8  |   1.734638   .9130996     1.05   0.295     .6182202    4.867148
9  |   1.032018   .6072521     0.05   0.957     .3257093    3.269977
10  |   1.745782   .9768952     1.00   0.319     .5830142    5.227581

|
_cons |   .2301051   .1095992    -3.08   0.002     .0904687    .5852672

logistic regression in Stata

logit cancer textile i.alkcon i.genagegenagegenagegenage, or, or, or, or

binreg cancer textile i.alkcon i.genage,or

Conditional logistic regression
How
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------------------------------------------------------------------------------
cancer | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
textile |    1.63708   .6717022     1.20   0.230      .732517    3.658661
alkcon |

0  |  (base)   
1  |   1.572508   .4390957     1.62   0.105      .909724    2.718168
2  |   14.30908   4.569879     8.33   0.000     7.651811    26.75835

------------------------------------------------------------------------------

The syntax:

cccclogit cancer textile i.alkcon,groupgroupgroupgroup((((genagegenagegenagegenage) or) or) or) or

Part of the output: 

Conditional logistic regression in Stata
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Missing data – example 1

Consider the Frammingham study and imagine, that (due to a 
limited budget) only 500 measurements of SBP were allowed.

It was decided to take SBP measurements on 100 random 
participants in each of the age groups -40 and 60+ and 150 in 
each of the age groups 40-50 and 50-60.

That is we have missing SBP on 4190 of the 4,690 participants!

A short description of the design and the data:
----------------------------------------------------------

agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp)
----------+-----------------------------------------------

0- |      1,325         100      122.18    15.4327
40- |      1,684         150      130.85    22.2366
50- |      1,346         150      140.93    22.4819
60- |        335         100      149.51    26.9251

| 
Total |      4,690         500      135.87    24.0783

----------------------------------------------------------
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Missing data – example 1

We note:
This is not a completely random sample 
– the chance of being sample depends on age group!

The overall (total) average SBP is a biased estimate of the 
mean SBP among participants in the Frammingham study!

I.e. an analysis of the 500 participants (a complete data 
analysis) will be biased.

----------------------------------------------------------
agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------------------
0- |      1,325         100      122.18    15.4327
40- |      1,684         150      130.85    22.2366
50- |      1,346         150      140.93    22.4819
60- |        335         100      149.51    26.9251

| 
Total |      4,690         500      135.87    24.0783

----------------------------------------------------------
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Missing data – example 1

We also note:
Within each age group the sample is completely random.

Within each age group the average SBP is an unbiased
estimate of the mean SBP in the age group. 

We know the size of each age group. 

We can calculate an unbiased estimate of the total mean 
by weighing the group averages.

----------------------------------------------------------
agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------------------
0- |      1,325         100      122.18    15.4327
40- |      1,684         150      130.85    22.2366
50- |      1,346         150      140.93    22.4819
60- |        335         100      149.51    26.9251

| 
Total |      4,690         500      135.87    24.0783

----------------------------------------------------------
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Missing data – example 1

122.18 130.85 140.93 149.1325 1684 1346 335

469

51
132.62

0

⋅ + ⋅ + ⋅ + ⋅
=

An unbiased estimate can be found as the weighted average
of the group averages using the group sizes as weights:

Conclusion: Although this is not a completely random sample, 
we have enough information in the data to find an unbiased 
estimate!!!!
(Assuming completely random sample within age group!)

----------------------------------------------------------
agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------------------
0- |      1,325         100      122.18    15.4327
40- |      1,684         150      130.85    22.2366
50- |      1,346         150      140.93    22.4819
60- |        335         100      149.51    26.9251

| 
Total |      4,690         500      135.87    24.0783

----------------------------------------------------------
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Assuming that SBP is related to age:

Being missing is not independent of the unobserved SBP.

but

Being missing is independent of the unobserved SBP, 
when we know the age group of the individual.

The first statement means that the data is not missing 
completely at random (MCAR).

The second statement corresponds to missing at random 
(MAR), i.e. that given all what we have observed (including 
age group), then the missingness is (completely) random, i.e. 
independent of the unobserved data.

Mathematically Missing At Random implies that one (in 
theory) has enough information in the observed data to 
correct for the missing data – in principle.
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Missing completely at random (MCAR). 
The observed data is a (completely) random sample:
A complete data analysis will be unbiased

Missing at random (MAR)
Given all what we have observed, then the missingness 
is (completely) random (independent of the unobserved 
data):
The biased sampling might be adjusted for.

Missing not at random (MNAR)
Non of the two above apply:
We will need further assumptions in order to analyse 
the data.

Missing data: Standard terminology
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When the data is missing at random, then one can, in 
theory, make unbiased inference based on the observed 
data.

In the SBP example such an analysis could be to use the 
weighted average SBP instead of the biased unweighted 
average.

In general

If the sampled persons are not a completely random sample, 

but the ith person is sampled with a known probability, pi , 

then we can obtain unbiased estimates by weighing the ith 
person with 1/pi .

The method is called Inverse Probability Weighing.

Missing at random

19

The SBP data: 
Four different sampling probabilities and weights:

Inverse probability weighting

0 0 0

1 1 1

2 2 2

3 3 3

100 1325 0.0755 1 13.25

150 1684 0.0891 1 11.23

150 1346 0.1114 1 8.97

100 335 0.2985 1 3.35

p w p

p w p

p w p

p w p

= = = =

= = = =

= = = =

= = = =

That is information from each of the youngest should 
weight by 13.25 and information from the each of the 
oldest should weight by 3.35. 
Sampling weights can be used in many Stata commands:
mean sbp [pw= sampw]
Mean estimation                     Number of obs    =     500
--------------------------------------------------------------

|       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------

sbp |   132.6242   1.032943      130.5947    134.6536
--------------------------------------------------------------
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Missing values – not by design
Most often the missing is not per design
and both in the outcome and in the covariates:

id y x1 x2 x3

1 o o o o

2 o m o o

3 m o o o

4 m m o o

5 o o o o

6 o m m o

Here we have only complete data on 2 persons, but partial 
information on 4 additoinal persons.

o observed

m observed
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Missing values – not by design

If the missing is completely at random,
then the analysis of the complete cases 
will be unbiased.

If this is not the case, then complete 
data analysis can give biased estimates.

If the data is missing at random, then 
it is in theory possible to make an 
unbiased analysis of all the data.

id y x1 x2 x3

1 o o o o

2 o m o o

3 m o o o

4 m m o o

5 o o o o

6 o m m o
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Imputation

One way to try solve the problem with 
missing is to fill in the data for the missing
values and then make the analysis on the 
whole data set with the ‘imputed’ values.

The imputation can be done in many ways.

One way is to fill in an “average” value.

id y x1 x2 x3

1 o o o o

2 o m o o

3 m o o o

4 m m o o

5 o o o o

6 o m m o

id y x1 x2 x3

1 o o o o

2 o a1 o o

3 ay o o o

4 ay a1 o o

5 o o o o

6 o a1 a2 o

This could be the total average of the 
observed values for the specific variable or 
the average in a relevant subgroup.

This method will not in general solve the bias problem.

And of course the standard error stated in the output, 
when you analyse the imputed data set, is wrong.
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Imputation by observed mean in age group:
bysort agegrp: egen msbp=mean(sbp)
generate isbp=sbp
replace isbp=msbp if missing(sbp)

mean isbp
Mean estimation                     Number of obs    =    4690469046904690
--------------------------------------------------------------

|       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------

isbp |   132.6242  132.6242  132.6242  132.6242  .1627486.1627486.1627486.1627486 132.3051    132.9432
--------------------------------------------------------------

Correct analysis using sampling weights:
mean sbp [pw=sampw]
Mean estimation                     Number of obs    =     500500500500
--------------------------------------------------------------

|       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------

sbp |   132.6242   1.032943132.6242   1.032943132.6242   1.032943132.6242   1.032943 130.5947    134.6536
--------------------------------------------------------------

The missing SBP example

Correct mean,  but a much too small standard error –
incorrectly assuming 4690 independent observations.
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Imputation – random multiple

A fixed imputation will not take into account
the random variation of the unobserved
observation or the uncertainty of the 
parameters.

Imputation methods should add some random
variation to the imputed data.

For that we need a statistical model for the missing data. 

In multiple imputations one generates several imputed data 
sets.

For each imputed data set one fit the model of interest.

The point estimate, then the average across the imputed data 
sets.

One tricky thing is calculation of the standard errors.

id y x1 x2 x3

1 o o o o

2 o m o o

3 m o o o

4 m m o o

5 o o o o

6 o m m o
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Multiple imputations

Questions:

How to find the models from which to 
generate the missing data?

How should you handle missing data in this
process?

How to find the uncertainty (standard errors) of the 
estimates?

Bookkeeping. 

Most important: Missing at random is required!

id y x1 x2 x3

1 o o o o

2 o m o o

3 m o o o

4 m m o o

5 o o o o

6 o m m o

26

use sbpdata,clear
mi set mlong
mi register imputed sbp
(4190 m=0 obs. now marked as incomplete)(4190 m=0 obs. now marked as incomplete)(4190 m=0 obs. now marked as incomplete)(4190 m=0 obs. now marked as incomplete)

mi impute regress mi impute regress mi impute regress mi impute regress sbpsbpsbpsbp i.agegrpi.agegrpi.agegrpi.agegrp, add(20), add(20), add(20), add(20)

Univariate imputation                   Imputations =       20
Linear regression                             added =       20
Imputed: m=1 through m=20                   updated =        0

|              Observations per m              
|----------------------------------------------

Variable |   complete   incomplete   imputed |     total
---------------+-----------------------------------+----------

sbp |       500 500 500 500 4190      4190419041904190 |      4690
--------------------------------------------------------------
(complete + incomplete = total; imputed is the minimum across m
of the number of filled in observations.)

The missing SBP example

27

codebook, comp

Variable     Obs Unique      Mean       Min   Max  Label
--------------------------------------------------------------------------------
sbp 84300843008430084300 83383  132.3204  44.52609   270  Systolic Blood Pressure
id         88490   4690  2352.429         1  4699  
agegrp 88490      4  1.107481         0     3  
_mi_id 88490   4690  2357.795         1  4690  
_mi_miss 4690      2  .8933902         0     1  
____mi_mmi_mmi_mmi_m 88490     21  9.943496         0    200    200    200    20
--------------------------------------------------------------------------------

sum if _mi_m==1

Variable |       Obs Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------

sbp |      4190    131.2507    21.65931   59.92363   209.6556
id |      4190    2352.611     1359.59          2       4699

agegrp |      4190    1.105251    .8895275          0          3
_mi_id |      4190    2358.483    1331.661        101       4690

_mi_miss |         0
_mi_m |      4190           1           0          1          1

The missing SBP example

28

. table agegrp if _mi_m>0, c(count sbp mean sbp sd sbp)

----------------------------------------------------------------------------------------------------------------------------------------
agegrp |     N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------
0- |     24,500    121.5843    22.32535    20*1225=2450020*1225=2450020*1225=2450020*1225=24500
40- |     30,680    131.1271    22.37045
50- |     23,920    141.2539    22.4434
60- |      4,700    150.2313    22.19089    20*235=470020*235=470020*235=470020*235=4700

----------------------------------------------

. table agegrp if _mi_m==0,c(count sbp mean sbp sd sbp)

----------------------------------------------
agegrp |     N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------
0- |        100      122.18    15.4327
40- |        150      130.85    22.2366
50- |        150      140.93    22.4819
60- |        100      149.51    26.9251

----------------------------------------------

The missing SBP example
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mi estimate: mean sbpmi estimate: mean sbpmi estimate: mean sbpmi estimate: mean sbp

Multiple-imputation estimates                     Imputations     =         20
Mean estimation                                   Number of obs   =       4690

Average RVI     =     7.4275
Complete DF     =       4689

DF adjustment:   Small sample                     DF:     min     =      23.43
avg     =      23.43

Within VCE type:     ANALYTIC                             max     =      23.43

------------------------------------------------------------------------------
Mean |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
sbp |   132.6799   1.017506132.6799   1.017506132.6799   1.017506132.6799   1.017506 130.40   0.000     130.5772    134.7826

------------------------------------------------------------------------------

The missing SBP example

Correct analysis using sampling weights:
mean sbp [pw=sampw]
Mean estimation                     Number of obs    =     500
--------------------------------------------------------------

|       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------

sbp |   132.6242   1.032943132.6242   1.032943132.6242   1.032943132.6242   1.032943 130.5947    134.6536
--------------------------------------------------------------
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use sbp2data,clear
codebook,comp

Variable    Obs Unique      Mean   Min   Max  Label
--------------------------------------------------------------------------------
sexsexsexsex 4188      2  1.566141     1     2  Sex
sbpsbpsbpsbp 4216    112  132.6945    80   270  Systolic Blood Pressure
dbp 4281     67  82.62766    40   148  Diastolic Blood Pressure
scl 4192    244  228.2011   115   568  Serum Cholesterol
ageageageage 4245     37   46.0636    30    66  Age in Years
bmi 4218    245  25.63148  16.2  57.6  Body Mass Index
id         4690 4690 4690 4690 4690  2349.172     1  4699  
--------------------------------------------------------------------------------
regress regress regress regress sbpsbpsbpsbp age age age age i.sexi.sexi.sexi.sex

Source |       SS           df MS      Number of obs =     3,4063,4063,4063,406
-------------+---------------------------------- F(2, 3403)      =    320.62

Model |  281261.425         2  140630.713   Prob > F        =    0.0000
Residual |  1492627.36     3,403  438.621029   R-squared       =    0.1586

-------------+---------------------------------- Adj R-squared   =    0.1581
Total |  1773888.79     3,405   520.96587   Root MSE        =    20.943

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |   1.072026   .0423621    25.31   0.000     .9889686    1.155084
sex |

Male  |          0  (base)
Female  |   .2701054   .7247534     0.37   0.709    -1.150891    1.691101
_cons |   83.39557   2.017962    41.33   0.000     79.43903    87.35211

------------------------------------------------------------------------------

A more complicated example
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mi set mi set mi set mi set mlongmlongmlongmlong

mi register imputed mi register imputed mi register imputed mi register imputed sbpsbpsbpsbp age sex age sex age sex age sex dbpdbpdbpdbp bmibmibmibmi sclsclsclscl
(2201 m=0 obs. now marked as incomplete)

mi describemi describemi describemi describe

Style:  mlong
last mi update 24nov2016 16:43:28, 0 seconds ago

Obs.:   complete        2,489
incomplete      2,201  (M = 0 imputations)
---------------------
total           4,690

Vars.:  imputed:  6; sbp(474) age(445) sex(502) dbp(409) bmi(472) scl(498)

passive:  0

regular:  0

system:   3; _mi_m _mi_id _mi_miss

(there is one unregistered variable; id)

A more complicated example

32

mi mi mi mi misstablemisstablemisstablemisstable pattern, pattern, pattern, pattern, freqfreqfreqfreq
Missing-value patterns
(1 means complete)

|   Pattern
Frequency |  1  2  3  4    5  6

------------+--------------------
2,489 |  1  1  1  1    1  1

|
314 |  1  1  1  1    0  1
301 |  1  1  1  1    1  0
281 |  1  1  1  0    1  1
278 |  1  1  0  1    1  1
253 |  1  0  1  1    1  1
243 |  0  1  1  1    1  1
42 |  1  1  1  0    0  1
37 |  1  0  1  1    1  0
37 |  1  1  1  0    1  0
36 |  1  1  0  1    1  0
35 |  1  1  1  1    0  0
34 |  0  0  1  1    1  1
33 |  1  0  0  1    1  1
32 |  0  1  0  1    1  1
30 |  1  1  0  0    1  1
28 |  1  1  0  1    0  1
27 |  1  0  1  0    1  1
25 |  0  1  1  0    1  1
25 |  0  1  1  1    1  0
25 |  1  0  1  1    0  1

21 |  0  1  1  1    0  1
7 |  1  0  0  1    0  1
5 |  0  0  0  1    1  1
5 |  1  1  0  1    0  0
4 |  0  0  1  0    1  1
4 |  0  1  0  0    1  1
4 |  0  1  1  1    0  0
4 |  1  0  1  0    1  0
4 |  1  1  0  0    1  0
3 |  1  0  0  0    1  1
3 |  1  0  1  0    0  1
3 |  1  0  1  1    0  0
2 |  0  0  1  1    0  1
2 |  0  1  1  0    0  1
2 |  0  1  1  0    1  0
2 |  1  0  0  1    1  0
2 |  1  1  1  0    0  0
1 |  0  0  1  0    1  0
1 |  0  0  1  1    0  0
1 |  0  0  1  1    1  0
1 |  0  1  0  0    0  1
1 |  0  1  0  1    0  1
1 |  0  1  0  1    1  0
1 |  1  1  0  0    0  0
1 |  1  1  0  0    0  1

------------+--------------------
4,690 |

Variables are  (1) dbp (2) age  (3) bmi (4) sbp (5) scl (6) sex
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mi impute chained ////mi impute chained ////mi impute chained ////mi impute chained ////
((((regress,includeregress,includeregress,includeregress,include(  (  (  (  i.sexi.sexi.sexi.sex age age age age bmibmibmibmi dbpdbpdbpdbp sclsclsclscl))))))))sbpsbpsbpsbp ////////////
((((regress,includeregress,includeregress,includeregress,include(  (  (  (  i.sexi.sexi.sexi.sex age age age age bmibmibmibmi sbpsbpsbpsbp sclsclsclscl))))))))dbpdbpdbpdbp ////////////
((((regress,includeregress,includeregress,includeregress,include(  (  (  (  i.sexi.sexi.sexi.sex age age age age bmibmibmibmi sclsclsclscl))))))))bmibmibmibmi ////////////
((((regress,includeregress,includeregress,includeregress,include(  (  (  (  i.sexi.sexi.sexi.sex age age age age bmibmibmibmi sbpsbpsbpsbp dbpdbpdbpdbp sclsclsclscl))age ///))age ///))age ///))age ///
((((regress,includeregress,includeregress,includeregress,include(  (  (  (  i.sexi.sexi.sexi.sex age age age age bmibmibmibmi sclsclsclscl))))))))sclsclsclscl ////////////
(logit,  include(         age (logit,  include(         age (logit,  include(         age (logit,  include(         age bmibmibmibmi ))sex ///))sex ///))sex ///))sex ///
,add(100) ,add(100) ,add(100) ,add(100) noimputednoimputednoimputednoimputed

Conditional models:
dbp: regress dbp i.sex age bmi sbp scl
age: regress age i.sex bmi sbp dbp scl
bmi: regress bmi i.sex age scl
sbp: regress sbp i.sex age bmi dbp scl
scl: regress scl i.sex age bmi
sex: logit sex age bmi

Performing chained iterations ...

Multivariate imputation                     Imputations =      100
Chained equations                                 added =      100
Imputed: m=1 through m=100                      updated =        0

Initialization: monotone                     Iterations =     1000
burn-in =       10

A more complicated example
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------------------------------------------------------------------
|               Observations per m             
|----------------------------------------------

Variable |   Complete   Incomplete   Imputed |     Total
-------------------+-----------------------------------+----------

sbp |       4216          474       474 |      4690
dbp |       4281          409       409 |      4690
bmi |       4218          472       472 |      4690
age |       4245          445       445 |      4690
scl |       4192          498       498 |      4690
sex |       4188          502       502 |      4690

------------------------------------------------------------------
(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)
codebook, compcodebook, compcodebook, compcodebook, comp

Variable      Obs Unique      Mean       Min      Max  Label
-------------------------------------------------------------------------------
-
sbp 224316  47338  132.3185  47.08539      270  Systolic Blood Pressure
dbp 224381  40808  82.44368        40      148  Diastolic Blood Pressure
scl 224292  49896   227.064  34.90916      568  Serum Cholesterol
age        224345  44422  45.95276  12.26457  82.2043  Age in Years
bmi 224318  47293  25.52148  9.895696     57.6  Body Mass Index
id         224790   4690  2348.082         1     4699  
sex        224288      2  .5676273         0        1  RECODE of koen (Sex)
_mi_m 224790    101  49.44637         0      100  
_mi_id 224790   4690  2329.055         1     4690  
_mi_miss 4690      2  .4692964         0        1  
-------------------------------------------------------------------------------

A more complicated example
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A more complicated example

mi estimate: regress mi estimate: regress mi estimate: regress mi estimate: regress sbpsbpsbpsbp age age age age i.sexi.sexi.sexi.sex

Multiple-imputation estimates                   Imputations       =        100
Linear regression                               Number of obs =      4,690

Average RVI       =     0.1130
Largest FMI       =     0.1394
Complete DF       =       4687

DF adjustment:   Small sample                   DF:     min       =   2,256.34
avg =   2,715.41
max       =   3,031.05

Model F test:       Equal FMI                   F(   2, 3480.5)   =     396.38
Within VCE type:          OLS                   Prob > F          =     0.0000

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |   1.072957   .0376538    28.50   0.000     .9991277    1.146787

|
sex |

Male  |          0  (base)
Female  |   .2033005   .6617939     0.31   0.759    -1.094488    1.501089

|
_cons |   83.29757   1.802549    46.21   0.000     79.76314    86.83199

------------------------------------------------------------------------------
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A different outcome:
1

0

if the person has hayfewer

else
fpdH


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A statistical model:

Systematic part

Random part
X This is not needed 

due to the binomial 
error

Clustered data / data with several random components
Dichotomous outcome



Morten Frydenberg Version date:Thursday, 24 November 2016

Linear regression models for continuous and binary data : Note 6 10

37

( ) 0logit 1f I U A S Gpd

f fp

H I U A S

F P

Gβ β β β β β= = + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+ +

That is, an ordinary logistic regression + random components.

•A generalized linear mixed model

•A multilevel model for dichotomous outcome

Comments 1:

•It is important to include the relevant random
components in the model.

•‘Multilevel models’ is essential in medical/epidemiological 
research.

Clustered data / data with several random components
Dichotomous outcome
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Comments 2:

•The theory and insight into the models for non-normal 
data are not yet fully developed.

•The main problem being that it is very difficult to find 
valid (unbiased) estimates.

•Several software programs falsely claim to estimate the 
models. 

•Some programs like Stata and NLwin can give you valid 
estimates if you take care and have a lot of data. 

Advice:
Do not try to estimate this kind of models without consulting 
a specialist.

Clustered data / data with several random components
Dichotomous outcome
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If the models only involve one random component, e.g. 
variation between families or between GP’s,

then methods exist which can adjust the standard errors.

Remember that if the data contains clusters, then the 
precision of the estimates are overestimated, that is, the 
reported standard errors are too small.

So-called robust methods or sandwich estimates of the 
standard errors will (try to) adjust for this problem.

Only a few programs have this option – Stata does!

Clustered data / data with one random components
Dichotomous outcome


