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Logistic regression models: Test of fit

A common, and to some extend informative, test of fit is the
Hosmer-Lemeshow test.

Consider the model for obesity from Day 4
logit(Pr(obese)) = 3, + f8, - woman + f3, - (age — 45)

Logit estimates Number of obs = 4690
LR chi2(2) = 55.68
Prob > chi2 =

0.0000
Log Tikelihood = -1767.7019 :

obese | Coef. std. Err. z P>|z| [9%% conf. Intervall]
________ e
sex |
1 | (base)
2 | .2743976 .0903385 3.04 0.002 .0973374 .4514579
|
aged5 | .0344723 .0051354 6.71 0.000 .0244072 .0445374
I

-2.147056  .0721981 -29.74 0.000 -2.288561 -2.00555

Significantly better than nothing - but is it good?

Logistic regression models: Test of fit

What about comparing the estimated prevalence with the
observed prevalence?

In the Hosmer-Lemeshow fest the data is divided into groups
(traditionally 10) according to the estimated probabilities

and the observed and expected counts are compared in these
groups by a chi-square test.

Most programs, that can fit a lbgistic regression model, can
calculate this test.

In Stata it is done by (after fitting the model):
estat gof, group(1l0) table

The data is divided into deciles after the estimated
probabilities.

Linear regression models for continuous and binary data : Note 6

Logistic regression models: Test of fit

OUTPUT

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

| Group | Prob | Obs_1 | Exp_1l | Obs_0 | Exp_0 | Total |

[======= Fommmmm - ---oooodo oo oo p-—-m- = Fommmmm Fomm - |

| 1] 0.0841 | | .9 | .1 526 |

| 2 ] 0.0953 | 43 | 45.5 | .51 49 |

| 3 | 0.1045 | 44 | 44.6 | 4] 442 |

| 4 | 0.1112 | 42 | 50.3 | .7 | 464 |

| 51 0.1217 | 44 | 51.4 | .6 | 438 |

| 6 | 0.1332 | 52 | 63.0 .0 | 493 |

| 7 | 0.1456 | 53 | 61.7 31 442 |

| 8 | 0.1592 | 62 | 69.8 2 | 454 |

| 9 | 0.1834 | 98 89.9 | 522 |

| 10 | 0.2407 | 99 | 83.8 413 |

e B .
number of observations = One pr‘ObI?m'

number of aroups = Too many in
Hosmer-Lemeshow chi2(8) = the tails
Prob > chi2 =

Significant difference between observed and expected!
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Logistic regression models: Test of fit Conditional logistic regression
Togit obese 1i.sex##age45 When
estat gof, group(10) table
Logistic model for obese, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities) . . .
R psed on. guantiles ot estimated. probabiities) N Used in two situations:

| Group | Prob | Obs_1 | Exp_1l | Obs_0 | Exp_0 | Total | . .
- pommmmmem pommmme pommmme pommmmem pmmmmmem R | 1.Matched studies (binary response).
| 1]0.0796 | 36 | 35.9 | 466 | 466.1 | 502 |
| 2] 0.1011 | 42 | 41.1| 406 | 406.9 | 448 | 2.Unmatched studies with a confounder with many
| 3] 0.1053 | 49 | 49.6 | 429 | 428.4 | 478 | o
| 410.109 | 50 | 54.8 | 458 | 453.2 | 508 | distinct values.
| 5 0.1124 | 52| 54.2 | 436 | 433.8 | 488 |
| 61 0.1153 | 51| 46.4 | 355 | 359.6 | 406 | In 1. the models correspond to the way data was collected.
| 7 | 0.1182 | 52 | 53.9 | 410 | 408.1 | 462 |
| 810.150 | 76 | 70.3 | 428 | 433.7 | 504 | In 2. the method adjust for a ‘'mathematical’ flaw in the
| 9]0.2133 | 96| 91.8 | 391 | 395.2 | 487 | ditional hod
| 10 10.3310 | 97 | 103.0 | 310 | 304.0 | 407 | unconditional method.
ettt + . .
number of observations = 4690 An example of situation 2:
number of groups = 10 o ” . o
e e TR WE The confounder is "kommune” having 275 distinct values.
prob > chi2 = 0.9650

Conditional logistic regression Conditional logistic regression
What What

The logistic regression model (outcome disease yes/no): In(odds) = +§:(/3 )
s par] i

ln(odds)=(l+ﬁl(ﬁi -x;)
- \ In(odds) different in each strata
In(odds) in reference In(odds ratios) We are not interested in these !

Suppose the model above hold in each strata: In amatched study these are ‘controlled

In a conditional logistic regression one ‘condition on the

In(odds) = o +§(ﬁ_ ) odds in each strata’, i.e. the case/control ratio.
/ TN In the conditional model the «'s disappear !
In(odds) in reference In(odds ratios) The S's , the log OR's, are still in and can be estimated.

different in each strata the same in each strata

7 8

Linear regression models for continuous and binary data : Note 6 2
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Conditional logistic regression
How

A study of cancer in the oral cavity
Matched on gender and 10-year age groups
Ten strata (genage)

Here we focus on

textile-worker and

]ife time consumption of alcohol (three groups)
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Conditional logistic regression

How

logistic regression in Stata

binreg cancer textile i.alkcon 1i.genage,or

cancer | odds Ratio std. Err. z P>|z| [95% Conf. Interval]
,,,,,,,,,,,,, o o e
textile | 1.652484  .6843458 1.21  0.225 .7338846 3.720889

|

alkcon |

0 | 1 (base)

1 | 1.588614 .4485983 1.64 0.101 .9133833 2.763017
2 | 15.12845 4.890496 8.40 0.000 8.028433 28.50742

|

(base)

|
2 | 1.277731 8937 0.20 .845 . 1 14.84645
3 .6101724  .335 72074977 1.794287
4 | 1.196961  .7668028 .3410196 4.201272
5 | .7482746  .4102097 - .2555206 2.191271
6 | 1.237034  .7746878 0. 625102 4.221272
7 | .7940664 .4 0. . 2.26835
8 | 1.73463 79130996 1.05 0.295 .6182202 67148
9 | 18  .6072521 0.05 0.957 .3257093 3.26
10 .9768952 1.00 0.319 .5830142 5.227581
|
_cons | .2301051  .1095992 -3.08 0.002 .0904687 .5852672 10

The syntax:

Part of the output:

Conditional logistic regression in Stata

clogit cancer textile 1i.alkcon,group(genage) or

cancer | odds Ratio std. Err z P>|z| [95% Conf. Interval]
,,,,,,,,,,,,, oo o e -
textile | 1.63708  .6717022 1.20 0.230 .732517 3.658661
alkcon |
0 | (base)
1 | 1.572508 .4390957 1.62 0.105 .909724 2.718168
2 | 14.30908 4.569879 8.33 0.000 7.651811 26.75835

11

Linear regression models for continuous and binary data : Note 6

Missing data - example 1

Consider the Frammingham study and imagine, that (due to a
limited budget) only 500 measurements of SBP were allowed.

It was decided to take SBP measurements on 100 random
participants in each of the age groups -40 and 60+ and 150 in
each of the age groups 40-50 and 50-60.

That is we have missing SBP on 4190 of the 4,690 participants!
A short description of the design and the data:

agegrp | Freq N(sbp)  mean(sbp) sd(sbp)
__________ IO
0- | 1,325 100 122.18 15.4327

40- | 1,684 150 130.85 22.2366

50- | 1,346 150 140.93 22.4819

60- | 335 100 149.51 26.9251

|
Total | 4,690 500 135.87 24.0783
12
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0_
40-
50-
60-

We note:

Missing data - example 1

| Freq N(sbp)
¥

| 1,325 100
| 1,684 150
| 1,346 150
| 335 100
|

| 4,690 500

122.18
130.85
140.93
149.51

This is not a completely random sample
- the chance of being sample depends on age group!

15.4327
22.2366
22.4819
26.9251

24.0783

The overall (total) average SBP is a biased estimate of the
mean SBP among participants in the Frammingham study!

I.e. an analysis of the 500 participants (a complete data
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Missing data - example 1

agegrp | Freq N(sbp)  mean(sbp) sd(sbp)
__________ e o e
0- | 1,325 100 122.18 15.4327

40- | 1,684 150 130.85 22.2366

50- | 1,346 150 140.93 22.4819

60- | 335 100 149.51 26.9251

|
Total | 4,690 500 135.87 24.0783

We also note:
Within each age group the sample is completely random.

Within each age group the average SBP is an unbiased
estimate of the mean SBP in the age group.

We know the size of each age group.

We can calculate an unbiased estimate of the total mean
by weighing the group averages.

14

analysis) will be biased.
13
Missing data - example 1

agegrp | Freq N(sbp)  mean(sbp) sd(sbp)
__________ o
0- | 1,325 100 122.18 15.4327

40- | 1,684 150 130.85 22.2366

50- | 1,346 150 140.93 22.4819

60- | 335 100 149.51 26.9251

|
Total | 4,690 500 135.87 24.0783

An unbiased estimate can be found as the weighted average
of the group averages using the group sizes as weights:

122.18-1325+130.85-1684 +140.93-1346 +149.51-335

=132.62

4690

Conclusion: Although this is not a completely random sample,
we have enough information in the data to find an unbiased

estimatellll

(Assuming completely random sample within age group!)

15

Linear regression models for continuous and binary data : Note 6

Assuming that SBP is related to age:
Being missing is not independent of the unobserved SBP.
but

Being missing is independent of the unobserved SBP,
when we know the age group of the individual.

The first statement means that the data is not missing
completely at random (MCAR).

The second statement corresponds to missing at random
(MAR), i.e. that given all what we have observed (including
age group), then the missingness is (completely) random, i.e.
independent of the unobserved data.

Mathematically Missing At Random implies that one (in
theory) has enough information in the observed data to
correct for the missing data - in principle.

16
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Missing data: Standard terminology

Missing completely at random (MCAR).
The observed data is a (completely) random sample:
A complete data analysis will be unbiased

Missing at random (MAR)

Given all what we have observed, then the missingness
is (completely) random (independent of the unobserved
data):

The biased sampling might be adjusted for.

Missing not at random (MNAR)

Non of the two above apply:

We will need further assumptions in order to analyse
the data.

17

Missing at random

When the data is missing at random, then one can, in
theory, make unbiased inference based on the observed
data.

In the SBP example such an analysis could be to use the
weighted average SBP instead of the biased unweighted
average.

In general

If the sampled persons are not a completely random sample,
but the ith person is sampled with a known probability, p; ,
then we can obtain unbiased estimates by weighing the ith
person with 1/p; .

The method is called Inverse Probability Weighing.

18

Inverse probability weighting
The SBP data:
Four different sampling probabilities and weights:
p, =100/1325=0.0755 w,=1/p,=13.25

p, =150/1684=0.0891 w, =1/p, =11.23
p, =150/1346=0.1114 w, =1/p, =8.97
p, =100/335 =0.2985  w, =1/p, =3.35

That is information from each of the youngest should
weight by 13.25 and information from the each of the
oldest should weight by 3.35.

Sampling weights can be used in many Stata commands:

mean sbp [pw= sampw]

Mean estimation Number of obs = 500
| Mean std. Err. [95% conf. Interval]
_____________ o
sbp | 132.6242  1.032943 130.5947 134.6536

19

Missing values - not by design
Most often the missing is not per design
and both in the outcome and in the covariates:

id|y |x;|x,]|x;3
1|lojojo]o 0 observed
2/o/m|o|o m observed
3/mjojo|oO
4 mim|lo|o
5/o0|0|0|0
6jlomim|o

Here we have only complete data on 2 persons, but partial
information on 4 additoinal persons.

20

Linear regression models for continuous and binary data : Note 6
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Missing values - not by design Imputation P7I I e
If the missing is completely at random, One way to try solve the problem with 1]10lolo}o
. id |y | x| x| x c . T P 2 o]a|o]o
then the analysis of the complete cases . missing is to fill in the data for the missing [———_+—1-
will be unbiased. BN values and then make the analysis on the e Ta ol
If this is not the case, then complete s w0 oo whole data set with the ‘imputed’ values. e PR R R
data analysis can give biased estimates. 4 mimjojo The imputation can be done in many ways. Slojaja]o
5 o o (o] (o]
If the data is missing at random, then 6lo[m[m[o One way is to fill in an "average" value.

it is in theory possible o make an
unbiased analysis of all the data. This could be the total average of the
observed values for the specific variable or
the average in a relevant subgroup.

This method will not in general solve the bias problem.

And of course the standard error stated in the output,
when you analyse the imputed data set, is wrong.

21 22
The missing SBP example Imputation - random multiple — T
i 2 A3
Imputation by observed mean in age group: . . . . .
bysfrt agegrp: den msbp=mean (sbp) ge group A fixed imputation will not take into account ; Z r‘; Z Z
gen$rat8_1;bp=sgp F missingCsbp) the random variation of the unobserved 5
replace 1s =ms 1 missin S . . m [o] o] [o]
P pemsop 9temp observation or the uncertainty of the o e
mean isbp arameters.
Mean estimation Number of obs = 4690 P m S|ojojJojo
-------------------------------------------------------------- H 6 o|lm|m]|o
: vean std. Err [95% Conf. Intervall Impufahon me'rh_ods should add some random
------------- B T TR variation to the imputed data.
isbp | 132.6242  .1627486 132.3051  132.9432

-------------------------------------------------------------- For that we need a statistical model for the missing data.
Correct mean, but a much too small standard error -

incorrectly assuming 4690 independent observations. In multiple imputations one generates several imputed data

sets.
Correct analysis using sampling weights: . ) .
mean sbp [pw=sampw] For each imputed data set one fit the model of interest.
Mean estimation Number of obs = 500
-------------------------------------------------------------- The point estimate, then the average across the imputed data
| Mean std. Err. [95% conf. Intervall]
_____________ e e oo sets.
sbp | 132.6242  1.032943 130.5947  134.6536

—————————————————————————————————————————————————————————————— One tricky thing is calculation of the standard errors.
23 24

Linear regression models for continuous and binary data : Note 6 6
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Multiple imputations

The missing SBP example

use sbpdata,clear

mi set mlong

mi register imputed sbp

(4190 m=0 obs. now marked as incomplete)

mi impute regress sbp i.agegrp, add(20)

Univariate imputation Imputations = 20

Linear regression added = 20

Imputed: m=1 through m=20 updated = 0
| Observations per m

| = mmmmm

variable | complete incomplete imputed | total

_______________ e

sbp | 500 4190 4190 | 4690

(complete + incomplete = total; imputed is the minimum across m
of the number of filled in observations.)

id |y | x| x| x3
Questions: 1]ojojojo
2 o|lmj|o|o
How to find the models from which to 3 m|lo|o|o
generate the missing data? 4 mimjojo
5 o} o} o o}
How should you handle missing data in this 6 lolmlimlo
process?
How to find the uncertainty (standard errors) of the
estimates?
Bookkeeping.
Most important: Missing at random is required!
25
The missing SBP example
codebook, comp
variable Obs unique Mean Min  Max Label
sbp 84300 83383 132.3204 44.52609 270 Systolic Blood Pressure
id 88490 4690 2352.429 1 4699
agegrp 88490 4 1.107481 0 3
_mi_id 88490 4690 2357.795 1 4690
_mi_miss 4690 2 .8933902 0 1
_mi_m 88490 21 9.943496 0 20
sum if _mi_m==1
variable | Obs Mean Std. Dev Min Max
_____________ o S
sbp | 4190 131.2507 21.65931 59.92363 209.6556
id | 4190 2352.611 1359.59 2 4699
agegrp | 4190 1.105251 .8895275 0 3
_mi_id | 4190 2358.483 1331.661 101 4690
_mi_miss | 0
_mi_m | 4190 1 0 1 1
27

Linear regression models for continuous and binary data : Note 6

26
The missing SBP example
. table agegrp if _mi_m>0, c(count sbp mean sbp sd sbp)
agegrp | N(sbp) mean (sbp) sd(sbp)
,,,,,,,,,, S
0- | 24,500 121.5843 22.32535 20%1225=24500
40- | 30,680 131.1271 22.37045
50- | 23,920 141.2539 22.4434
60- | 4,700 150.2313 22.19089 20%*235=4700
table agegrp if _mi_m==0,c(count sbp mean sbp sd sbp)
agegrp | N(sbp)  mean(sbp) sd(sbp)
__________ o
0- | 100 122.18  15.4327
40- | 150 130.85 22.2366
50- | 150 140.93 22.4819
60- | 100 149.51 26.9251
28
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The missing SBP example A more complicated example
. . use sbp2data,clear
mi estimate: mean sbp codebook , comp
Multiple-imputation estimates Imputations = 20 variable obs Unique Mean Min Max Label
Mean estimation Number of obs = 4690 | |
Average RVI = 7.4275 sex 4188 2 1.566141 1 2 sex
) Complete DF = 4689 sbp 4216 112 132.6945 80 270 Systolic Blood Pressure
DF adjustment:  small sample DF: min = 23.43 dbp 4281 67 82.62766 40 148 Dpiastolic Blood Pressure
o avg = 23.43 scl 4192 244 228.2011 115 568 Serum Cholesterol
within VCE type: ANALYTIC max = 23.43 age 4245 37  46.0636 30 66 Age in Years
bmi 4218 245 25.63148 16.2 57.6 Body Mass Index
”””””””””””””””””””””””””””” - id 4690 4690 2349.172 1 4699
Mean | Coef. std. Err. t P>|t| [95% conf. Intervall | e
************* T e e - regress sbp age i.sex
sbp | 132.6799 1.017506 130.40 0.000 130.5772 134.7826 source | ss df MS Number of obs = 3,406
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ T e L L e e LT F(2, 3403) = 320.62
. . . . Model | 281261.425 2 140630.713  Prob > F = 0.0000
Correct analysas usmg samplmg we|gh1's: Residual | 1492627.36 3,403 438.621029 R-squared = 0.1586
mean sbp [pw=sampw] 0| s oo mmmmmmmmmoooooooooooo oo Adj R-squared = 0.1581
Mean estimation Number of obs = so0 | | Total | 1738879 3405 20,9087 ReorweE . TLnew
“““““““““““““““““““““““““““““““““ sbp | Coef std. Err t P>|t| [95% conf. Interval]
| Mean  Sstd. Err [95% conf. Intervall | | e _ e
------------- e age | 1.072026  .0423621  25.31  0.000 .9889686  1.155084
sbp | 132.6242 1.032943 130.5947 134.6536 sex
______________________________________________________________ male | 0 (base)
Female | .2701054 .7247534 0.37 0.709 -1.150891 1.691101
_cons | 83.39557 2.017962 41.33 0.000 79.43903 87.35211
32 e e 30
H mi misstable pattern, freq 21 0 1 1 1 0 1
A more complicated example prdbi el Lol ol
mi set mlong (1 means complete) 51 00 0 1 101
| Pattern 51 110 1 00
mi register imputed sbp age sex dbp bmi scl Frequency l 1234 56 41 0010 11
1= . incomplete) 0| TTmmmmomms T 4 0100 11
(2201 m=0 obs. now marked as incomplete) 2480 ] 1 1 1 1 11 . } >1 90 50
i i ‘ 41 1010 10
mi describe 341 11 1 1 0 1 . } 1o 1
style: mlong 111111 10 3] 1000 11
last mi update 24nov2016 16:43:28, 0 seconds ago 811 11 10 11 3] 1 010 0 1
2781 1101 11 3] 1011 00
Obs.: complete 2,489 gig | é 2 i i i i 2] 0 0 1 1 0 1
incomplete 2,201 (M = 0 imputations) | 2] 01 1 0 0 1
777777777777777777777 421 1110 01 21 0110 10
371 1.0 1 1 10
total 4,690 2] 1.0 0 1 10
37/ 1110 10 211110 00
vars.: dimputed: 6; sbp(474) age(445) sex(502) dbp(409) bmi(472) scl(498) 361 1101 10 11 0010 10
3501111 00 110011 00
e 341 0 0 1 1 11
assive: 0 1] 00 11 10
P 331 1001 11 110100 o1
. 321 01 0 1 11
regular: 0 1] 0101 01
9 30 1100 11 110101 10
) . . L 281 1101 01
system: 3; _mi_m _mi_id _mi_miss 11 1100 00
y 271 1010 11 111100 o1
. . . i 251 0 1 1 0 1 1)y
(there is one unregistered variable; id) 351 01 11 10 2690 T
5] 1011 01
31 variables are (1) dbp (2) age (3) bmi (4) sbp (5) scl (6) sex 32

Linear regression models for continuous and binary data : Note 6 8
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A more complicated example A more complicated example
mi impute chained //// | Observations per m
(regress,include( 1i.sex age bmi dbp sc1))sbp /// [ ===
(regress,include( 1i.sex age bmi sbp sc1))dbp /// variable | Complete Incomplete  Imputed | Total
(regress,include( 1i.sex age bmi sc)bmi v/ 1 | mmmmmmmmmmmmmmmeees oo mmmm oo
(regress,include( 1i.sex age bmi sbp dbp sc1))age /// sbp | 4216 474 474 | 4690
(regress,include( 1i.sex age bmi sc))scl /// dbp | 4281 409 409 | 4690
(logit, include( age bmi )sex /// bmi | 4218 472 472 | 4690
,add(100) noimputed age | 4245 445 445 | 4690
scl | 4192 498 498 | 4690
sex | 4188 502 502 | 4690
Conditional models: L S oo
dbp: regress dbp i.sex age bmi sbp scl (complete + incomplete = total; imputed is the minimum across m
age: regress age i.sex bmi sbp dbp scl of the number of filled-in observations.)
bmi: regress bmi i.sex age scl codebook, comp
sbp: regress sbp i.sex age bmi dbp scl
scl: regress scl i.sex age bmi variable Obs unique Mean Min Max Label
sex: logit sex age bmi L T e oo
performing chained iterations ... sbp 224316 47338 132.3185 47.08539 270 sSystolic Blood Pressure
dbp 224381 40808 82.44368 40 148 Diastolic Blood Pressure
Multivariate imputation Imputations = 100 scl 224292 49896  227.064 34.90916 568 sSerum cholesterol
Chained equations added = 100 age 224345 44422 45.95276 12.26457 82.2043 Age in Years
Imputed: m=1 through m=100 updated = 0 bmi 224318 47293 25.52148 9.895696 57.6 Body Mass Index
id 224790 4690 2348.082 1 4699
Initialization: monotone Iterations = 1000 sex 224288 2 .5676273 0 1 RECODE of koen (Sex)
burn-in = 10 _mi_m 224790 101 49.44637 0 100
_mi_id 224790 4690 2329.055 1 4690
_mi_miss 4690 2 .4692964 0 1
2 Z L 34
A more complicated example Clustered data / data with several random components

Dichotomous outcome

mi estimate: regress sbp age i.sex

Multiple-imputation estimates Imputations = 100 A differ‘en‘l’ outcome: .
Linear regression Number of obs = 4,690 1 lf the per‘son has hayfewer‘
Average RVI = 0.1130 H —
Largest FMI = 0.1394 frd () IS
Complete DF = 4687 else
DF adjustment: Small sample DF: min = 2,256.34
avg = 2,715.41 ..
max - 3,031.05 A statistical model:
Model F test: Equal FMI FC 2, 3480.5) = 396.38
within VCE type: oLS Prob > F = 0.0000 Sys‘l’emaﬂc par‘T
shp | Coef. std. Err. t P>|t] [95% conf. Interval] 3 _ _
___________ ?_+___________________________________i____________________________ loglt(prd = 1) 3 ﬂ() +ﬂ] -1 +ﬂU U +ﬂA 'A+,Bs -S +ﬂ(; -G
age | 1.072957 .0376538 28.50 0.000 .9991277 1.146787
| P RB This is not needed
sex | IS 1S hoT heeae
wale | 0 (base) Random part B
Female | .2033005 .6617939 0.31 0.759 -1.094488 1.501089 due TO The blnomlal
|
_cons |  83.29757 1.802549  46.21 0.000  79.76314  86.83199 error
35 36

Linear regression models for continuous and binary data : Note 6 9
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Clustered data / data with several random components
Dichotomous outcome

logit(prd =1)=180+181 '1+/BU U+ p, 'A+/BS 'S+ﬂG G

+F 4P,

That is, an ordinary logistic regression + random components.

*A generalized linear mixed model
A multilevel model for dichotomous outcome
Comments 1:

*It is important to include the relevant random
components in the model.

'Multilevel models' is essential in medical/epidemiological
research.

37
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Clustered data / data with several random components

Comments 2: Dichotomous outcome

*The theory and insight into the models for non-normal
data are not yet fully developed.

+The main problem being that it is very difficult to find
valid (unbiased) estimates.

*Several software programs falsely claim to estimate the
models.

*Some programs like Stata and NLwin can give you valid
estimates if you fake care and have a lot of data.

Advice:
Do not try to estimate this kind of models without consulting
a specialist.

38

Clustered data / data with one random components
Dichotomous outcome

If the models only involve one random component, e.g.
variation between families or between GP's,

then methods exist which can adjust the standard errors.

Remember that if the data contains clusters, then the
precision of the estimates are overestimated, that is, the
reported standard errors are too small.

So-called robust methods or sandwich estimates of the
standard errors will (try to) adjust for this problem.

Only a few programs have this option - Stata does!

39

Linear regression models for continuous and binary data : Note 6
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