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When to use binary regressions models.

The three measures of association:
RR: Risk Ratio ( Relative Risk)
OR: Odds Ratio
RD: Risk Difference

Switching the outcome
Changing the reference

One (three) examples: RD, RR and OR -models:
Interpretation, estimation, lincom

Plotting the “response curves”

The connection between OR and RR

The limitations of the RD and RR models
The bounds for RD and RR
Invalid "probabilities”
Problem with estimation/fitting

The likelihood ratio test: Comparing two nested models.
Binary regression models: The assumptions

Checking the models
No valid “residuals” — No diagnostic plots

General comments to estimation
Subtle details with standard errors.
Watch out for 'small’ reference groups

Why the logistic regression model is so popular.

Conditoinal logistic regression

Binary regression models: Introduction

A binary regression is a possible model if the dependent
variable (the response) is dichotomous, i.e. dead/alive
obese/not obese etc.

Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

When working with binary response it is custom to code the
“positive” event (eg. dead) as 1 and a “negative” event (alive)
as 0.

Binary regression models: Introduction

A OR-regression model, logistic regression,
models the probability of a "positive event” via odds and
associations via odds ratios.

A RR-regression model, relative risk (risk ratio) regression,
models the probability of a “positive” event and associations
via risk ratios, i.e. relative risks.

A RD-regression model, risk difference regression
models the probability of a "positive” event and associations
via risk differences.

There other types of models that can be used for binary
outcome.

In psychometrics one often used Probit-models.

These model are not covered in this course.

Linear Regression Models for Continuous and Binary Data: Note 4
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Risk ratios, odds ratios, risk differences Risk ratios, odds ratios, risk differences
Risk (chance) of event - comparing two groups Post term delivery Risk of post term delivery(%)
Parity of the mother No Yes Total Estimate Lower Upper
. . At least one previous 4,696 1,677 6,373 26.3% 25.2% 27.4%
Let 7 be the risk of the event in group 1 and No previous deliveries 4,216 1,722 5938 29.0% 27.8% 30.2%
T, be the risk of the event in group 2 Total 8912 339 12311
The odds in group i is defined as : odds;= 7m/(1- 7)) Risk of post term delivery(%)
At least one versus first Estimate Lower Upper
RR 0.91 0.86 0.96
/4 OR 0.87 0.81 0.95
RR, ,=—" RD -2.7% 43%  -11%
& 26.3%
——~ . 0
odds 71'/ -7 T (-1 RR(yes)) = =091
OR _ 1 ( 1) 2 ( 2) lvs2 29.0%

~ 26.3% - (100% — 29.0% :
OR (yes) = o -(100% 6) _1677 4216 _
2 29.0% - (100% —26.3%) 17224696

RD(yes), , =26.3%—29.0% =~2.7%

lvs

5 6
Risk ratios, odds ratios, risk differences Risk ratios, odds ratios, risk differences
Post term delivery Risk of not post term delivery(%) Swrl'chlng outcome yes—no

Parity of the mother No Yes Total Estimate Lower Upper
At least one previous 4,696 1,677 6,373 73.7% 72.6% 74.8% T, - (1 —TT ) 1
No previous deliveries 4,216 1,722 5,938 71.0% 69.8% 72.2% OR( yes) = 1 2 =
Total 8,912 3399 12,311 BRI A (l - 7[1) OR(no)M2
At least one versus first Ri:ttioni::: pOStLtoe\:/Trde“\:Je;;Z)) RD ( yes)l"sz - 7[1 B 7[2 - _I:(l - 7[1 ) - (1 B 7[2 )] - —RD(HO)IVSZ
RR 1.04 1.02 1.06
OR 1.14 1.06 1.24 o~ 1
RD 2% -A43%  -11% OR(yes)1 ,=087=—
= 73.7% 1.14
RR(no) = =1.04 —~

w2 T 71.0% RD(yes), ,=-2.7%=~[2.7%]
OR (10) 73.7%-(100% —71.0%) _ 73.7%-29.0%

no), .= = =1. p : :

1vs2 710%(100%_737%) 71.0% - 26.3% No nice Felaflonshlp between
— RR RR
RD(no), ,=73.1%~71.0% =2.7% (yes), , and RR(no),

7 8
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Risk ratios, odds ratios, risk differences
Changing “reference”

Post term delivery

Risk of post term delivery(%)

Version: Sunday, 20 November 2016

Parity of the mother No Yes Total Estimate Lower Upper
At least one previous 4,696 1,677 6,373 26.3% 25.2% 27.4%
No previous deliveries 4,216 1,722 5,938 29.0% 27.8% 30.2%
Total 8,912 3,399 12,311

Risk of post term delivery(%)

First versus at least one Estimate Lower Upper
RR 0.91 0.86 0.96
OR 1.14 1.06 1.24
RD 2.7% 1.1% 4.3%

Risk ratios, odds ratios, risk differences
Changing “reference”

T 1 1
RR =—t= -
(yes)mz 7[2 72'2/72'1 RR ( yes)zysl
T '(1_772) 1

OR(yes) = =

52 7, (1-7) B OR (yes)

2vsl

RD(yes)M2 =1 -7, =—|7,-m]= —RD(yes)Ml
I/ik(yes) :0.91:L
2 1.10
—~ 1
OR =0.87=—
(ves),. 114

RD(yes), , =-2.7% =~[2.7%]

lvs 10

The example
We are now considering a larger part of the Frammingham

data set, consisting of 4690 persons with known BMI at the

start.
We will focus on the risk obesity (BMI>30 kg/m?) .

Out of the 4690 persons 601 = 12.8% were obese.
Divided into gender

Obese Not-Obese

Women |375 (14.2%) |2268 (85.8%)

Men 226 (11.0%) |1821(89.0%)

We will also look at age divided in three group and
serum cholesterol.

1

Linear Regression Models for Continuous and Binary Data: Note 4

A risk difference model

Pr(obese) = B, + B, - (scl —200) + B, - woman

By
By

B

B

By

+,-(40< age <50)+ B, - (50 < age)
. Risk among men, age<40, with scl=200
: Risk Difference comparing two persons, where the first
has one unit higher serum cholesterol,
adjusted for sex and age
Risk Difference comparing two persons, where the first
is a woman and the second a man,
adjusted for serum cholesterol and age

Risk Difference comparing two persons, where the first
is in the age group 40<age<50 and the second in age<40,
adjusted for serum cholesterol and sex

Risk Difference comparing two persons, where the first
is in the age group 50<age and the second in age<40,

adjusted for serum cholesterol and sex
12
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A risk difference model
binreg obese bl.sex b0.agegrp3 sc1200,rd
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A risk difference model

binreg obese bl.sex b0.agegrp3 sc1200,rd P H H
outpus omiteed This is not a RD. It is a risk!

EIM
obese | Risk Diff. std. Err. z [95% Conf. Interval]
_____________ oo
sex |
Men | 0 (base)
women | .0200744 .0093267 0.031 .0017943 .0383545
|
agegrp3 |
- 0
40- | .0049258 . 0.45 0.655 -.0166559 .0265076
50- | .0559626 . 4.43 0.000 .031221 .0807042
|
sc1200 | .0005806 .0001144 .08 0.000 .0003564 .0008048
_cons | .0782201 .0092233 8.48 0.000 .0601428 .0962973

You can used 1incom, regeq and testparm

You can get estimated probabilities/risk by
predict...,mu

Residuals and leverage does not make any sense

14

Iteration 1: deviance = 3496.151
Iteration 2: deviance = 3494.521
Iteration 3: deviance = 3494.449
Iteration 4: deviance = 3494.445
Iteration 5: deviance = 3494.445
Iteration 6: deviance = 3494.445
Iteration 7: deviance = 3494.445
Generalized linear models No. of obs - 4,658
Optimization : MQL Fisher scoring Residual df = 4,653
(IRLS EIM) Scale parameter = 1
Deviance = 3494.444982 (1/df) Deviance = .751009
Pearson = 4657.969064 (1/df) pearson = 1.001068
variance function: v(u) = u*(1-u) [Bernoulli]
Link function g =u [Identity]
BIC = -35806.38
Output omitted
Not much of interest - we will return to this later!
13
EIM
obese | Risk Diff. std. Err. z P>|z| [95% Conf. Interval]
,,,,,,,,,,,,, oo o e
sex |
Men | 0 (base)
women | .0200744  .0093267 2.15 0.031 .0017943 .0383545
|
agegrp3 |
0- | 0 (base)
40- | .0049258  .0110113 0.45 0.655 -.0166559 .0265076
50- | .0559626  .0126235 4.43  0.000 .031221 .0807042
|
sc1200 | .0005806  .0001144 5.08 0.000 .0003564 .0008048
—cons | .0782201  .0092233 8.48 0.000 .0601428 .0962973

Risk, man, age<40 scl=200: 7.8 (6.0:9.6)%

Women 2.0 (0.2;3.8)%-point higher risk than men
adjusted for age and serum cholesterol level

100 units difference in serum cholesterol level corresponds
to a 5.8(3.6;8.0) %-point increase in risk

adjusted for age and sex
15
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A risk ratio model

A "usual” additive model on log-probability scale

In [Pr(obese)] =, + B, - (scl —200) + B, - woman
+,- (40 < age <50)+ B, - (50 < age)

7, =exp| 4]

A multiplicative model on probability scale

Pr(obese) =exp| 3, + B, - (scl —200) + f3, - woman
+f3, - (40 < age <50) + S, - (50 < age)]

scl-200) woman (40<age<50) (50<age)

:70'71( Y, e e

16
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A risk ratio model A risk ratio model
In[ Pr(obese) | = f,+ - (scl —200) + f3, - woman y = exp[,B] binreg obese bl.sex b0.agegrp3 sc1200,rr
+,33 -(40<age<50)+ ,34 -(50< age) . - Iteration 1: deviance = 4849.97
Iteration 2: deviance = 3631.229
. . Iteration 3: deviance = 3503.426
I Risk among men, 092<40, with scl=200 Iteration 4: deviance = 3499.733
. . N . Iteration 5 deviance = 3499.727
71+ Risk Ratio comparing two persons, where the first has Tteration 6: deviance = 3499.727
one unit hlgher serum ChOICSfCr‘O', Generalized linear models No. of obs = 4658
H Optimization : MQL Fisher scoring Residual df = 4653
GdJUSTGd fOf‘ sex and Clge (IRLS EIM) Scale parameter = 1
- D H H H H Deviance = 3499.727216 (1/df) Deviance = .7521443
%: Risk Ratio comparing two persons, where the first is a pevianc S saoh e 1740 peurance =l oatocs
woman and the second a man, , _ _
. variance function: v(u) = u*(1-u) [Bernoulli]
OdJUSTCd fOI" serum cholesterol and age Link function : g(w) = Tn(w) [Log]
7%: Risk Ratio comparing two persons, where the first is in BIC = -35801.1
the age group 40<age<50 and the second in age<40,
adjusted for serum cholesterol and sex output omitted
%: Risk Ratio comparing two persons, where the first is in
the age group 50<age and the second in age<40,
adjusted for serum cholesterol and sex Not much of interest - we will return to this later!
17 18
A risk ratio model T T T
. binreg obese bl.sex b0.agegrp3 sc1200,rr : : : obese | Risk Ratio P>|z| [95% conf. Intervall
output omiteed ThisnotaRR. Itisariskl | |22, L i A
sex
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Men | 1
| women | 1.250198 0.005 1.070738 1.459736
obese | Risk Ratio [95% Conf. Interval] |
_____________ Y. W < agegrp3 |
sex | 0- | 1
Men | 1 40- | 1.074009 0.515 .866461 1.331272
women | 1.250198 1.070738 1.459736 50- I 1.549492 0.000 1.264014 1.899447
agegrp3 | sc1200 |  1.003053 0.000 1.00145  1.004659
0- | 1 _cons | .0825146 0.000 .068339 .0996307
40- | 1.074009 . 0.515 .866461 1.331272 |  |TTTTTTTTTTTTTTTT T oooooooooooooo oo
50- | 1.549492 4.21 0.000 1.264014 1.899447 .
| Risk, man, age<40 scl=200: 8.3 (6.8:10.0)%
sc1200 | 1.003053 3.74 0.000 1.00145 1.004659
_cons | 0825146 -25.94 0.000 .068339 .0996307

You can get estimated probabilities/risk by
predict...,mu
Residuals and leverage does not make any sense
You can used lincom, regeq and testparm,
but the estimates, se and CIs are found on log scale

19

Women 25 (7;46)% higher risk than men
adjusted for age and serum cholesterol level

100 units difference in scl corresponds to a
36(16;59) % increase in risk adjusted for age and sex
1.003053100 (1.00145100:1,004659100)=1.36(1.16;1.59)

20
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A risk ratio model

. regeq
estimated equation

-2.4948 +0.2233 * 2.sex +0.0714 * 1l.agegrp3 +0.4379 * 2.agegrp3 ///
+0.0030 € veiaol

equation
b0 + bl * 2.sex + b2 * 1l.agegrp3 + b3 * 2.agegrp3 + /// L09 RR
b4 * sc1200

. Tincom sc1200%100

(1) 100*sc1200 = O

A risk ratio model

RR woman 40<age<50 versus man age<40, same scl

Log RR

Tincom (2.sex+1l.agegrp3)-(1.sex+0.agegrp3)
(1) - 1lb.sex + 2.sex - Ob.agegrp3 + l.agegrp3 s

obese | Coef. [95% conf. Interval]
_____________ e
@ | .30488B8 .0816075 3.74 0.000 .14493 .4648316
T Y exp |
. Tincom sc1200*%10p, eform
( 1) 100%sc1200 = 0
obese | exp(b) std. Err z P>|z| [95% Conf. Interval]
_____________ e e
@ | 1.356467 GG 3.74 0.000 1.155966 1.591746
RR
21
A risk ratio model
Risk for women 40sage<50 with scl=150scl
. Tincom _cons+2.sex+1.agegrp3+sc1200%(-50) Log Risk
(1) 2.sex + l.agegrp3 - 50*%sc1200 + _cons = 0
obese | Coef P>|z| [95% conf. Interval]

(1 | -2.352522 .1028584  -22.87 0.000 -2.55412

exp

(1) 2.sex + 1l.agel 3 - 50*sc1200 + _cons = 0

obese | exp(b) std. Err. z P>|z| [95% ‘Conf. Interval]
@ | .095129 ==rB857E48 -22.87 0.000 .0777606 .1163767
Risk
23

obese | Coef P>|z]| [95% Conf. Interval]
,,,,,,,,,,,,, S - e
@ | .2947002 .1337717 2.20 0.028 .0325124 .5568879
6)(p
Tincom (2.sex+1l.adegrp3)-(1.sex+0.agegrp3), eform
(1) - 1lb.sex + 2.sef,- Ob.agegrp3 + l.agegrp3 = 0 \
obese | exp(b) std. Err. z P>|z| [95% Conf. Interval]
,,,,,,,,,,,,, e e e e e e e e
@ | 1.342724 RS EEGT— 2.20 0.028 1.033047 1.745233
22
A risk ratio model
The estimates, se, CI, tests and p-values are
found/calculated on log scale
. binreg obese bl.sex b0.agegrp3 sc1200,rr coef
output omitted
| EIM
obese | Coef. std. Err. z P>|z| [95% Conf. Interval]
,,,,,,,,,,,,, SR IO S
sex |
Men | 0 [(base)
women | .2233019 .0790594 2.82 0.005 .0683483 .3782555
|
agegrp3 |
0- | 0 [(base)
40- | .0713982 .1095614 0.65 0.515 -.1433382 .2861347
50- | .4379273 .1038975 4.21 0.000 .234292 .6415626
|
sc1200 | .0030488 .0008161 3.74 0.000 .0014494 .0046483
_cons | -2.49478 .0961727 -25.94  0.000 -2.683275 -2.306285
ok 24
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A odds ratio model
A “usual” additiv model on log-odds scale

ln[Odds(obese)] =B, + B, (scl —200) + B, - woman
+,-(40< age <50)+ 3, - (50 < age)

7:=exp|f]

A multiplicative model on odds scale
Odds(obese) = exp| B, + B, - (scl =200) + f3, - woman

+,- (40 < age < 50)+ f, - (50 < age)]

scl —2()()) woman (4()Sage<5()) (5()Sage)

A odds ratio model

ln[Odds(obese)] =3, + 3, - (scl =200) + f3, - woman Y = exp[ﬂ.]

+5;-(40< age <50) + B, - (50 < age)

%: Odds among men, age<40, with scl=200

7%: Odds Ratio comparing two persons, where the first has
one unit higher serum cholesterol,
adjusted for sex and age

%: Odds Ratio comparing two persons, where the first is a
woman and the second a man,
adjusted for serum cholesterol and age

7% Odds Ratio comparing two persons, where the first is in
the age group 40<age<50 and the second in age<40,
adjusted for serum cholesterol and sex

%: Odds Ratio comparing two persons, where the first is in
the age group 50<age and the second in age<40,

adjusted for serum cholesterol and sex
26

— (
=%N Vs e Vs
A complicated model on probabilty scale
Odds(obese)
Pr(obese) =
1+ Odds(obese)
25
A odds ratio model
binreg obese bl.sex b0.agegrp3 sc1200,or
Iteration 1: deviance = 3519.095
Iteration 2: deviance = 3498.984
Iteration 3: deviance = 3498.815
Iteration 4: deviance = 3498.815
Iteration 5: deviance = 3498.815
Generalized linear models No. of obs = 4658
Optimization : MQL Fisher scoring Residual df = 4653
(IRLS EIM) Scale parameter = 1
Deviance = 3498.815069 (1/df) Deviance = .7519482
Pearson = 4643.16574 (1/df) pearson = .9978865
variance function: v(u) = u*(1-u) [Bernoulli]
Link function : g(u) = InCu/(1-u)) [Logit]
BIC = -35802.01
Output omitted
Not much of interest - we will return to this later!
27

A odds ratio model

. binreg obese bl.sex b0.agegrp3 sc1200,or ThIS not an OR I.r iS an OddS

output omitted

|
obese | odds Ratio [95% Conf. Interval]
_____________ . N A
sex |
Men | 1
women | 1.282514 1.073389 1.532382
|
agegrp3 |
0- | 1
40- | 1.075132 .8453855 1.367315
50- | 1.64556 1.30489 2.07517
|
scl | 1.003923 1.001996 1.005854
_cons | 0890348 .0721145 .1099252

You can get estimated probabilities/risk by
predict...,mu

Residuals and leverage does not make any sense

You can used 1incom, regeq and testparm,

but the estimates, se and CIs are found on log scale
28
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obese | odds Ratio P>|z| [95% conf. Interval]
,,,,,,,,,,,,, oo oo e
sex |
Men | 1
wWomen | 1.282514 0.006 1.073389 1.532382
|
agegrp3 |
0- | 1
40- | 1.075132 0.555 .8453855 1.367315
50- | 1.64556 0.000 1.30489 2.07517
|
scl | 1.003923 0.000 1.001996 1.005854

—_cons | .0890348 0.000 .0721145 .1099252

Odds, man, age<40 scl=200: 0.089 (0.072:0.110)

Women 28 (7:53)% higher odds than men
adjusted for age and serum cholesterol level

100 units difference in scl corresponds to a

48(22:79) 7% increase in odds adjusted for age and sex
1.003923100 (1.0019961%0;1.005854100)=1.48(1.22;1.79)

Version: Sunday, 20 November 2016

A odds ratio model
. regeq
estimated equation

-2.4187 +0.2488 * 2.sex +0.0724 * 1l.agegrp3 +0.4981 * 2.agegrp3 ///
+0.0039 * sc1200

equation
b0 + bl * 2.sex + b2 * 1l.agegrp3 + b3 *
b4 * sc1200

Log OR

2.agegrp3 + ///

Tincom sc1200%100
(1) 100%sc1200 = 0

obese | Coef.

[95% Conf. Interval]

.3915803 .0980411 3.99 0.000 .1994233 .5837373

. Tincom sc1200*10

,eform exp
(1) 100%sc1200 = 0

obese | exp(b) std. Err. z P>|z| [95% Conf. Interval]
,,,,,,,,,,,,, e e e e e e
@ | 1.479317 el 3.99 0.000 1.220699 1.792726
30

29
A odds ratio model
OR woman 40<age<50 versus man age<40, same scl
Log OR
Tincom (2.sex+1.agegrp3)-(1l.sex+
(1) - 1lb.sex + 2.sex - Ob.agegrp3 +
obese | Coef [95% Conf. Interval]
,,,,,,,,,,,,, Y o
@ | .3212652 .1510523 2.13 0.033 .0252081 .6173223
Tincom (2.sex+1.agegrp3)-(1.sex+0.agegrp3),eform exp
(1) - 1lb.sex + 2.sey - Ob.agegrp3 + l.agegrp3 = 0
obese | ex| )] std. Err. z P>|z| [95% Q‘pf. Intervall
7777777777777 e Y - ——— - mmmmm =
@ | 1.378871 .2082817 2.13 0.033 1.025529 1.853957
OR
31
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A odds ratio model
Risk for women 40<age<50 with scl=150scl

Tincom _cons+2.sex+1.agegrp3+sc1200*(-50) Log Risk
(1) 2.sex + l.agegrp3 - 50*%sc1200 + _cons = 0

P>|z|

.1188768 -19.29 0.000 -2.526247 -2.060258

Tincom _cons+2.skx+1.agegrp3+sc1200*(-50), eform P
3 - 50%sc1200 + _cons = 0
std. Err. z P>|z| [95% Conf. Interval]
=011000d= -19.29 0.000 .0799586 .127421

Odds

disp %12.6f .1009376/1.1009376 %12.6f .0799586/1.0799586 %12.6f .127421/1.127421
0.091683 0.074039 0.113020

Risk = Odds/(1+Odds) by hand

32
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A odds ratio model .. odds exp(logodds . .
. ) Probability = = p(logodds) = invlogit (logodds
Risk for women 40<age<50 with scl=150scl 1+odds 1+exp(logodds)
1
. odds exp(logodds . ) Plot 1
Probability = = p(log ) = invlogit(logodds 9
1+odds 1+exp(logodds) \
g 7
No , eform i
= 67
4 L s
Tincom _cons+2.sex+1.agegrp3+sc1200*(-50) %
(1) 2.sex + l.agegrp3 - 50%sc1200 + _cons = 0 2 44
_______ obese | coef. std. err.  z  Pslzl  [95% conf. Intervall 2 34
T 2203253 1188768 -19.29  0.000  -2.526247  -2.060258 2-
disp %12.6f invlogit( r(estimate) ) /// ™
%12.6F invlogit( r(estimate)-1.96*r(se) ) /// 0
%12.6f inviogit( r(estimate)+1.96%r(se) ) :5 a 5 5 P 6 1 5 é 4 é
0.091683  0.074038  0.113020 53 logit=In(odds) s
binreg: The tests in the output Plots
binreg.., rd: .. RD-model: b1.sex b0.agegrp3 scl200
Risk difference =0 ~1Plot 2
_cons: Risk=0 2????
A
binreg..,rr:
Risk ratio = 1 § 31
_cons: log(risk)=0 that is Risk=1 2?2?22 <
x
[%]
- — A2_
binreg..,or: * -
Odds ratio = 1 il
_cons: log(odds)=0 that is Risk=0.5 ????? 1 == —— Men, -40 —— Women, -40
% —— Men, 4050 —— Women, 40-50
o ----= Men, 50+  ---- Women, 50+
100 200 300 400 500 600
scl
35 36
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Plots
RR-model: b1.sex b0.agegrp3 scl200
,_5_
Plot 3
=14
[+)]
w
8 15
o
-
©
1
=] -2
S
-2.57 //// —— Men, -40 —— Women, -40
— — Men, 40-50 — — Women, 40-50
. ---- Men, 50+ ---- Women, 50+
T T T T T
100 200 300 400 500 600
scl
37
Plots
OR-model: b1.sex b0.agegrp3 scl200
0_
Plot 5
& -1
()]
ie)
[=]
o0
o
o
(=]
{=]
o 24
/// — Men, 40 —— Women, 40
= — — Men, 40-50 — — Women, 40-50
4l ---- Men, 50+ ---- Women, 50+
T T T T T
100 200 300 400 500 600
scl
39
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Plots
RR-model: b1.sex b0.agegrp3 scl200
5
Plot 4
44
2 34
[
Lo
o
]
e 27
e _ -
=== Men, -40 Women, -40
—— Men, 40-50 —— Women, 40-50
0 ---- Men, 50+  ---- Women, 50+
T T T T T
100 200 300 400 500 600
scl
38
Plots
OR-model : b1.sex b0.agegrp3 scl200
5
Plot 6
44
2 34
[
Lo
o
]
e 27
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Plots

OR, RR OR -models: b1.sex b0.agegrp3 scl200
51 Plot 7
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When is the risk ratio and the odds ratio close?

(1= 1—
OR,,, = M =RR,," ( 7[2)
7[2'(1_7[1) (1_7[1)
1—-
. 1=7)

e (1 _7[2 ’ RRIVSZ)

< OR

T, >7, =>1<RR 1vs2

vs2
We see that: 7w, <7, =>1>RR, ,>OR, ,

If m, is small or RR |, is close to 1,
then the last term is close to 1,
so OR |,,, will be close to RR |,

42

The limitations of the RD and the RR
RD,,=1,-T, RR,, = %
The Risk Difference cannot obtain all values:
For fixed value of 7, we have: -7, <RD, ,<1-7,
if 75, =5% then the risk difference must be larger than -5%
if 7, =95% then the risk difference must be smaller than 5%

The limitations of the RD and the RR models

Per definition the risk (probality) is limited to the interval
zero to one.

A RD model can violate this:
Pr(obese) = f3,+ f3, - (scl —200) + f3, - woman + f3, - (40 < age < 50) + f3, - (50 < age)

If B, is positive then
very large values of sc1 will give risks higher than one
very small values of sc1 will give negative risks

The Risk Ratio cannot obtain all values:
For fixed value of 7, we have: O<RR, ,<

if 7, =95% =0.95
then the risk ratio must be smaller than 1.05=1/0.95

1
7[2

i.e. RR can be very restricted for frequent events.
43

A RR model can also violate this:

lnI:Pr(obese)] =L, + 3, (scl —200) + 3, - woman + f3, - (40 < age < 50) + 3, - (50 < age)

If [, is positive then very large values of sci
will give positive log-risks, i.e. risk larger than 1.

44
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The limitations of the RD and the RR models

RD and RR models can be difficult or impossible to fit to a
data set:

generate notobese=1-obese
binreg notobese bl.sex b0.agegrp3 sc1200,rr

Iteration 1: deviance = 14758.67
Iteration 2: deviance = 3530.169
Iteration 154: deviance = 3509.491
Iteration 155: deviance = 3509.49

--Break—-

This trick might solve the “convergence” problem:

binreg notobese bl.sex b0.agegrp3 sc1200,or
predict pr, mu
binreg notobese bl.sex b0.agegrp3 sc1200,rr mu(pr)

45

Comparing two models: the likelihood ratio test

Until now we have used testparm to test if several
coefficients could be zero.

Ina "normal” regression model testparm will give a exact
F-test.

In all other models, including binary regression models,
testparm will results in what is so-called a Wald-test,
which is approximative/"asymptotic” test.

binreg obese bl.sex b0.agegrp3 scl1200,rr

testparm i.agegrp3
(1) 1l.agegrp3 =0
(2) 2.agegrp3 =0
chi2( 2) = 25.46

testparm 1i.agegrp3 sc1200
(1) 1l.agegrp3 =0
(2) 2.agegrp3 =0

Prob > chi2 0.0000 (3) scl200 =0
chi2( 3) = 53.76
An often used asymptotic Prob > chi2 = 0.0000

test is the likelihood ratio test.

47
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RD, RR OR - models b1.sex b0.agegrp3 scl200
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Comparing two models: the likelihood ratio test
One can compare two models with a likelihood ratio test if:
*The two models are fitted on exactly the same data set.
*The two models are nested, i.e. one can go from one model
to the other by setting some coefficients to zero.
In Stata the test is found in this way:
binreg obese bl.sex b0.agegrp3 sc1200,rr ml
estimates store Modelrrl
binreg obese bl.sex sc1200,rr ml
estimates store Modelrr2
Trtest Modelrrl Modelrr2
Output:
Likelihood-ratio test LR chi2(2) = 24.92
(Assumption: Modelrr2 nested in Modelrrl) Prob > chi2 = 0.0000

i.agegrp3 adds statistical significant information to the
model containing sex and scl smoking!

48
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Comparing two models: the likelihood ratio test Comparing two models: the likelihood ratio test
One can compare two models with a likelihood ratio test if: estimates table Modelrr®,stats( 1D
*The two models are fitted on exactly the same data set. ____\_/fflfl_)lf_l__'\_"c_’?ﬂff} _____ T?ﬁflff _____ 'Z'c_’(_iflff___
*The two models are nested, i.e. one can go from one model o I (base) (base) (base)
to the other by setting some coefficients to zero. women | .22330342 .2309925 .2508517
. . . |
In Stata the test is found in this way: agegrp3 |
binreg obese bl.sex b0.agegrp3 sc1200,rr ml 0 | (base)
estimates store Modelrrl 1 | .07139944
2 | .43793034
binreg obese bl.sex ,rr ml
i sc1200 | .00304885 .00416867
estimates store Modelrr3 _cons | -2.4947825  -2.3300943  -2.2035956
1rtest Modelrrl Modelrr3 | T ;_T _______ ;;;é _________ ;;;; _________ ;;;6__
Output: 11 | -1749.8636 -1762.3225 -1790.3703
observations differ: 4658 vs. 4690 T T T T T
The model without scl is fitted to a larger data set.
The results cannot be compared!!!
49 50
Comparing two models: the likelihood ratio test Comparing two models: the likelihood ratio test
P 9 P g
Likelihood ratio test safe method
(All models fitted to the same data): estimates table Modelrr*,stats(N 11)
quietly: binreg obese bl.sex b0.agegrp3 scl1200,rr m1 | 7T TTTmmo oo —————————— oo
estimates store Modelrrl variable | Modelrrl ModeTrr2 Modelrr3
_____________ o
generate inmodell=e(sample) sex |
Men | (base) (base) (base)
quietly: binreg obese bl.sex sc1200 if inmodell ,rr ml women | .22330342 .2309925 .24350715
estimates store Modelrr2
agegrp3 |
quietly: binreg obese bl.sex if inmodell, rr ml 0 | (base)
estimates store Modelrr3 1 | .07139944
2 | .43793034
Trtest Modelrrl Modelrr2
Likelihood-ratio test LR chi2(2) = 24.92 sc1200 | .00304885 .00416867
(Assumption: Modelrr2 nested in Modelrrl) Prob > chi2 = 0.0000 _cons | -2.4947825 -2.3300943 -2.2001701
_____________ e
Trtest Modelrrl Modelrr3 N | 4658 4658 4658
LikeTihood-ratio test LR chi2(3) = 53.72 11 | -1749.8636 -1762.3225 -1776.7225
(Assumption: Modelrr3 nested in Modelrrl) Prob > chi2 = 0.005(,)10 _____________________________________________________ 52
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The assumptions:
The model:
f (risk) = B, + B, - (scl —200) + B, - woman

+8,-(40<age <50)+ B, - (50 < age)

Note:
We model the probability, some no room for additional
random variation, - no unexplained deviations.

Two assumptions:
1. Linearity

2. Independency
Checking independency :
Just like in the normal case

53
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The assumptions: Linearity

Frisk) = B, + B, -(sel ~200) + - woman
+8,-(40<age <50)+ B, - (50< age)

The linearity can be decomposed in the sub-assumptions:

Additivity on f-scale: The contributions from sex and age are
added.

Proportionality on f-scale: The contribution from age is
proportional to its value.

No effectmodification on f-scale: The contribution from one
independent variable is the same whatever the value of the
other.

54

The assumptions ratio models: Linearity—multiplicativity

(s¢1-200) woman (40<age<50) (50<age)
Pr(obese) Yo 71 e e Vs

Odds(obese) }/0 }/1 (sc1-200) ?/zwgman . }/(40§age<50) . 7 (50<age)

3 4

The linearity can be decomposed in the sub-assumptions:

Multiplicativity on risk /odds-scale:
The contributions from sex and age are multiplied.

Exponential on risk /odds-scale :
The contribution from age is raised to its value.

No effectmodification on risk/odds-scale: The contribution
from one independent variable is the same whatever the
value of the other.

55

Linear Regression Models for Continuous and Binary Data: Note 4

Model checking

As there are no additional “random variation" there are no
residuals, so you cannot make any of the diagnostic plots
known from the normal regression models.

Model checking are typically done by expanding the model
with interactions, cubic splines etc.

or looking at alternative way to introduce central variables.

In large data sets you can get some insight to the fit of the
model by plotting observed frequencies against estimated
probabilities in subgroups.

There exist many "statistics”, like generalised r-squared,
AUC-roc and Brier score, that measured the quality of an
estimated model. But they will not give any insight what
could be wrong with the model.

56
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Binary regression models in general Things to look out for in the output
Estimation:

Excepting the two by two tables, there are no closed form for In general:

the estimates. Wide CI's or large standard errors in a binary regression

" |
The distribution of the estimates are not known. indicates that at least one group has few events!

Estimates are found by the method of maximum likelihood. As arule of .'rhumb there should be af least 15 events per
parameters in the model.

Estimates are using iterative methods. Many iterations in a binary regression indicates that some

Standard errors, confidence intervals and all tests are based of the parameters are hard to estimate.

on asymptotics. (for RD and RR it might help to using starting values from a

That is, all statistical inference are approximate. OR - model).

The more data - the more events -the better the
approximations.

binreg can also be run with the option m1, this will give
slightly different standard errors for RD and RR models57

58

OR regression = logistic regression Logistic regression - why

A OR regression model in usually called a logistic regression. Logistic regression is the most used binary regression model:

It can be fitted in Stata by logit or Togistics command » Tt is always valid as it the probability always is between O

binreg obese bl.sex b0O.agegrp3 sc1200,or and one.

+ It was the first ever programmed.
The option of RD or RR models in standard software is
logistic obese bl.sex b0.agegrp3 sc1200 relative new.

logit obese bl.sex b0.agegrp3 scl1200,or

+ It can be used to used to analyse data from many types of
case-control designs.

It have done the job for many years!l????

59 60
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Logistic regression model in general Logistic regression model in general
In(odds) +
(Odds 'B()+zﬂ[7 x n(O S ﬁO Zﬁp x
If one consider two persons who dn‘fer' with
Ax,inx;, Ax, in X, .. and Ax, in x,
the difference in the log odds is :
k

This is based on three assumptions:

a. Additivity on log-odds scale: The contribution from each
of the independent variables are added.
b.Proportionality: The contribution from independent Zﬁp ‘Axp
p=l

variables is proportional to its value (with a factor ) ) o
Again we see that the contribution from each of the

c. No effectmodification: The contribution from one explanatory variables:
independent variable is the same whatever the values of are added,
the other. are proportional to the difference

icitivi and does not depend on the difference in the other

lanat iables
scale odds = odds, - OR™ - OR}-+-- OR™ explanafory variable

On the log odds scale!

61 62

Logistic regression model in general
k

In(odds) = f5, + Z,b’p X,
If one consider two persons wh%zldiffer' with
Ax;inx;, Ax, in x, ... and Ax; in x;,
then the odds ratio is:
OR =OR™ - OR™ ---- OR™

Note, the model might also be formulated:
k
exp(ﬁo +Zﬁp ’ pr
p=1
k
1+exp ,6’0+Z,6’/, X,
p=1

p=Pr[Yy =1]=

63
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