

Regression models for binary data

Morten Frydenberg ©
Section for Biostatistics, Aarhus Univ, Denmark

When to use binary regressions models.

The three measures of association:

- RR: Risk Ratio (Relative Risk)
- OR: Odds Ratio
- RD: Risk Difference

Switching the outcome

Changing the reference

One (three) examples: RD, RR and OR -models:

Interpretation, estimation, lincom

Plotting the "response curves"

The connection between OR and RR

1

The limitations of the RD and RR models

The bounds for RD and RR

Invalid "probabilities"

Problem with estimation/fitting

The likelihood ratio test: Comparing two nested models.

Binary regression models: The assumptions

Checking the models

No valid "residuals" → No diagnostic plots

General comments to estimation

Subtle details with standard errors.

Watch out for 'small' reference groups

Why the logistic regression model is so popular.

Conditional logistic regression

2

Binary regression models: Introduction

A binary regression is a **possible** model if the **dependent** variable (the response) is **dichotomous**, i.e. dead/alive obese/not obese etc.

Contrary to what many believe there are **no assumptions** about the **independent** variables.

They can be categorical or continuous.

When working with binary response it is **custom to code the "positive" event** (eg. dead) as **1** and a **"negative" event** (alive) as **0**.

3

Binary regression models: Introduction

A **OR-regression** model, **logistic regression**, models the **probability** of a "positive event" via odds and associations via **odds ratios**.

A **RR-regression** model, **relative risk (risk ratio) regression**, models the **probability** of a "positive" event and associations via **risk ratios**, i.e. **relative risks**.

A **RD-regression** model, **risk difference regression** models the **probability** of a "positive" event and associations via **risk differences**.

There other types of models that can be used for binary outcome.

In psychometrics one often used **Probit-models**. These model are **not covered** in this course.

4

Risk ratios, odds ratios, risk differences

Risk (chance) of event - comparing two groups

Let π_1 be the risk of the event in group 1 and
 π_2 be the risk of the event in group 2

The odds in group i is defined as : $odds_i = \pi_i / (1 - \pi_i)$

$$RR_{1vs2} = \frac{\pi_1}{\pi_2}$$

$$OR_{1vs2} = \frac{odds_1}{odds_2} = \frac{\pi_1 / (1 - \pi_1)}{\pi_2 / (1 - \pi_2)} = \frac{\pi_1 \cdot (1 - \pi_2)}{\pi_2 \cdot (1 - \pi_1)}$$

$$RD_{1vs2} = \pi_1 - \pi_2$$

5

Risk ratios, odds ratios, risk differences

Parity of the mother	Post term delivery		Risk of post term delivery(%)			
	No	Yes	Total	Estimate	Lower	Upper
At least one previous	4,696	1,677	6,373	26.3%	25.2%	27.4%
No previous deliveries	4,216	1,722	5,938	29.0%	27.8%	30.2%
Total	8,912	3,399	12,311			

At least one versus first	Risk of post term delivery(%)		
	Estimate	Lower	Upper
RR	0.91	0.86	0.96
OR	0.87	0.81	0.95
RD	-2.7%	-4.3%	-1.1%

$$\widehat{RR}(yes)_{1vs2} = \frac{26.3\%}{29.0\%} = 0.91$$

$$\widehat{OR}(yes)_{1vs2} = \frac{26.3\% \cdot (100\% - 29.0\%)}{29.0\% \cdot (100\% - 26.3\%)} = \frac{1677 \cdot 4216}{1722 \cdot 4696} = 0.87$$

$$\widehat{RD}(yes)_{1vs2} = 26.3\% - 29.0\% = -2.7\%$$

6

Risk ratios, odds ratios, risk differences

Parity of the mother	Post term delivery		Risk of not post term delivery(%)			
	No	Yes	Total	Estimate	Lower	Upper
At least one previous	4,696	1,677	6,373	73.7%	72.6%	74.8%
No previous deliveries	4,216	1,722	5,938	71.0%	69.8%	72.2%
Total	8,912	3,399	12,311			

At least one versus first	Risk of not post term delivery(%)		
	Estimate	Lower	Upper
RR	1.04	1.02	1.06
OR	1.14	1.06	1.24
RD	-2.7%	-4.3%	-1.1%

$$\widehat{RR}(no)_{1vs2} = \frac{73.7\%}{71.0\%} = 1.04$$

$$\widehat{OR}(no)_{1vs2} = \frac{73.7\% \cdot (100\% - 71.0\%)}{71.0\% \cdot (100\% - 73.7\%)} = \frac{73.7\% \cdot 29.0\%}{71.0\% \cdot 26.3\%} = 1.14$$

$$\widehat{RD}(no)_{1vs2} = 73.7\% - 71.0\% = 2.7\%$$

7

Risk ratios, odds ratios, risk differences

Switching outcome yes→no

$$OR(yes)_{1vs2} = \frac{\pi_1 \cdot (1 - \pi_2)}{\pi_2 \cdot (1 - \pi_1)} = \frac{1}{OR(no)_{1vs2}}$$

$$RD(yes)_{1vs2} = \pi_1 - \pi_2 = -[(1 - \pi_1) - (1 - \pi_2)] = -RD(no)_{1vs2}$$

$$\widehat{OR}(yes)_{1vs2} = 0.87 = \frac{1}{1.14}$$

$$\widehat{RD}(yes)_{1vs2} = -2.7\% = -[2.7\%]$$

No nice relationship between

$RR(yes)_{1vs2}$ and $RR(no)_{1vs2}$

8

Risk ratios, odds ratios, risk differences
Changing "reference"

Parity of the mother	Post term delivery			Risk of post term delivery(%)		
	No	Yes	Total	Estimate	Lower	Upper
At least one previous	4,696	1,677	6,373	26.3%	25.2%	27.4%
No previous deliveries	4,216	1,722	5,938	29.0%	27.8%	30.2%
Total	8,912	3,399	12,311			

First versus at least one	Risk of post term delivery(%)		
	Estimate	Lower	Upper
RR	0.91	0.86	0.96
OR	1.14	1.06	1.24
RD	2.7%	1.1%	4.3%

9

Risk ratios, odds ratios, risk differences
Changing "reference"

$$RR(\text{yes})_{1vs2} = \frac{\pi_1}{\pi_2} = \frac{1}{\pi_2/\pi_1} = \frac{1}{RR(\text{yes})_{2vs1}}$$

$$OR(\text{yes})_{1vs2} = \frac{\pi_1 \cdot (1 - \pi_2)}{\pi_2 \cdot (1 - \pi_1)} = \frac{1}{OR(\text{yes})_{2vs1}}$$

$$RD(\text{yes})_{1vs2} = \pi_1 - \pi_2 = -[\pi_2 - \pi_1] = -RD(\text{yes})_{2vs1}$$

$$\widehat{RR}(\text{yes})_{1vs2} = 0.91 = \frac{1}{1.10}$$

$$\widehat{OR}(\text{yes})_{1vs2} = 0.87 = \frac{1}{1.14}$$

$$\widehat{RD}(\text{yes})_{1vs2} = -2.7\% = -[2.7\%]$$

10

The example

We are now considering a larger part of the Frammingham data set, consisting of 4690 persons with **known BMI** at the start.

We will focus on the risk obesity (BMI $\geq 30 \text{ kg/m}^2$).

Out of the 4690 persons 601 = 12.8% were *obese*.

Divided into gender

	Obese	Not-Obese
Women	375 (14.2%)	2268 (85.8%)
Men	226 (11.0%)	1821 (89.0%)

We will also look at age divided in three group and serum cholesterol.

11

A risk difference model

$$\Pr(\text{obese}) = \beta_0 + \beta_1 \cdot (\text{scl} - 200) + \beta_2 \cdot \text{woman} + \beta_3 \cdot (40 \leq \text{age} < 50) + \beta_4 \cdot (50 \leq \text{age})$$

β_0 : Risk among men, age < 40, with scl=200

β_1 : Risk Difference comparing two persons, where the first has one unit higher serum cholesterol, **adjusted** for sex and age

β_2 : Risk Difference comparing two persons, where the first is a woman and the second a man, **adjusted** for serum cholesterol and age

β_3 : Risk Difference comparing two persons, where the first is in the age group $40 \leq \text{age} < 50$ and the second in $\text{age} < 40$, **adjusted** for serum cholesterol and sex

β_4 : Risk Difference comparing two persons, where the first is in the age group $50 \leq \text{age}$ and the second in $\text{age} < 40$, **adjusted** for serum cholesterol and sex

12

A risk difference model

binreg obese b1.sex b0.agegrp3 scl200,rd

Iteration 1: deviance = 3496.151
 Iteration 2: deviance = 3494.521
 Iteration 3: deviance = 3494.449
 Iteration 4: deviance = 3494.445
 Iteration 5: deviance = 3494.445
 Iteration 6: deviance = 3494.445
 Iteration 7: deviance = 3494.445

Generalized linear models
 Optimization : MQL Fisher scoring
 (IRLS EIM)

Deviance = 3494.444982

Pearson = 4657.969064

Variance function: v(u) = u*(1-u)

Link function : g(u) = u

No. of obs = 4,658

Residual df = 4,653

Scale parameter = 1

(1/df) Deviance = .751009

(1/df) Pearson = 1.001068

[Bernoulli]

[Identity]

BIC = -35806.38

Output omitted

Not much of interest - we will return to this later!

13

A risk difference modelbinreg obese b1.sex b0.agegrp3 scl200,rd
 output omitted

This is not a RD. It is a risk!

obese	EIM					[95% Conf. Interval]
	Risk Diff.	Std. Err.	z	P> z		
sex	0					
Men						
Women	.0200744	.0093267	2.15	0.031	.0017943	.0383545
agegrp3	0					
0-						
40-	.0049258	.0110113	0.45	0.655	-.0166559	.0265076
50-	.0559626	.0126235	4.43	0.000	.031221	.0807042
scl200	.0005806	.0001144	5.08	0.000	.0003564	.0008048
_cons	.0782201	.0092233	8.48	0.000	.0601428	.0962973

You can used **lincom**, **regeq** and **testparm**

You can get estimated probabilities/risk by

predict....,mu

Residuals and leverage does not make any sense

14

obese	EIM					[95% Conf. Interval]
	Risk Diff.	Std. Err.	z	P> z		
sex	0					
Men						
Women	.0200744	.0093267	2.15	0.031	.0017943	.0383545
agegrp3	0					
0-						
40-	.0049258	.0110113	0.45	0.655	-.0166559	.0265076
50-	.0559626	.0126235	4.43	0.000	.031221	.0807042
scl200	.0005806	.0001144	5.08	0.000	.0003564	.0008048
_cons	.0782201	.0092233	8.48	0.000	.0601428	.0962973

Risk, man, age<40 scl=200: 7.8 (6.0;9.6)%

Women 2.0 (0.2;3.8)%-point higher risk than men
 adjusted for age and serum cholesterol level100 units difference in serum cholesterol level corresponds
 to a 5.8(3.6;8.0) %-point increase in risk
 adjusted for age and sex

15

A risk ratio model**A "usual" additive model on log-probability scale**

$$\ln[\Pr(\text{obese})] = \beta_0 + \beta_1 \cdot (\text{scl} - 200) + \beta_2 \cdot \text{woman} + \beta_3 \cdot (40 \leq \text{age} < 50) + \beta_4 \cdot (50 \leq \text{age})$$

$$\gamma_i = \exp[\beta_i]$$

A multiplicative model on probability scale

$$\Pr(\text{obese}) = \exp[\beta_0 + \beta_1 \cdot (\text{scl} - 200) + \beta_2 \cdot \text{woman} + \beta_3 \cdot (40 \leq \text{age} < 50) + \beta_4 \cdot (50 \leq \text{age})] = \gamma_0 \cdot \gamma_1^{(\text{scl} - 200)} \cdot \gamma_2^{\text{woman}} \cdot \gamma_3^{(40 \leq \text{age} < 50)} \cdot \gamma_4^{(50 \leq \text{age})}$$

16

A risk ratio model

$$\ln[\Pr(\text{obese})] = \beta_0 + \beta_1 \cdot (\text{scl} - 200) + \beta_2 \cdot \text{woman} + \beta_3 \cdot (40 \leq \text{age} < 50) + \beta_4 \cdot (50 \leq \text{age})$$

$$\gamma_i = \exp[\beta_i]$$

γ_0 : Risk among men, age<40, with scl=200

γ_1 : Risk Ratio comparing two persons, where the first has one unit higher serum cholesterol, **adjusted** for sex and age

γ_2 : Risk Ratio comparing two persons, where the first is a woman and the second a man, **adjusted** for serum cholesterol and age

γ_3 : Risk Ratio comparing two persons, where the first is in the age group 40≤age<50 and the second in age<40, **adjusted** for serum cholesterol and sex

γ_4 : Risk Ratio comparing two persons, where the first is in the age group 50≤age and the second in age<40, **adjusted** for serum cholesterol and sex

17

A risk ratio model

```
binreg obese b1.sex b0.agegrp3 scl200, rr
```

```
Iteration 1: deviance = 4849.97
Iteration 2: deviance = 3631.229
Iteration 3: deviance = 3503.426
Iteration 4: deviance = 3499.733
Iteration 5: deviance = 3499.727
Iteration 6: deviance = 3499.727
```

```
Generalized linear models
Optimization : MQL Fisher scoring
               (IRLS EIM)
Deviance     = 3499.727216
Pearson      = 4644.143131
```

```
No. of obs      = 4658
Residual df    = 4653
Scale parameter = 1
(1/df) Deviance = .7521443
(1/df) Pearson  = .9980965
```

```
Variance function: v(u) = u*(1-u)
Link function  : g(u) = ln(u)
```

```
[Bernoulli]
[Log]
```

```
BIC           = -35801.1
```

Output omitted

Not much of interest - we will return to this later!

18

A risk ratio model

```
. binreg obese b1.sex b0.agegrp3 scl200, rr
output omitted
```

This not a RR. It is a risk!

		Risk Ratio	EIM	Std. Err.	z	P> z	[95% Conf. Interval]
obese							
sex							
Men		1	(base)				
Women		1.250198		.0988399	2.82	0.005	1.070738 1.459736
agegrp3							
0-		1	(base)				
40-		1.074009		.1176199	0.65	0.515	.866461 1.331272
50-		1.549492		.1609833	4.21	0.000	1.264014 1.899447
scl200		1.003053		.0008186	3.74	0.000	1.00145 1.004659
_cons		.0825146		.0079357	-25.94	0.000	.068339 .0996307

You can get estimated probabilities/risk by
predict..., mu

Residuals and leverage does not make any sense

You can used lincom, regeq and testparm,
but the estimates, se and CIs are found on log scale

19

		Risk Ratio	EIM	Std. Err.	z	P> z	[95% Conf. Interval]
obese							
sex							
Men		1	(base)				
Women		1.250198		.0988399	2.82	0.005	1.070738 1.459736
agegrp3							
0-		1	(base)				
40-		1.074009		.1176199	0.65	0.515	.866461 1.331272
50-		1.549492		.1609833	4.21	0.000	1.264014 1.899447
scl200		1.003053		.0008186	3.74	0.000	1.00145 1.004659
_cons		.0825146		.0079357	-25.94	0.000	.068339 .0996307

Risk, man, age<40 scl=200: 8.3 (6.8;10.0)%

Women 25 (7:46)% higher risk than men
adjusted for age and serum cholesterol level

100 units difference in scl corresponds to a
36(16;59) % increase in risk adjusted for age and sex
 $1.003053^{100} (1.00145^{100}; 1.004659^{100}) = 1.36(1.16; 1.59)$

20

A risk ratio model

```

. regeq
estimated equation
-2.4948 +0.2233 * 2.sex + 0.0714 * 1.agegrp3 + 0.4379 * 2.agegrp3 ///
+0.0030 scl200

```

equation
 $b_0 + b_1 * 2.sex + b_2 * 1.agegrp3 + b_3 * 2.agegrp3 + \dots + b_4 * scl200$

```

. lincom scl200*100
(1) 100*scl200 = 0

```

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	.3048838	.0816075	3.74	0.000	.1449361 .4648316

```

. lincom scl200*100, eform
(1) 100*scl200 = 0

```

obese	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	1.356467	.100979	3.74	0.000	1.155966 1.591746

RR

21

A risk ratio model

RR woman 40≤age<50 versus man age<40, same scl

Log RR

```

lincom (2.sex+1.agegrp3)-(1.sex+0.agegrp3)
(1) - 1b.sex + 2.sex - 0b.agegrp3 + 1.agegrp3 = 0

```

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	.2947002	.1337717	2.20	0.028	.0325124 .5568879

exp

```

lincom (2.sex+1.agegrp3)-(1.sex+0.agegrp3), eform
(1) - 1b.sex + 2.sex - 0b.agegrp3 + 1.agegrp3 = 0

```

obese	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	1.342724	.790105	2.20	0.028	1.033047 1.745233

RR

22

A risk ratio model

Risk for women 40≤age<50 with scl=150scl

Log Risk

```

. lincom _cons+2.sex+1.agegrp3+scl200*(-50)
(1) 2.sex + 1.agegrp3 - 50*scl200 + _cons = 0

```

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	-2.352522	.1028584	-22.87	0.000	-2.55412 -2.150923

exp

```

. lincom _cons+2.sex+1.agegrp3+scl200*(-50), eform
(1) 2.sex + 1.agegrp3 - 50*scl200 + _cons = 0

```

obese	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	.095129	.0007040	-22.87	0.000	.0777606 .1163767

Risk

23

A risk ratio model

The estimates, se, CI, tests and p-values are found/calculated on log scale

```

. binreg obese b1.sex b0.agegrp3 scl200,rr coef
Output omitted

```

obese	Coef.	EIM Std. Err.	z	P> z	[95% Conf. Interval]
sex	0	(base)			
Men	.2233019	.0790594	2.82	0.005	.0683483 .3782555
Women					
agegrp3	0	(base)			
40-	.0713982	.1095614	0.65	0.515	-.1433382 .2861347
50-	.4379273	.1038975	4.21	0.000	.234292 .6415626
scl200	.0030488	.0008161	3.74	0.000	.0014494 .0046483
_cons	-2.49478	.0961727	-25.94	0.000	-2.683275 -2.306285

ok

24

A odds ratio model

A "usual" additiv model on log-odds scale

$$\ln[\text{Odds}(\text{obese})] = \beta_0 + \beta_1 \cdot (\text{scl} - 200) + \beta_2 \cdot \text{woman} + \beta_3 \cdot (40 \leq \text{age} < 50) + \beta_4 \cdot (50 \leq \text{age})$$

$$\gamma_i = \exp[\beta_i]$$

A multiplicative model on odds scale

$$\text{Odds}(\text{obese}) = \exp[\beta_0 + \beta_1 \cdot (\text{scl} - 200) + \beta_2 \cdot \text{woman} + \beta_3 \cdot (40 \leq \text{age} < 50) + \beta_4 \cdot (50 \leq \text{age})]$$

$$= \gamma_0 \cdot \gamma_1^{(\text{scl}-200)} \cdot \gamma_2^{\text{woman}} \cdot \gamma_3^{(40 \leq \text{age} < 50)} \cdot \gamma_4^{(50 \leq \text{age})}$$

A complicated model on probability scale

$$\text{Pr}(\text{obese}) = \frac{\text{Odds}(\text{obese})}{1 + \text{Odds}(\text{obese})}$$

25

A odds ratio model

$$\ln[\text{Odds}(\text{obese})] = \beta_0 + \beta_1 \cdot (\text{scl} - 200) + \beta_2 \cdot \text{woman} + \beta_3 \cdot (40 \leq \text{age} < 50) + \beta_4 \cdot (50 \leq \text{age})$$

$$\gamma_i = \exp[\beta_i]$$

γ_0 : Odds among men, age<40, with scl=200

γ_1 : Odds Ratio comparing two persons, where the first has one unit higher serum cholesterol, adjusted for sex and age

γ_2 : Odds Ratio comparing two persons, where the first is a woman and the second a man, adjusted for serum cholesterol and age

γ_3 : Odds Ratio comparing two persons, where the first is in the age group 40≤age<50 and the second in age<40, adjusted for serum cholesterol and sex

γ_4 : Odds Ratio comparing two persons, where the first is in the age group 50≤age and the second in age<40, adjusted for serum cholesterol and sex

26

A odds ratio model

```
binreg obese b1.sex b0.agegrp3 scl200,or
Iteration 1: deviance = 3519.095
Iteration 2: deviance = 3498.984
Iteration 3: deviance = 3498.815
Iteration 4: deviance = 3498.815
Iteration 5: deviance = 3498.815

Generalized linear models
Optimization : MQL Fisher scoring (IRLS EIM)
Deviance = 3498.815069
Pearson = 4643.16574
Variance function: v(u) = u*(1-u)
Link function : g(u) = ln(u/(1-u))
BIC = -35802.01

output omitted
```

Not much of interest - we will return to this later!

27

A odds ratio model

```
. binreg obese b1.sex b0.agegrp3 scl200,or
output omitted
```

This not an OR. It is an odds

obese		Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
sex	Men	1 (base)				
	Women	1.282514	.1164761	2.74	0.006	1.073389 1.532382
agegrp3	0-	1 (base)				
	40-	1.075132	.137879	0.59	0.555	.8453855 1.367315
	50-	1.64556	.197575	4.21	0.000	1.30489 2.07517
scl	1.003923	.000984	3.99	0.000	1.001996 1.005854	
	.0890348	.0095747	-22.49	0.000	.0721145 .1099252	
cons						

You can get estimated probabilities/risk by predict..., mu

Residuals and leverage does not make any sense

You can used lincom, regeq and testparm, but the estimates, se and CIs are found on log scale

28

EIM						
obese	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]	
sex	1 (base)					
Men	1.282514	.1164761	2.74	0.006	1.073389	1.532382
Women						
agegrp3	1 (base)					
0-40	1.075132	.1313139	0.59	0.555	.8453855	1.367315
40-50	1.64556	.197515	4.21	0.000	1.30489	2.07517
scl	1.003923	.000984	3.99	0.000	1.001996	1.005854
_cons	.0890348	.0095747	-22.49	0.000	.0721145	.1099252

Odds, man, age<40 scl=200: **0.089 (0.072;0.110)**

Women **28 (7.53)%** higher **odds** than men
adjusted for age and serum cholesterol level

100 units difference in scl corresponds to a
48(22.79) % increase in **odds** adjusted for age and sex
 $1.003923^{100} (1.001996^{100}; 1.005854^{100}) = 1.48(1.22; 1.79)$

29

A odds ratio model

```

. regeq
estimated equation
-2.4187 +0.2488 * 2.sex +0.0724 * 1.agegrp3 +0.4981 * 2.agegrp3 ///
+0.0039 * scl200

```

equation
 $b_0 + b_1 * 2.sex + b_2 * 1.agegrp3 + b_3 * 2.agegrp3 + \dots$
 $b_4 * scl200$

lincom scl200*100
 $(1) 100*scl200 = 0$

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	.3915803	.0980411	3.99	0.000	.1994233 .5837373

. lincom scl200*100, eform
 $(1) 100*scl200 = 0$

obese	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	1.479317	.1450330	3.99	0.000	1.220699 1.792726

OR

30

A odds ratio model

OR woman 40≤age<50 versus man age<40, same scl

Log OR

```

lincom (2.sex+1.agegrp3)-(1.sex+0.agegrp3)
(1) - 1b.sex + 2.sex - 0b.agegrp3 + 1.agegrp3 = 0

```

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	.3212652	.1510523	2.13	0.033	.0252081 .6173223

```

lincom (2.sex+1.agegrp3)-(1.sex+0.agegrp3), eform
(1) - 1b.sex + 2.sex - 0b.agegrp3 + 1.agegrp3 = 0

```

obese	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	1.378871	.2082817	2.13	0.033	1.025529 1.853957

OR

31

A odds ratio model

Risk for women 40≤age<50 with scl=150scl

Log Risk

```

lincom _cons+2.sex+1.agegrp3+scl200*(-50)
(1) 2.sex + 1.agegrp3 - 50*scl200 + _cons = 0

```

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	-2.293253	.1188768	-19.29	0.000	-2.526247 -2.060258

```

lincom _cons+2.sex+1.agegrp3+scl200*(-50), eform
(1) 2.sex + 1.agegrp3 - 50*scl200 + _cons = 0

```

obese	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	.1009376	.0110001	-19.29	0.000	.0799586 .127421

Odds

disp %12.6f .1009376/1.1009376 %12.6f .0799586/1.0799586 %12.6f .127421/1.127421
 $0.091683 \quad 0.074039 \quad 0.113020$

Risk = Odds/(1+Odds) by hand

32

A odds ratio model

Risk for women 40≤age<50 with scl=150scl

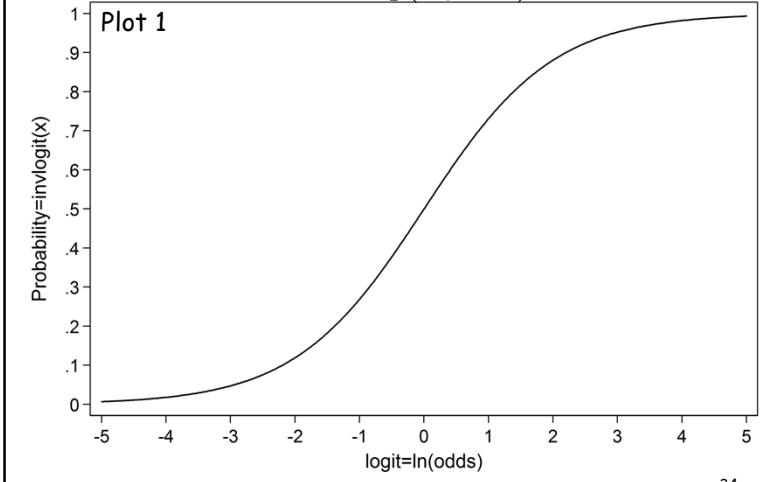
$$\text{Probability} = \frac{\text{odds}}{1 + \text{odds}} = \frac{\exp(\text{logodds})}{1 + \exp(\text{logodds})} = \text{invlogit}(\text{logodds})$$

No, eform

```
lincom _cons+2.sex+1.agegrp3+scl200*(-50)
( 1) 2.sex + 1.agegrp3 - 50*scl200 + _cons = 0
obese | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----+
(1) | -2.293253 .1188768 -19.29 0.000 -2.526247 -2.060258
-----+
disp %12.6f invlogit( r(estimate) ) ///
%12.6f invlogit( r(estimate)-1.96*r(se) ) ///
%12.6f invlogit( r(estimate)+1.96*r(se) )
0.091683 0.074038 0.113020
```

33

$$\text{Probability} = \frac{\text{odds}}{1 + \text{odds}} = \frac{\exp(\text{logodds})}{1 + \exp(\text{logodds})} = \text{invlogit}(\text{logodds})$$



34

binreg: The tests in the output

binreg..., **rd**:
 Risk difference =0
 _cons: Risk=0 ??????

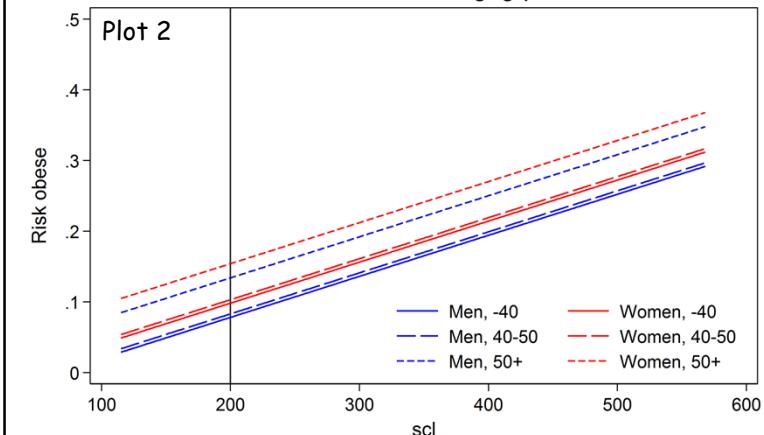
binreg..., **rr**:
 Risk ratio = 1
 _cons: log(risk)=0 that is Risk=1 ??????

binreg..., **or**:
 Odds ratio = 1
 _cons: log(odds)=0 that is Risk=0.5 ??????

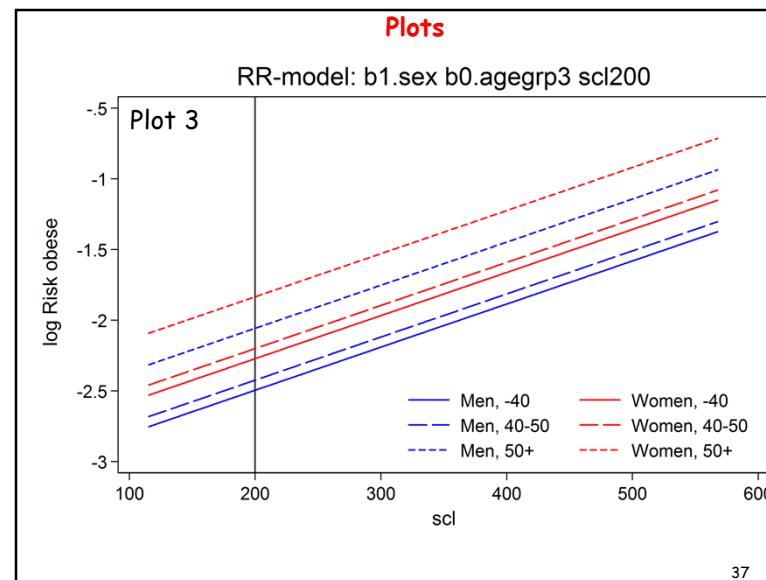
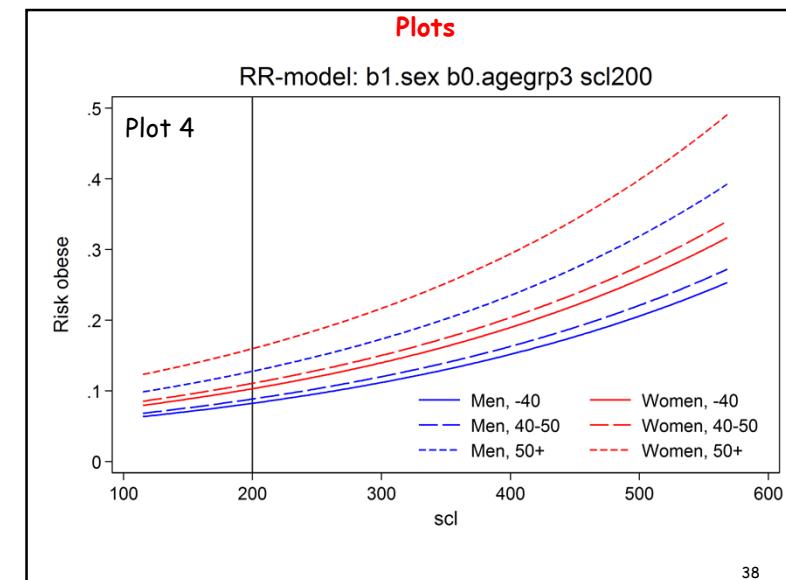
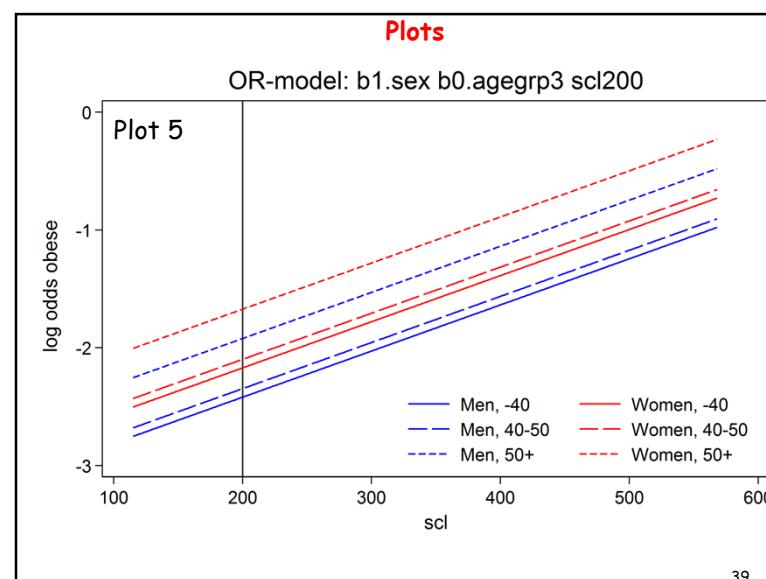
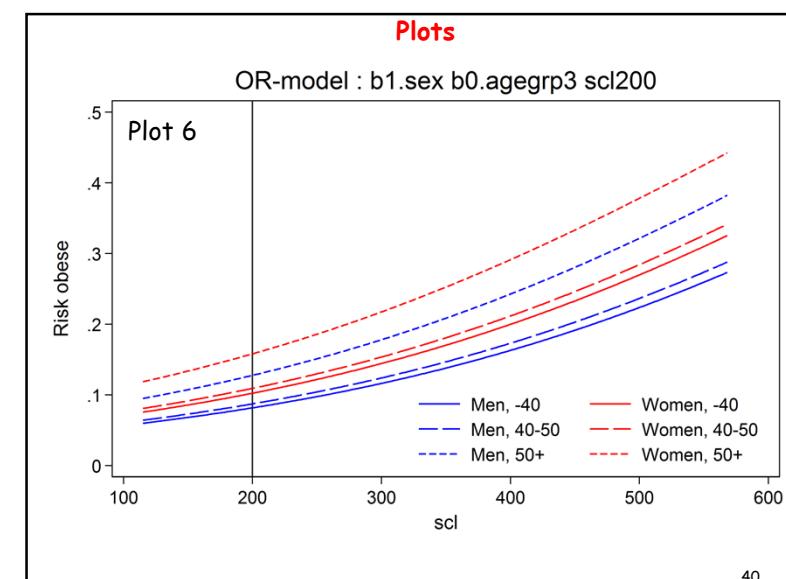
35

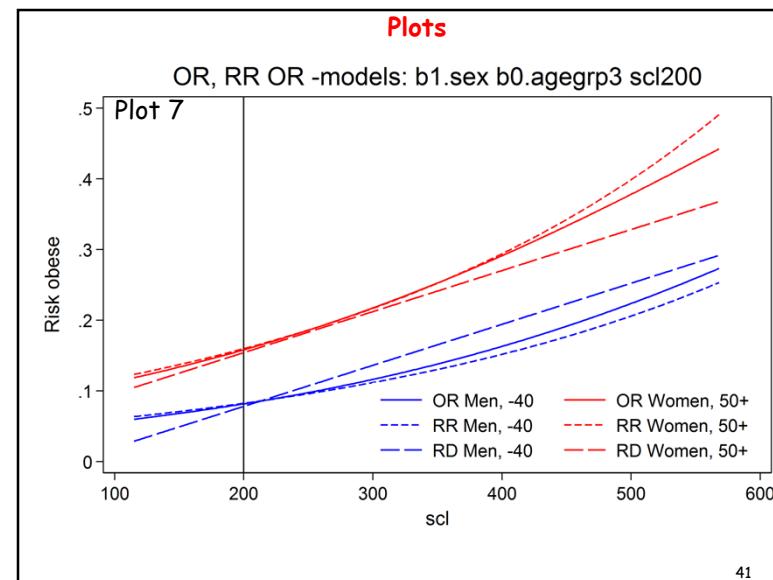
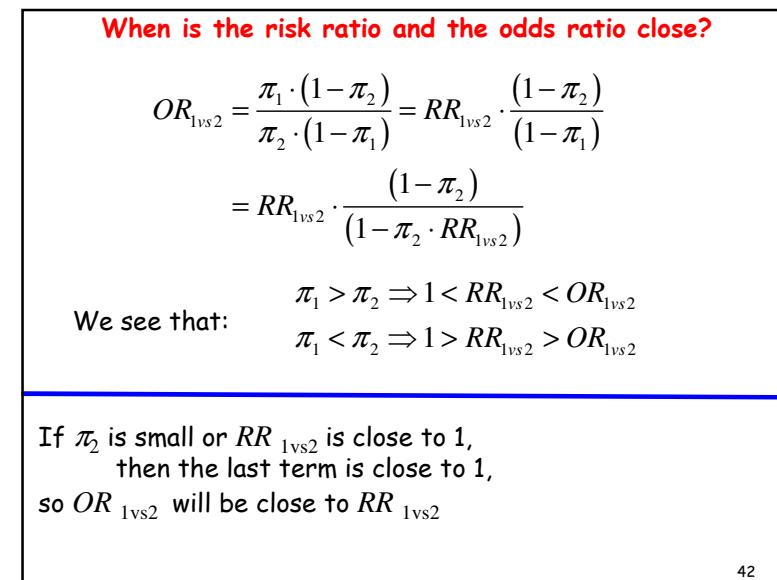
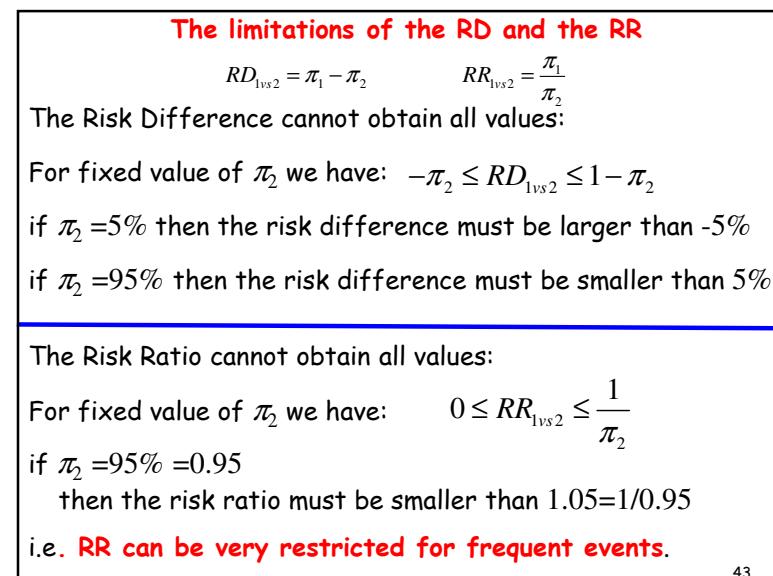
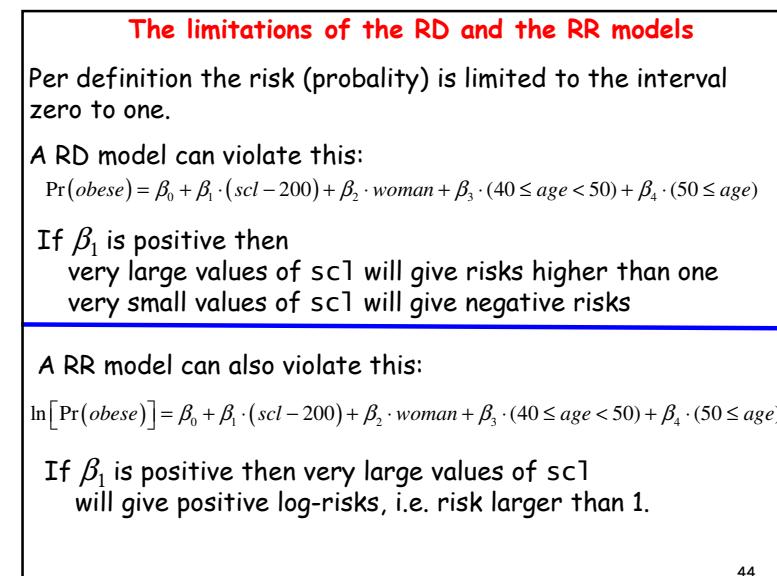
Plots

RD-model: b1.sex b0.agegrp3 scl200



36





Comparing two models: the likelihood ratio test

One can compare two models with a likelihood ratio test if:

- The two models are fitted on exactly the **same data set**.
- The two models are **nested**, i.e. one can go from one model to the other by setting some coefficients to zero.

In Stata the test is found in this way:

```
binreg obese b1.sex b0.agegrp3 scl200,rr m1
estimates store Modelrr1
```

```
binreg obese b1.sex ,rr m1
estimates store Modelrr3
```

```
lrtest Modelrr1 Modelrr3
```

Output:

observations differ: 4658 vs. 4690

49

Comparing two models: the likelihood ratio test

estimates table Modelrr*,stats(N 11)

Variable	Modelrr1	Modelrr2	Modelrr3
sex			
Men	(base)	(base)	(base)
Women	.22330342	.2309925	.2508517
agegrp3			
0	(base)		
1	.07139944		
2	.43793034		
scl200	.00304885	.00416867	
_cons	-2.4947825	-2.3300943	-2.2035956
N	4658	4658	4690
11	-1749.8636	-1762.3225	-1790.3703

**The model without scl is fitted to a larger data set.
The results cannot be compared!!!**

50

Comparing two models: the likelihood ratio test

Likelihood ratio test safe method

(All models fitted to the same data):

```
quietly: binreg obese b1.sex b0.agegrp3 scl200,rr m1
estimates store Modelrr1
```

```
generate inmodel1=e(sample)
```

```
quietly: binreg obese b1.sex scl200 if inmodel1 ,rr m1
estimates store Modelrr2
```

```
quietly: binreg obese b1.sex if inmodel1, rr m1
estimates store Modelrr3
```

```
lrtest Modelrr1 Modelrr2
Likelihood-ratio test LR chi2(2) = 24.92
(Assumption: Modelrr2 nested in Modelrr1) Prob > chi2 = 0.0000
```

```
lrtest Modelrr1 Modelrr3
Likelihood-ratio test LR chi2(3) = 53.72
(Assumption: Modelrr3 nested in Modelrr1) Prob > chi2 = 0.0000
```

51

Comparing two models: the likelihood ratio test

estimates table Modelrr*,stats(N 11)

Variable	Modelrr1	Modelrr2	Modelrr3
sex			
Men	(base)	(base)	(base)
Women	.22330342	.2309925	.24350715
agegrp3			
0	(base)		
1	.07139944		
2	.43793034		
scl200	.00304885	.00416867	
_cons	-2.4947825	-2.3300943	-2.2001701
N	4658	4658	4658
11	-1749.8636	-1762.3225	-1776.7225

52

The assumptions:

The model:

$$f(risk) = \beta_0 + \beta_1 \cdot (scl - 200) + \beta_2 \cdot woman + \beta_3 \cdot (40 \leq age < 50) + \beta_4 \cdot (50 \leq age)$$

Note:

We model the probability, some no room for additional random variation, - **no unexplained deviations**.

Two assumptions:

1. Linearity

2. Independency

Checking independency :

Just like in the normal case

53

The assumptions: Linearity

$$f(risk) = \beta_0 + \beta_1 \cdot (scl - 200) + \beta_2 \cdot woman + \beta_3 \cdot (40 \leq age < 50) + \beta_4 \cdot (50 \leq age)$$

The linearity can be decomposed in the sub-**assumptions**:

Additivity on f-scale: The contributions from sex and age are added.

Proportionality on f-scale: The contribution from age is proportional to its value.

No effectmodification on f-scale: The contribution from one independent variable is the same whatever the value of the other.

54

The assumptions ratio models: Linearity→multiplicativity

$$\Pr(obese) = \gamma_0 \cdot \gamma_1^{(scl-200)} \cdot \gamma_2^{woman} \cdot \gamma_3^{(40 \leq age < 50)} \cdot \gamma_4^{(50 \leq age)}$$

$$Odds(obese) = \gamma_0 \cdot \gamma_1^{(scl-200)} \cdot \gamma_2^{woman} \cdot \gamma_3^{(40 \leq age < 50)} \cdot \gamma_4^{(50 \leq age)}$$

The linearity can be decomposed in the sub-**assumptions**:

Multiplicativity on risk /odds-scale:

The contributions from sex and age are multiplied.

Exponential on risk /odds-scale :

The contribution from age is raised to its value.

No effectmodification on risk/odds-scale: The contribution from one independent variable is the same whatever the value of the other.

55

Model checking

As there are no additional "random variation" there are no residuals, so you **cannot make any of the diagnostic plots** known from the normal regression models.

Model checking are typically done by **expanding** the model with interactions, cubic splines etc.

or looking at alternative way to introduce central variables.

In large data sets you can get some insight to the fit of the model by plotting observed frequencies against estimated probabilities in subgroups.

There exist many "statistics", like generalised r-squared, AUC-roc and Brier score, that measured the quality of an estimated model. But they will not give any insight what could be wrong with the model.

56

Binary regression models in general

Estimation:

Excepting the two by two tables, there are **no closed form** for the estimates.

The **distribution** of the estimates **are not known**.

Estimates are found by the method of **maximum likelihood**.

Estimates are using **iterative methods**.

Standard errors, confidence intervals and all tests are based on **asymptotics**.

That is, all statistical **inference** are **approximate**.

The **more data** - the more events -the **better** the approximations.

binreg can also be run with the option **m1**, this will give slightly different standard errors for RD and RR models

57

Things to look out for in the output

In general:

Wide CI's or large standard errors in a binary regression indicates that at least one group has **few events**!

As a rule of thumb there should be **at least 15 events** per parameters in the model.

Many iterations in a binary regression indicates that some of the **parameters are hard to estimate**.

(for RD and RR it might help to using starting values from a OR - model).

58

OR regression = logistic regression

A OR regression model in usually called a logistic regression.

It can be fitted in Stata by **logit** or **Logistics** command

binreg obese b1.sex b0.agegrp3 sc1200, **or**

logit obese b1.sex b0.agegrp3 sc1200, **or**

logistic obese b1.sex b0.agegrp3 sc1200

59

Logistic regression - why

Logistic regression is the most used binary regression model:

- It is always valid as it the probability always is between 0 and one.
- It was the first ever programmed.
The option of RD or RR models in standard software is relative new.
- It can be used to used to analyse data from many types of case-control designs.
- It have done the job for many years!!????

60

Logistic regression model in general

$$\ln(\text{odds}) = \beta_0 + \sum_{p=1}^k \beta_p \cdot x_p$$

This is based on three assumptions:

- Additivity on log-odds scale:** The contribution from each of the independent variables are **added**.
- Proportionality:** The contribution from independent variables is **proportional** to its value (with a factor β)
- No effect modification:** The contribution from one independent variable is **the same** whatever the values of the other.

Note a. can also be formulated as **multiplicativity** on the **odds scale**

$$\text{odds} = \text{odds}_0 \cdot OR_1^{x_1} \cdot OR_2^{x_2} \cdots OR_k^{x_k}$$

61

Logistic regression model in general

$$\ln(\text{odds}) = \beta_0 + \sum_{p=1}^k \beta_p \cdot x_p$$

If one consider two persons who differ with

$$\Delta x_1 \text{ in } x_1, \Delta x_2 \text{ in } x_2 \dots \text{ and } \Delta x_k \text{ in } x_k$$

the difference in the **log odds** is :

$$\sum_{p=1}^k \beta_p \cdot \Delta x_p$$

Again we see that the contribution from each of the explanatory variables:

are **added**,
are **proportional** to the difference
and **does not depend** on the difference in the other explanatory variables

On the **log odds scale**!

62

Logistic regression model in general

$$\ln(\text{odds}) = \beta_0 + \sum_{p=1}^k \beta_p \cdot x_p$$

If one consider two persons who differ with

$$\Delta x_1 \text{ in } x_1, \Delta x_2 \text{ in } x_2 \dots \text{ and } \Delta x_k \text{ in } x_k$$

then the odds ratio is:

$$OR = OR_1^{\Delta x_1} \cdot OR_2^{\Delta x_2} \cdots OR_k^{\Delta x_k}$$

Note, the model might also be formulated:

$$p = \Pr[Y = 1] = \frac{\exp\left(\beta_0 + \sum_{p=1}^k \beta_p \cdot x_p\right)}{1 + \exp\left(\beta_0 + \sum_{p=1}^k \beta_p \cdot x_p\right)}$$

63