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Regression models for binary data
Morten Frydenberg ©

Section for Biostatistics, Aarhus Univ, Denmark

When to use binary regressions models.

The three measures of association:
RR: Risk Ratio ( Relative Risk)
OR: Odds Ratio
RD: Risk Difference

Switching the outcome
Changing the reference

One (three) examples: RD, RR and OR –models:
Interpretation, estimation, lincom

Plotting the “response curves”

The connection between OR and RR
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The limitations of the RD and RR models
The bounds for RD and RR
Invalid “probabilities”
Problem with estimation/fitting

The likelihood ratio test: Comparing two nested models.

Binary regression models: The assumptions

Checking the models
No valid “residuals” → No diagnostic plots

General comments to estimation 
Subtle details with standard errors.
Watch out for ‘small’ reference groups

Why the logistic regression model is so popular.

Conditoinal logistic regression
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A binary regression is a possible model if the dependent
variable (the response) is dichotomous, i.e. dead/alive 
obese/not obese etc.

Contrary to what many believe there are no assumptions about 
the independent variables. 
They can be categorical or continuous.

When working with binary response it is custom to code the 
“positive” event (eg. dead) as 1 and a “negative” event (alive) 
as 0.

Binary regression models: Introduction
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A OR-regression model, logistic regression, 
models the probability of a “positive event” via odds and 
associations via odds ratios.

A RR-regression model, relative risk (risk ratio) regression,
models the probability of a “positive” event and associations 
via risk ratios, i.e. relative risks.

A RD-regression model,  risk difference regression
models the probability of a “positive” event and associations 
via risk differences.

There other types of models that can be used for binary 
outcome. 
In psychometrics one often used Probit-models.
These model are not covered in this course.

Binary regression models: Introduction
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Risk ratios, odds ratios, risk differences
Risk (chance) of event - comparing two groups

Let π1 be the risk of the event in group 1 and 

π2 be the risk of the event in group 2

The odds in group i is defined as : oddsi = πi/(1− πi)
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Risk ratios, odds ratios, risk differences
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Parity of the mother No Yes Total Estimate Lower Upper

At least one previous 4,696 1,677 6,373 26.3% 25.2% 27.4%

No previous deliveries 4,216 1,722 5,938 29.0% 27.8% 30.2%

Total 8,912 3,399 12,311

At least one versus first Estimate Lower Upper

RR 0.91 0.86 0.96

OR 0.87 0.81 0.95

RD -2.7% -4.3% -1.1%

Risk  of post term delivery(%)

Post term delivery Risk  of post term delivery(%)
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Risk ratios, odds ratios, risk differences
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Parity of the mother No Yes Total Estimate Lower Upper

At least one previous 4,696 1,677 6,373 73.7% 72.6% 74.8%

No previous deliveries 4,216 1,722 5,938 71.0% 69.8% 72.2%

Total 8,912 3,399 12,311

At least one versus first Estimate Lower Upper

RR 1.04 1.02 1.06

OR 1.14 1.06 1.24

RD -2.7% -4.3% -1.1%

Risk  of not post term delivery(%)

Post term delivery Risk  of not post term delivery(%)

8

Risk ratios, odds ratios, risk differences
Switching outcome yes→→→→no
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Parity of the mother No Yes Total Estimate Lower Upper

At least one previous 4,696 1,677 6,373 26.3% 25.2% 27.4%

No previous deliveries 4,216 1,722 5,938 29.0% 27.8% 30.2%

Total 8,912 3,399 12,311

First versus at least one Estimate Lower Upper

RR 0.91 0.86 0.96

OR 1.14 1.06 1.24

RD 2.7% 1.1% 4.3%

Risk  of post term delivery(%)

Post term delivery Risk  of post term delivery(%)

Risk ratios, odds ratios, risk differences
Changing “reference”
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Risk ratios, odds ratios, risk differences
Changing “reference”

� ( )

� ( )

� ( ) [ ]

1 2

1 2

1 2

1
0.91

1.10

1
0.87

1.14

2.7% 2.7%

vs

vs

vs

RR yes

OR yes

RD yes

= =

= =

= − = −

( )
( )

( )
( )
( ) ( )

( ) [ ] ( )

1

1 2
2 2 1 2 1

1 2

1 2
2 1 2 1

1 2 2 11 2 2 1

1 1

1 1

1

vs

vs

vs

vs

vs vs

RR yes
RR yes

OR yes
OR yes

RD yes RD yes

π

π π π

π π

π π

π π π π

= = =

⋅ −
= =

⋅ −

= − = − − = −

11

The example

We are now considering a larger part of the Frammingham 
data set, consisting of 4690 persons with known BMI at the 
start.

We will focus on the risk obesity  (BMI≥30 kg/m2) .

Out of the 4690 persons 601 = 12.8% were obese.

Divided into gender

Obese Not-Obese

Women 375 (14.2%) 2268 (85.8%)

Men 226 (11.0%) 1821 (89.0%)

We will also look at age divided in three group and 
serum cholesterol. 

12

A risk difference model
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β0:  Risk among men, age<40, with scl=200

β1: Risk Difference comparing two persons, where the first 
has one unit higher serum cholesterol, 
adjusted for sex and age

β2: Risk Difference comparing two persons, where the first 
is a woman and the second a man, 
adjusted for serum cholesterol and age

β3: Risk Difference comparing two persons, where the first 
is in the age group 40≤age<50 and the second in age<40, 
adjusted for serum cholesterol and sex

β4: Risk Difference comparing two persons, where the first 
is in the age group 50≤age and the second in age<40, 
adjusted for serum cholesterol and sex
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A risk difference model

binreg obese  b1.sex b0.agegrp3 scl200,rd

Iteration 1:   deviance =  3496.151
Iteration 2:   deviance =  3494.521
Iteration 3:   deviance =  3494.449
Iteration 4:   deviance =  3494.445
Iteration 5:   deviance =  3494.445
Iteration 6:   deviance =  3494.445
Iteration 7:   deviance =  3494.445

Generalized linear models                         No. of No. of No. of No. of obsobsobsobs =      4,658=      4,658=      4,658=      4,658
Optimization     : MQL Fisher scoring             Residual df =      4,653

(IRLS EIM)                     Scale parameter =          1
Deviance         =  3494.444982                   (1/df) Deviance =    .751009
Pearson          =  4657.969064                   (1/df) Pearson  =   1.001068

Variance function: V(u) = u*(1-u)                 [Bernoulli]
Link function    : g(u) = u                       [Identity]

BIC             =  -35806.38

Output omittedOutput omittedOutput omittedOutput omitted

Not much of interest - we will return to this later!
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A risk difference model
binreg obese  b1.sex b0.agegrp3 scl200,rd
Output omittedOutput omittedOutput omittedOutput omitted

------------------------------------------------------------------------------
|                 EIM

obese | Risk Diff.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

sex |
Men  |          0  (base)

Women  |   .0200744   .0093267     2.15   0.031     .0017943    .0383545
|

agegrp3 |
0- |          0  (base)
40- |   .0049258   .0110113     0.45   0.655    -.0166559    .0265076
50- |   .0559626   .0126235     4.43   0.000      .031221    .0807042

|
scl200 |   .0005806   .0001144     5.08   0.000     .0003564    .0008048
_cons |   .0782201   .0092233     8.48   0.000     .0601428    .0962973

------------------------------------------------------------------------------

You can used lincom, regeq and testparm
You can get estimated probabilities/risk by

predict….,mu
Residuals and leverage does not make any sense

This is not a RD. It is a risk!
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------------------------------------------------------------------------------
|                 EIM

obese | Risk Diff.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

sex |
Men  |          0  (base)

Women  |   .0200744   .0200744   .0200744   .0200744   .0093267     2.15   0.031     .0017943    .038354.0017943    .038354.0017943    .038354.0017943    .0383545
|

agegrp3 |
0- |          0  (base)
40- |   .0049258   .0110113     0.45   0.655    -.0166559    .0265076
50- |   .0559626   .0126235     4.43   0.000      .031221    .0807042

|
scl200 |   .0005806   scl200 |   .0005806   scl200 |   .0005806   scl200 |   .0005806   .0001144     5.08   0.000     .0003564    .0008048.0003564    .0008048.0003564    .0008048.0003564    .0008048
_cons |   .0782201   _cons |   .0782201   _cons |   .0782201   _cons |   .0782201   .0092233     8.48   0.000     .0601428    .0962973.0601428    .0962973.0601428    .0962973.0601428    .0962973

------------------------------------------------------------------------------

Risk, man, age<40 scl=200:   7.8 (6.0;9.6)%

Women 2.0 (0.2;3.8)%-point higher risk than men
adjusted for age and serum cholesterol level

100 units difference in serum cholesterol level corresponds 
to a 5.8(3.6;8.0) %-point increase in risk 
adjusted for age and sex
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A risk ratio model
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A “usual” additive model on log-probability scale

A multiplicative model on probability scale
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A risk ratio model
( ) ( )0 1 2

3 4
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γ0: Risk among men, age<40, with scl=200

γ1: Risk Ratio comparing two persons, where the first has 
one unit higher serum cholesterol, 
adjusted for sex and age

γ2: Risk Ratio comparing two persons, where the first is a 
woman and the second a man, 
adjusted for serum cholesterol and age

γ3: Risk Ratio comparing two persons, where the first is in 
the age group 40≤age<50 and the second in age<40, 
adjusted for serum cholesterol and sex

γ4: Risk Ratio comparing two persons, where the first is in 
the age group 50≤age and the second in age<40, 
adjusted for serum cholesterol and sex

[ ]expi iγ β=
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A risk ratio model

binreg obese  b1.sex b0.agegrp3 scl200,rrrrrrrr

Iteration 1:   deviance =   4849.97
Iteration 2:   deviance =  3631.229
Iteration 3:   deviance =  3503.426
Iteration 4:   deviance =  3499.733
Iteration 5:   deviance =  3499.727
Iteration 6:   deviance =  3499.727

Generalized linear models                          No. of No. of No. of No. of obsobsobsobs =      4658=      4658=      4658=      4658
Optimization     : MQL Fisher scoring              Residual df =      4653

(IRLS EIM)                      Scale parameter =         1
Deviance         =  3499.727216                    (1/df) Deviance =  .7521443
Pearson          =  4644.143131                    (1/df) Pearson  =  .9980965

Variance function: V(u) = u*(1-u)                  [Bernoulli]
Link function    : g(u) = ln(u)                    [Log]

BIC             =  -35801.1

Output omittedOutput omittedOutput omittedOutput omitted

Not much of interest - we will return to this later!
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A risk ratio model
. binreg obese  b1.sex b0.agegrp3 scl200,rr
Output omittedOutput omittedOutput omittedOutput omitted

------------------------------------------------------------------------------
|                 EIM

obese | Risk Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

sex |
Men  |          1  (base)

Women  |   1.250198   .0988399     2.82   0.005     1.070738    1.459736
|

agegrp3 |
0- |          1  (base)
40- |   1.074009   .1176699     0.65   0.515      .866461    1.331272
50- |   1.549492   .1609883     4.21   0.000     1.264014    1.899447

|
scl200 |   1.003053   .0008186     3.74   0.000      1.00145    1.004659
_cons |   .0825146   .0079357   -25.94   0.000      .068339    .0996307

------------------------------------------------------------------------------

You can get estimated probabilities/risk by
predict….,mu

Residuals and leverage does not make any sense
You can used lincom, regeq and testparm,
but the estimates, se and CIs are found on log scale

This not a RR. It is a risk!
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------------------------------------------------------------------------------
|                 EIM

obese | Risk Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

sex |
Men  |          1  (base)

Women  |   1.250198   Women  |   1.250198   Women  |   1.250198   Women  |   1.250198   .0988399     2.82   0.005     1.070738    1.4597361.070738    1.4597361.070738    1.4597361.070738    1.459736
|

agegrp3 |
0- |          1  (base)
40- |   1.074009   .1176699     0.65   0.515      .866461    1.331272
50- |   1.549492   .1609883     4.21   0.000     1.264014    1.899447

|
scl200 |   1.003053   scl200 |   1.003053   scl200 |   1.003053   scl200 |   1.003053   .0008186     3.74   0.000      1.00145    1.0046591.00145    1.0046591.00145    1.0046591.00145    1.004659
_cons |   .0825146 _cons |   .0825146 _cons |   .0825146 _cons |   .0825146 .0079357   -25.94   0.000      .068339    .0996307.068339    .0996307.068339    .0996307.068339    .0996307

-----------------------------------------------------------------------------

Risk, man, age<40 scl=200:   8.3 (6.8;10.0)%

Women 25 (7;46)% higher risk than men
adjusted for age and serum cholesterol level

100 units difference in scl corresponds to a 
36(16;59) % increase in risk adjusted for age and sex
1.003053100 (1.00145100;1.004659100)=1.36(1.16;1.59)
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A risk ratio model
. regeq
estimated equation
-2.4948 +0.2233 * 2.sex  +0.0714 * 1.agegrp3  +0.4379 * 2.agegrp3  /// 
+0.0030 * scl200 

equation
b0 + b1 * 2.sex + b2 * 1.agegrp3 + b3 * 2.agegrp3 + /// 
b4 * scl200 

. lincom scl200*100

( 1)  100*scl200 = 0
------------------------------------------------------------------------------

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |   .3048838   .0816075     3.74   0.000     .1449361    .4648316
------------------------------------------------------------------------------

. lincom scl200*100, eformeformeformeform
( 1)  100*scl200 = 0
------------------------------------------------------------------------------

obese |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |   1.356467   .1106979     3.74   0.000     1.155966    1.591746
------------------------------------------------------------------------------

Log RR

RR

exp
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A risk ratio model

lincom (2.sex+1.agegrp3)-(1.sex+0.agegrp3)
( 1)  - 1b.sex + 2.sex - 0b.agegrp3 + 1.agegrp3 = 0
------------------------------------------------------------------------------

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |   .2947002   .1337717     2.20   0.028     .0325124    .5568879
------------------------------------------------------------------------------

lincom (2.sex+1.agegrp3)-(1.sex+0.agegrp3), eformeformeformeform
( 1)  - 1b.sex + 2.sex - 0b.agegrp3 + 1.agegrp3 = 0
------------------------------------------------------------------------------

obese |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |   1.342724   .1796185     2.20   0.028     1.033047    1.745233
------------------------------------------------------------------------------

RR

exp

RR woman 40≤age<50 versus man age<40, same scl

Log RR
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A risk ratio model

. lincom _cons+2.sex+1.agegrp3+scl200*(-50)
( 1)  2.sex + 1.agegrp3 - 50*scl200 + _cons = 0
------------------------------------------------------------------------------

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |  -2.352522   .1028584   -22.87   0.000     -2.55412   -2.150923
------------------------------------------------------------------------------

. lincom _cons+2.sex+1.agegrp3+scl200*(-50), eformeformeformeform
( 1)  2.sex + 1.agegrp3 - 50*scl200 + _cons = 0
------------------------------------------------------------------------------

obese |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |    .095129   .0097848   -22.87   0.000     .0777606    .1163767
------------------------------------------------------------------------------

Risk

exp

Risk for women 40≤age<50 with scl=150scl

Log Risk
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A risk ratio model

. binreg obese  b1.sex b0.agegrp3 scl200,rr coefcoefcoefcoef
Output omittedOutput omittedOutput omittedOutput omitted

------------------------------------------------------------------------------
|                 EIM

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

sex |
Men  |          0  (base)

Women  |   .2233019   .0790594     2.82   0.005     .0683483    .3782555
|

agegrp3 |
0- |          0  (base)
40- |   .0713982   .1095614     0.65   0.515    -.1433382    .2861347
50- |   .4379273   .1038975     4.21   0.000      .234292    .6415626

|
scl200 |   .0030488   .0008161     3.74   0.000     .0014494    .0046483
_cons |   -2.49478   .0961727   -25.94   0.000    -2.683275   -2.306285

------------------------------------------------------------------------------

The estimates, se, CI, tests and p-values are 
found/calculated on log scale

ok
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A odds ratio model
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A “usual” additiv model on log-odds scale

A multiplicative model on odds scale

A complicated model on probabilty scale
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+
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A odds ratio model
( ) ( )0 1 2

3 4
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age age
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γ0: Odds among men, age<40, with scl=200

γ1: Odds Ratio comparing two persons, where the first has 
one unit higher serum cholesterol, 
adjusted for sex and age

γ2: Odds Ratio comparing two persons, where the first is a 
woman and the second a man, 
adjusted for serum cholesterol and age

γ3: Odds Ratio comparing two persons, where the first is in 
the age group 40≤age<50 and the second in age<40, 
adjusted for serum cholesterol and sex

γ4: Odds Ratio comparing two persons, where the first is in 
the age group 50≤age and the second in age<40, 
adjusted for serum cholesterol and sex

[ ]expi iγ β=
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A odds ratio model
binreg obese  b1.sex b0.agegrp3 scl200,orororor

Iteration 1:   deviance =  3519.095
Iteration 2:   deviance =  3498.984
Iteration 3:   deviance =  3498.815
Iteration 4:   deviance =  3498.815
Iteration 5:   deviance =  3498.815

Generalized linear models                          No. of No. of No. of No. of obsobsobsobs =      4658=      4658=      4658=      4658
Optimization     : MQL Fisher scoring              Residual df =      4653

(IRLS EIM)                      Scale parameter =         1
Deviance         =  3498.815069                    (1/df) Deviance =  .7519482
Pearson          =   4643.16574                    (1/df) Pearson  =  .9978865

Variance function: V(u) = u*(1-u)                  [Bernoulli]
Link function    : g(u) = ln(u/(1-u))              [Logit]

BIC             = -35802.01

Output omittedOutput omittedOutput omittedOutput omitted

Not much of interest - we will return to this later!
28

A odds ratio model
. binreg obese  b1.sex b0.agegrp3 scl200,or
Output omittedOutput omittedOutput omittedOutput omitted

------------------------------------------------------------------------------
|                 EIM

obese | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

sex |
Men  |          1  (base)

Women  |   1.282514   .1164761     2.74   0.006     1.073389    1.532382
|

agegrp3 |
0- |          1  (base)
40- |   1.075132   .1318739     0.59   0.555     .8453855    1.367315
50- |    1.64556   .1947525     4.21   0.000      1.30489     2.07517

|
scl |   1.003923   .0009843     3.99   0.000     1.001996    1.005854

_cons |   .0890348   .0095747   -22.49   0.000     .0721145    .1099252
------------------------------------------------------------------------------

You can get estimated probabilities/risk by
predict….,mu

Residuals and leverage does not make any sense
You can used lincom, regeq and testparm,
but the estimates, se and CIs are found on log scale

This not an OR. It is an odds
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----------------------------------------------------------------------------
|                 EIM

obese | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

sex |
Men  |          1  (base)

Women  |   1.282514   .1164761     2.74   0.006     1.073389    1.532382
|

agegrp3 |
0- |          1  (base)
40- |   1.075132   .1318739     0.59   0.555     .8453855    1.367315
50- |    1.64556   .1947525     4.21   0.000      1.30489     2.07517

|
sclsclsclscl |   1.003923   |   1.003923   |   1.003923   |   1.003923   .0009843     3.99   0.000     1.001996    1.0058541.001996    1.0058541.001996    1.0058541.001996    1.005854

_cons |   .0890348   _cons |   .0890348   _cons |   .0890348   _cons |   .0890348   .0095747   -22.49   0.000     .0721145    .1099252.0721145    .1099252.0721145    .1099252.0721145    .1099252
------------------------------------------------------------------------------

Odds, man, age<40 scl=200:   0.089 (0.072;0.110)

Women 28 (7;53)% higher odds than men
adjusted for age and serum cholesterol level

100 units difference in scl corresponds to a 
48(22;79) % increase in odds adjusted for age and sex
1.003923100 (1.001996100;1.005854100)=1.48(1.22;1.79)

30

A odds ratio model
. regeq
estimated equation
-2.4187 +0.2488 * 2.sex  +0.0724 * 1.agegrp3  +0.4981 * 2.agegrp3  /// 
+0.0039 * scl200 

equation
b0 + b1 * 2.sex + b2 * 1.agegrp3 + b3 * 2.agegrp3 + /// 
b4 * scl200 

lincom scl200*100
( 1)  100*scl200 = 0
------------------------------------------------------------------------------

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |   .3915803   .0980411     3.99   0.000     .1994233    .5837373
------------------------------------------------------------------------------

. lincom scl200*100,eform
( 1)  100*scl200 = 0
------------------------------------------------------------------------------

obese |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |   1.479317   .1450338     3.99   0.000     1.220699    1.792726
------------------------------------------------------------------------------

OR

exp

Log OR

31

A odds ratio model

lincom (2.sex+1.agegrp3)-(1.sex+0.agegrp3)
( 1)  - 1b.sex + 2.sex - 0b.agegrp3 + 1.agegrp3 = 0
------------------------------------------------------------------------------

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |   .3212652   .1510523     2.13   0.033     .0252081    .6173223
------------------------------------------------------------------------------

lincom (2.sex+1.agegrp3)-(1.sex+0.agegrp3),eform
( 1)  - 1b.sex + 2.sex - 0b.agegrp3 + 1.agegrp3 = 0
------------------------------------------------------------------------------

obese |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |   1.378871   .2082817     2.13   0.033     1.025529    1.853957
------------------------------------------------------------------------------

Log OR

OR

exp

0R woman 40≤age<50 versus man age<40, same scl

32

A odds ratio model

lincom _cons+2.sex+1.agegrp3+scl200*(-50)
( 1)  2.sex + 1.agegrp3 - 50*scl200 + _cons = 0
------------------------------------------------------------------------------

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |  -2.293253   .1188768   -19.29   0.000    -2.526247   -2.060258
-----------------------------------------------------------------------------

lincom _cons+2.sex+1.agegrp3+scl200*(-50), eformeformeformeform
( 1)  2.sex + 1.agegrp3 - 50*scl200 + _cons = 0
------------------------------------------------------------------------------

obese |     exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |   .1009376   .0119991   -19.29   0.000     .0799586     .127421
------------------------------------------------------------------------------

disp %12.6f .1009376/1.1009376 %12.6f .0799586/1.0799586 %12.6f .127421/1.127421

0.091683    0.074039    0.113020

Odds

exp

Risk for women 40≤age<50 with scl=150scl

Log Risk

Risk = Odds/(1+Odds)  by hand 
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A odds ratio model

lincom _cons+2.sex+1.agegrp3+scl200*(-50)
( 1)  2.sex + 1.agegrp3 - 50*scl200 + _cons = 0
------------------------------------------------------------------------------

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) |  -2.293253   .1188768   -19.29   0.000    -2.526247   -2.060258
-----------------------------------------------------------------------------

disp %12.6f invlogit( r(estimate)            ) ///
%12.6f invlogit( r(estimate)-1.96*r(se) ) ///
%12.6f invlogit( r(estimate)+1.96*r(se) )

0.091683    0.074038    0.113020

Risk for women 40≤age<50 with scl=150scl

( )
( )

( )
exp

invlogit
1 1 exp

logoddsodds
Probability logodds

odds logodds
= = =

+ +

No , eformeformeformeform

34

( )
( )

( )
exp

invlogit
1 1 exp

logoddsodds
Probability logodds

odds logodds
= = =

+ +

Plot 1

35

bbbbinreginreginreginreg: The tests in the output 

binreg…,rdrdrdrd:
Risk difference =0
_cons:  Risk=0  ?????

binreg…,rrrrrrrr:
Risk ratio = 1
_cons:  log(risk)=0 that is Risk=1  ?????

binreg…,OOOOrrrr:
Odds ratio = 1
_cons:  log(odds)=0 that is Risk=0.5  ?????

36

Plots

Plot 2
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Plots

Plot 3

38

Plots

Plot 4

39

Plots

Plot 5

40

Plots

Plot 6



Morten Frydenberg Version: Sunday, 20 November 2016

Linear Regression Models for Continuous and Binary Data: Note 4 11

41

Plots

Plot 7
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( )
( )

( )
( )

( )
( )

1 2 2

1 2 1 2

2 1 1

2

1 2

2 1 2

1 1

1 1

1

1

vs vs

vs

vs

OR RR

RR
RR

π π π

π π π

π

π

⋅ − −
= = ⋅

⋅ − −

−
= ⋅

− ⋅

1 2 1 2 1 2

1 2 1 2 1 2

1

1

vs vs

vs vs

RR OR

RR OR

π π

π π

> ⇒ < <

< ⇒ > >
We see that:

If π2 is small or RR 1vs2 is close to 1,
then the last term is close to 1, 

so OR 1vs2 will be close to RR 1vs2

When is the risk ratio and the odds ratio close?

43

The limitations of the RD and the RR

The Risk Difference cannot obtain all values:

For fixed value of π2 we have:

if π2 =5% then the risk difference must be larger than -5%

if π2 =95% then the risk difference must be smaller than 5%

1
1 2 1 2 1 2

2

vs vsRD RR
π

π π
π

= − =

2 1 2 21vsRDπ π− ≤ ≤ −

1 2

2

1
0 vsRR

π
≤ ≤

The Risk Ratio cannot obtain all values:

For fixed value of π2 we have:

if π2 =95% =0.95

then the risk ratio must be smaller than 1.05=1/0.95

i.e. RR can be very restricted for frequent events.
44

The limitations of the RD and the RR models

Per definition the risk (probality) is limited to the interval 
zero to one.

A RD model can violate this:
( ) ( )0 1 2 3 4Pr 200 (40 50) (50 )obese scl woman age ageβ β β β β= + ⋅ − + ⋅ + ⋅ ≤ < + ⋅ ≤

If β1 is positive then 
very large values of scl will give risks higher than one
very small values of scl will give negative risks

( ) ( )0 1 2 3 4ln Pr 200 (40 50) (50 )obese scl woman age ageβ β β β β  = + ⋅ − + ⋅ + ⋅ ≤ < + ⋅ ≤ 

If β1 is positive then very large values of scl
will give positive log-risks, i.e. risk larger than 1.

A RR model can also violate this:
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The limitations of the RD and the RR models

RD and RR models can be difficult or impossible to fit to a 
data set:
generate notobese=1-obese
binreg notobese b1.sex b0.agegrp3 scl200,rr

Iteration 1:   deviance =  14758.67
Iteration 2:   deviance =  3530.169
.
.
.
Iteration 154: deviance =  3509.491
Iteration 155: deviance =   3509.49
--Break—-

binreg notobese b1.sex b0.agegrp3 scl200,or
predict pr, mu
binreg notobese b1.sex b0.agegrp3 scl200,rr mu(pr)

This trick might solve the “convergence” problem:

46

Plot 8

47

Comparing two models: the likelihood ratio test

Until now we have used testparm to test if several 
coefficients could be zero.

In a “normal” regression model testparm will give a exact 
F-test.

In all other models, including binary regression models, 
testparm will results in what is so-called a Wald-test, 
which is approximative/”asymptotic” test.

binreg obese  b1.sex b0.agegrp3 scl200,rr

testparmtestparmtestparmtestparm i.agegrp3i.agegrp3i.agegrp3i.agegrp3
( 1)  1.agegrp3 = 0( 1)  1.agegrp3 = 0( 1)  1.agegrp3 = 0( 1)  1.agegrp3 = 0
( 2)  2.agegrp3 = 0( 2)  2.agegrp3 = 0( 2)  2.agegrp3 = 0( 2)  2.agegrp3 = 0

chi2(  2) =   25.46chi2(  2) =   25.46chi2(  2) =   25.46chi2(  2) =   25.46
ProbProbProbProb > chi2 =    0.0000> chi2 =    0.0000> chi2 =    0.0000> chi2 =    0.0000

An often used asymptotic 
test is the likelihood ratio test.

testparmtestparmtestparmtestparm i.agegrp3 scl200 i.agegrp3 scl200 i.agegrp3 scl200 i.agegrp3 scl200 
( 1)  1.agegrp3 = 0( 1)  1.agegrp3 = 0( 1)  1.agegrp3 = 0( 1)  1.agegrp3 = 0
( 2)  2.agegrp3 = 0( 2)  2.agegrp3 = 0( 2)  2.agegrp3 = 0( 2)  2.agegrp3 = 0
( 3)  scl200 = 0( 3)  scl200 = 0( 3)  scl200 = 0( 3)  scl200 = 0

chi2(  3) =   53.76chi2(  3) =   53.76chi2(  3) =   53.76chi2(  3) =   53.76
ProbProbProbProb > chi2 =    0.0000> chi2 =    0.0000> chi2 =    0.0000> chi2 =    0.0000

48

Comparing two models: the likelihood ratio test

One can compare two models with a likelihood ratio test if:

•The two models are fitted on exactly the same data set.

•The two models are nested, i.e. one can go from one model 
to the other by setting some coefficients to zero.

In Stata the test is found in this way:
binreg obese  b1.sex b0.agegrp3 scl200,rr mlmlmlml
estimates store Modelrr1estimates store Modelrr1estimates store Modelrr1estimates store Modelrr1
binreg obese  b1.sex            scl200,rr mlmlmlml
estimates store Modelrr2estimates store Modelrr2estimates store Modelrr2estimates store Modelrr2
lrtest Modelrr1 Modelrr2

Output:
Likelihood-ratio test                          LR chi2(2)  =     24.92
(Assumption: Modelrr2 nested in Modelrr1)      ProbProbProbProb > chi2 =    0.0000> chi2 =    0.0000> chi2 =    0.0000> chi2 =    0.0000

i.agegrp3 adds statistical significant information to the 
model containing sex and scl smoking! 
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Comparing two models: the likelihood ratio test

One can compare two models with a likelihood ratio test if:

•The two models are fitted on exactly the same data set.

•The two models are nested, i.e. one can go from one model 
to the other by setting some coefficients to zero.

In Stata the test is found in this way:
binreg obese  b1.sex b0.agegrp3 scl200,rr mlmlmlml
estimates store Modelrr1

binreg obese  b1.sex                  ,rr mlmlmlml
estimates store Modelrr3

lrtest Modelrr1 Modelrr3

Output:
observations observations observations observations differdifferdifferdiffer: 4658 vs. 4690: 4658 vs. 4690: 4658 vs. 4690: 4658 vs. 4690

50

Comparing two models: the likelihood ratio test
estimates table Modelrr*,stats(N ll)
-----------------------------------------------------

Variable |  Modelrr1     Modelrr2     Modelrr3   
-------------+---------------------------------------

sex |
Men  |     (base)       (base)       (base)  

Women  |  .22330342     .2309925     .2508517  
|

agegrp3 |
0  |     (base)                            
1  |  .07139944                            
2  |  .43793034                            

|
scl200 |  .00304885    .00416867               
_cons | -2.4947825   -2.3300943   -2.2035956  

-------------+---------------------------------------
N |       4658         4658         4690  N |       4658         4658         4690  N |       4658         4658         4690  N |       4658         4658         4690  

ll | -1749.8636   -1762.3225   -1790.3703  
-----------------------------------------------------

The model without scl is fitted to a larger data set.
The results cannot be compared!!!

51

Comparing two models: the likelihood ratio test

Likelihood ratio test safe method 
(All models fitted to the same data):
quietly: binreg obese  b1.sex b0.agegrp3 scl200,rr ml
estimates store Modelrr1

generate inmodel1=e(sample)generate inmodel1=e(sample)generate inmodel1=e(sample)generate inmodel1=e(sample)

quietly: binreg obese  b1.sex  scl200 if inmodel1 if inmodel1 if inmodel1 if inmodel1 ,rr ml
estimates store Modelrr2

quietly: binreg obese  b1.sex         if inmodel1if inmodel1if inmodel1if inmodel1, rr ml
estimates store Modelrr3

lrtest Modelrr1 Modelrr2
Likelihood-ratio test  LR chi2(2)  = 24.92
(Assumption: Modelrr2 nested in Modelrr1) Prob > chi2 = 0.0000

lrtest Modelrr1 Modelrr3
Likelihood-ratio test     LR chi2(3)  = 53.72
(Assumption: Modelrr3 nested in Modelrr1) Prob > chi2 = 0.0000

52

Comparing two models: the likelihood ratio test

estimates table Modelrr*,stats(N ll)
-----------------------------------------------------

Variable |  Modelrr1     Modelrr2     Modelrr3   
-------------+---------------------------------------

sex |
Men  |     (base)       (base)       (base)  

Women  |  .22330342     .2309925    .24350715  
|

agegrp3 |
0  |     (base)                            
1  |  .07139944                            
2  |  .43793034                            

|
scl200 |  .00304885    .00416867               
_cons | -2.4947825   -2.3300943   -2.2001701  

-------------+---------------------------------------
N |       4658         4658         4658  N |       4658         4658         4658  N |       4658         4658         4658  N |       4658         4658         4658  

ll | -1749.8636   -1762.3225   -1776.7225  
-----------------------------------------------------
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The assumptions:

Note:
We model the probability, some no room for additional 
random variation, - no unexplained deviations.

Two assumptions:
1. Linearity

2. Independency

Checking independency : 
Just like in the normal case

( ) ( )0 1 2

3 4

200

(40 50) (50 )

f risk scl woman

age age

β β β

β β

= + ⋅ − + ⋅

+ ⋅ ≤ < + ⋅ ≤

The model:
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The linearity  can be decomposed in the sub-assumptions:

Additivity on f-scale: The contributions from sex and age are 
added.

Proportionality on f-scale: The contribution from age is 
proportional to its value. 

No effectmodification on f-scale: The contribution from one 
independent variable is the same whatever the value of the 
other.

The assumptions: Linearity

( ) ( )0 1 2

3 4

200

(40 50) (50 )

f risk scl woman

age age

β β β

β β

= + ⋅ − + ⋅

+ ⋅ ≤ < + ⋅ ≤
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The linearity  can be decomposed in the sub-assumptions:

Multiplicativity on risk /odds-scale: 
The contributions from sex and age are multiplied.

Exponential on risk /odds-scale : 
The contribution from age is raised to its value. 

No effectmodification on risk/odds-scale: The contribution 
from one independent variable is the same whatever the 
value of the other.

The assumptions ratio models: Linearity→→→→multiplicativity

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

200 40 50 50

0 1 2 3 4

200 40 50 50

0 1 2 3 4

Pr
scl age agewoman

scl age agewoman

obese

Odds obese

γ γ γ γ γ

γ γ γ γ γ

− ≤ < ≤

− ≤ < ≤

= ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅
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As there are no additional “random variation“ there are no 
residuals, so you cannot make any of the diagnostic plots 
known from the normal regression models.

Model checking are typically done by expanding the model
with interactions, cubic splines etc.

or looking at alternative way to introduce central variables.

In large data sets you can get some insight to the fit of the 
model by plotting observed frequencies against estimated  
probabilities in subgroups.

There exist many “statistics”, like generalised r-squared, 
AUC-roc and Brier score, that measured the quality of an 
estimated model. But they will not give any insight what 
could be wrong with the model.

Model checking 
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Estimation:

Excepting the two by two tables, there are no closed form for 
the estimates.

The distribution of the estimates are not known.

Estimates are found by the method of maximum likelihood.

Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based 
on asymptotics.

That is, all statistical inference are approximate.

The more data – the more events -the better the 
approximations.

binreg can also be run with the option mlmlmlml, this will give 
slightly different standard errors for RD and RR models

Binary regression models in general 

58

Things to look out for in the output

In general:

Wide CI’s or large standard errors in a binary regression 
indicates that at least one group has few events!

As a rule of thumb there should be at least 15 events per 
parameters in the model.

Many iterations in a binary regression indicates that some 
of the parameters are hard to estimate.

(for RD and RR it might help to using starting values from a 
OR – model).

59

A OR regression model in usually called a logistic regression.

It can be fitted in Stata by  logitlogitlogitlogit or logisticslogisticslogisticslogistics command

binreg obese  b1.sex b0.agegrp3 scl200,orororor

logit    obese  b1.sex b0.agegrp3 scl200,orororor

logistic obese  b1.sex b0.agegrp3 scl200

OR regression = logistic regression

60

Logistic regression is the most used binary regression model:

• It is always valid as it the probability always is between 0 
and one.

• It was the first ever programmed.
The option of RD or RR models in standard software is 
relative new.

• It can be used to used to analyse data from many types of 
case-control designs.

• It have done the job for many years!!????

Logistic regression - why
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This is based on three assumptions:

a.Additivity on log-odds scale: The contribution from each 
of the independent variables are added.

b.Proportionality: The contribution from independent 

variables is proportional to its value (with a factor β )

c.No effectmodification: The contribution from one 
independent variable is the same whatever the values of 
the other.

Note a. can also be formulated as multiplicitivity on the odds 
scale

Logistic regression model in general 

( ) 0

1

ln
k

p

p

podds xβ β
=

= + ⋅∑

1 2

0 1 2
kxx

k

x
odds OR ORod Ods R= ⋅ ⋅ ⋅�
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If one consider two persons who differ with

∆x1 in x1 , ∆x2 in x2 … and ∆xk in xk

the difference in the log odds is :

1

p

k

p

p
xβ

=

⋅ ∆∑
Again we see that the contribution from each of the 
explanatory variables: 

are added, 
are proportional to the difference 
and does not depend on the difference in the other
explanatory variables

On the log odds scale!

( ) 0

1

ln
k

p

p

podds xβ β
=

= + ⋅∑

Logistic regression model in general 
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If one consider two persons who differ with

∆x1 in x1 , ∆x2 in x2 … and ∆xk in xk 

then the odds ratio is:

( ) 0

1

ln
k

p

p

podds xβ β
=

= + ⋅∑

1 2

1 2
kxx x

k
OR OR OR OR

∆∆ ∆= ⋅ ⋅�

Note, the model might also be formulated:

[ ] 1
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0

0

exp

Pr 1

1 exp

p

p
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k

p

k

p

p

x

p Y

x

β β

β β

=

=

 
+ ⋅ 

 = = =
 

+ + ⋅ 
 

∑

∑

Logistic regression model in general 


