

Linear regression, collinearity, splines and extensions

Morten Frydenberg ©
Section of Biostatistics, Aarhus Univ, Denmark

General things for regression models:

Collinearity - correlated explanatory variables

Flexible modelling of response curves - Cubic splines

Normal regression models - an extension

Clustered data / data with several random components

1

Collinearity

Consider a subsample of the serum cholesterol data set and the **three** models:

model 0: regress logscl sex sbp dbp
 model 1: regress logscl sex dbp
 model 2: regress logscl sex sbp

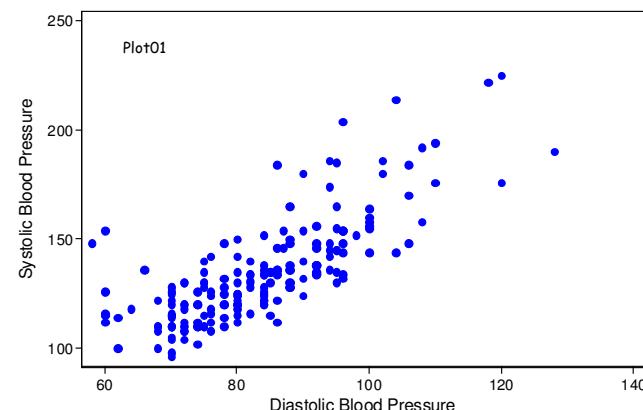
variable	model0	model1	model2
sbp	.00126448 .00087992 0.1524		.0014988 .0005548 0.0075
dbp	.00056517 .00164485 0.7315	.00239702 .0010424 0.0226	
sex	.02080574 .02636149 0.4310	.02446746 .02631111 0.3536	.0197773 .02613048 0.4501
_cons	5.1444085 .09912234 0.0000	5.1555212 .09909537 0.0000	5.1615877 .08539118 0.0000
N	194	194	194

Legend: b/se/p

Each BP-measure is
statistical
significant, when the
other is removed!

2

Collinearity



SBP and DBP are highly **positively correlated**, that will lead to highly **negatively correlated estimates**!!!

3

Collinearity

This can be seen by listing the **correlation between the estimates**.

In Stata by the command: vce, cor

	sbp	dbp	sex	_cons
sbp	1.0000			
dbp	-0.7750	1.0000		
sex	-0.0967	0.1135	1.0000	
_cons	-0.0780	-0.5044	-0.4665	1.0000

If two estimates are highly correlated, it indicates that it is very difficult to estimate the "independent effect" of the each of the two variables.

Often it is even **nonsense** to try to do it!

Often it is better to try to reformulate the problem.

4

Collinearity

One way to work around the problem of collinearity is to 'orthogonalize' it:

Create two new variables:

one measures the **blood pressure**
and another that measures the **difference** in
systolic and diastolic blood pressure.

Some **candidates**:

$(\text{sbp}+\text{dbp})/2$ and $(\text{sbp}-\text{dbp})$

$(\text{sbp}+\text{dbp})/2$ and (sbp/dbp)

$\ln(\text{sbp} \cdot \text{dbp})/2$ and $\ln(\text{sbp}/\text{dbp})$

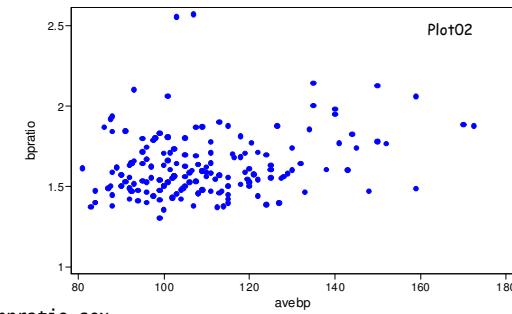
We will here consider the second pair.

5

Collinearity

$\text{avebp} = (\text{sbp} + \text{dbp})/2$ and $\text{bpratio} = (\text{sbp}/\text{dbp})$

Only weakly associated



```
regress logscl avebp bpratio sex
vce,cor
-----+-----|-----+
          avebp | 1.0000
          bpratio | -0.2456 1.0000
          sex | 0.0382 -0.1041 1.0000
          _cons | -0.4542 -0.6874 -0.2585 1.0000
```

6

Collinearity

The serum cholesterol data set and the **three** models:

model 0: regress logscl sex avebp bpratio
 model 1: regress logscl sex avebp
 model 2: regress logscl sex bpratio

Variable	model0	model1	model2	
avebp	.00198973 .0007887 0.0125	.00206564 .00076285 0.0074		
bpratio	.02769662 .07067134 0.6956	.07148118 .06946246 0.3048		
sex	.02060675 .02632924 0.4348	.02168128 .026128 0.4077	.01806662 .02667689 0.4991	
_cons	5.1003417 .12936418 0.0000	5.1351912 .09374803 0.0000	5.2485724 .11685799 0.0000	
N	194	194	194	
legend: b/se/p				

Blood pressure
seems to play a role,

The ratio between
SBP and DBP might
not.

7

Collinearity

Look out for it:

- systolic and diastolic blood pressure
- 24 hour blood pressure and 'clinical' blood pressure
- weight and height
- age and parity
- age and time since menopause
- BMI and skinfold measure
- age, birth cohort and calendar time
- volume and concentration
-

Remember you will need a **huge amount** of data to disentangle
the effects of correlated explanatory variables

8

Flexible modelling of response curves - cubic splines

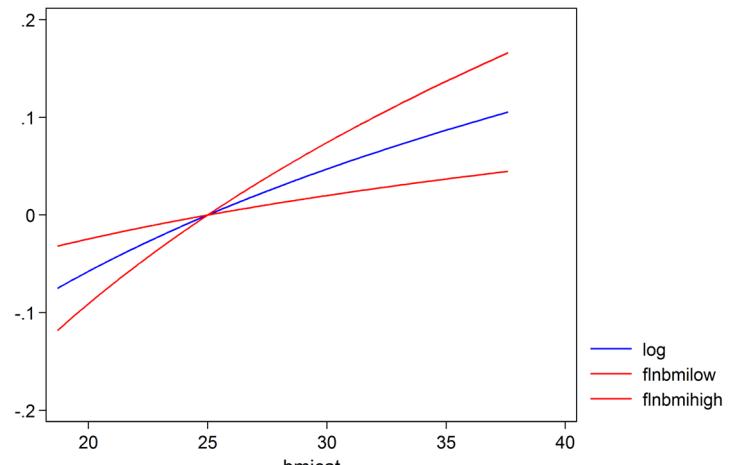
```
. regress lnsbp b1.sex age45 lnBMI
      Source |       SS           df          MS      Number of obs =      200
      Model |  1.0557271          3  .351909033  F(3, 196) =      16.46
      Residual |  4.18969054        196  .021375972  Prob > F =      0.0000
      Total |  5.24541764        199  .026358883  R-squared =      0.2013
                                         Adj R-squared =      0.1890
                                         Root MSE =      .14621

      lnsbp |   Coef.  Std. Err.      t  P>|t|  [95% Conf. Interval]
      sex |
      Men |          0  (base)
      Women |  .0036329  .0208905    0.17    0.862    -.0375662    .0448319
      age45 |  -.0065384  .0012844    5.09    0.000    .0040053    .0090715
      lnBMI |  .25834  .0758295    3.41    0.001    .1087935    .4078864
      _cons |  4.025028  .2449553   16.43    0.000    3.541941    4.508114

. cisd
SD(error): .14620524
95% CI: ( .13305319 ; .16226524 )
```

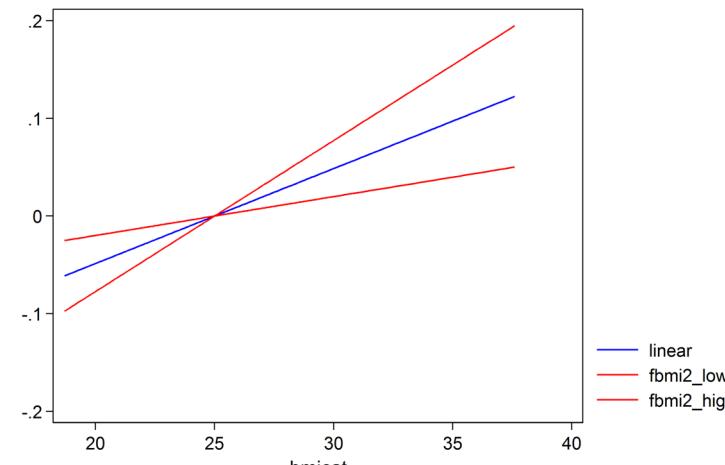
9

Flexible modelling of response curves - cubic splines



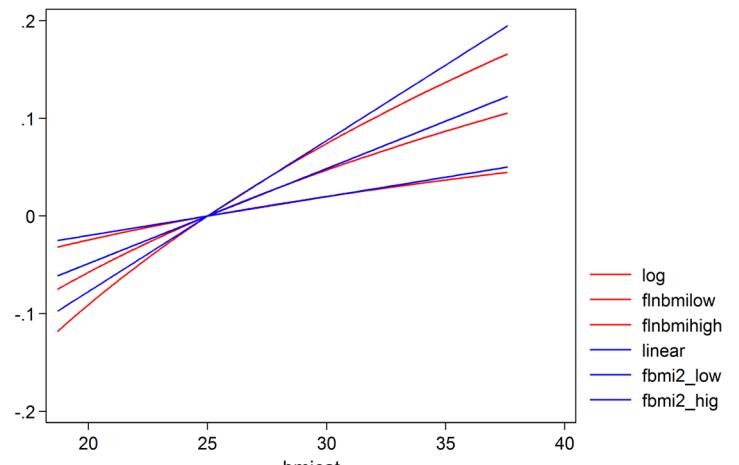
10

Flexible modelling of response curves - cubic splines



11

Flexible modelling of response curves - cubic splines



12

Flexible modelling of response curves - cubic splines

We want to model the relationship between SBP and bmi more flexible.

There are several ways to do this, including fractional polynomial, splines and cubic splines.

We will here look at restricted cubic splines as they are implemented in Stata.

If one want to use the restricted cubic splines you start by generating a set of new independent variables:

```
mkspline sbmi=bmi, cubic nknots(4) display
+-----+
|      knot1      knot2      knot3      knot4
-----+
bmi | 19.91      23.4       26       31.37
```

13

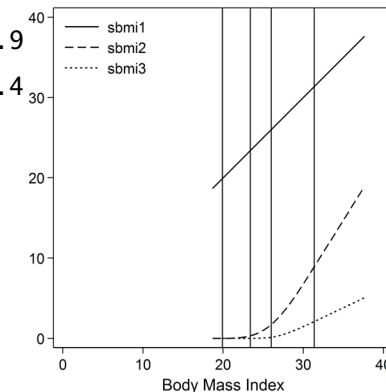
Flexible modelling of response curves - cubic splines

The mkspline command will generate 3 new variables named sbmi1 to sbmi3, which are functions of bmi.

Where bmi.

sbmi2=0 if bmi<19.9

sbmi3=0 if bmi<23.4



14

Flexible modelling of response curves - how to

```
mkspline sbmi=bmi, cubic nknots(4) display
+-----+
|      knot1      knot2      knot3      knot4
-----+
bmi | 19.91      23.4       26       31.37

. regress lnsBP b1.sex age45 sbmi*
+-----+
lnSBP |   Coef.   Std. Err.      t   P>|t|   [95% Conf. Interval]
+-----+
sex |
Men |          0 (base)
Women |  .0109297  .0212642    0.51    0.608   -.031009   .0528685
age45 |  .0066376  .0012758    5.20    0.000   .0041214   .0091537
sbmi1 |  -.0108155  .0141345   -0.77    0.445   -.0386926   .0170615
sbmi2 |  .1046104  .0517492    2.02    0.045   .002547   .2066737
sbmi3 |  -.3405112  .1557292   -2.19    0.030   -.6476507  -.0333716
_cons |  5.027883  .3041192   16.53    0.000   4.428078   5.627687
+-----+
. * test for straight line
. testparm sbmi2 sbmi3
( 1)  sbmi2 = 0
( 2)  sbmi3 = 0
F(  2, 194) =    2.92
Prob > F =    0.0563
```

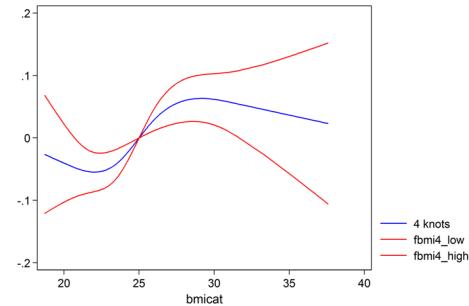
15

Flexible modelling of response curves - cubic splines

*preparing for plot
quietly:levelsof bmi, local(levels)

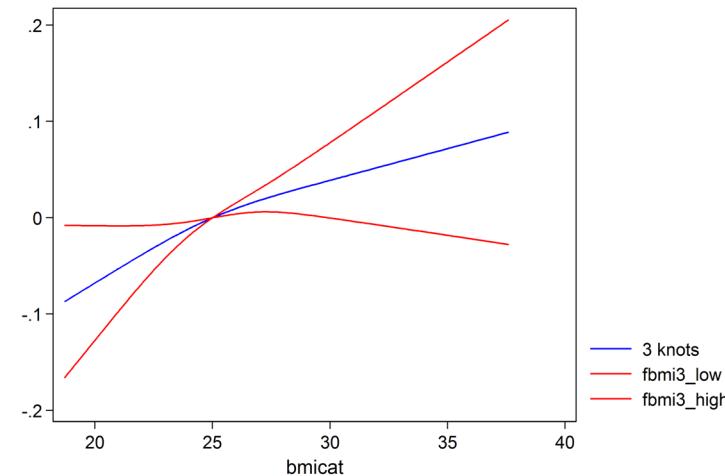
quietly:xblc sbmi*, covname(bmi) at(`r(levels)') reference(25) ///
generate(bmicat fbmi4 fbmi4_low fbmi4_high)

*plotting
label var fbmi4 "4 knots"
line fbmi4 fbmi4_low fbmi4_high bmicat ///
,lco(blue red red) lpa(1...) ylab(-.2(.1).2) name(knots4,replace)



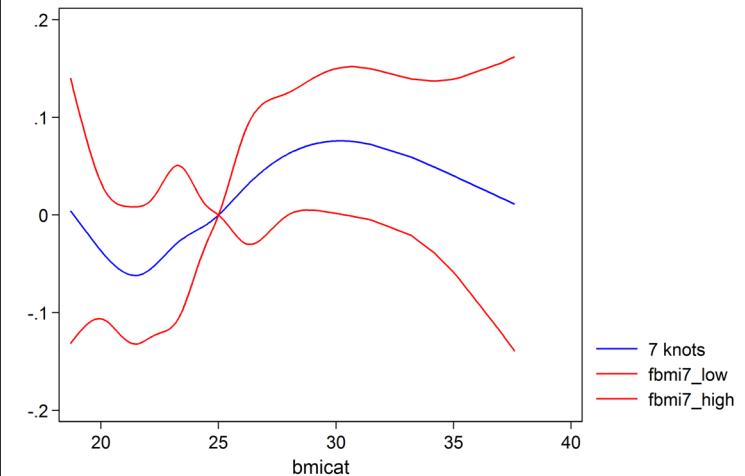
16

Flexible modelling of response curves - cubic splines



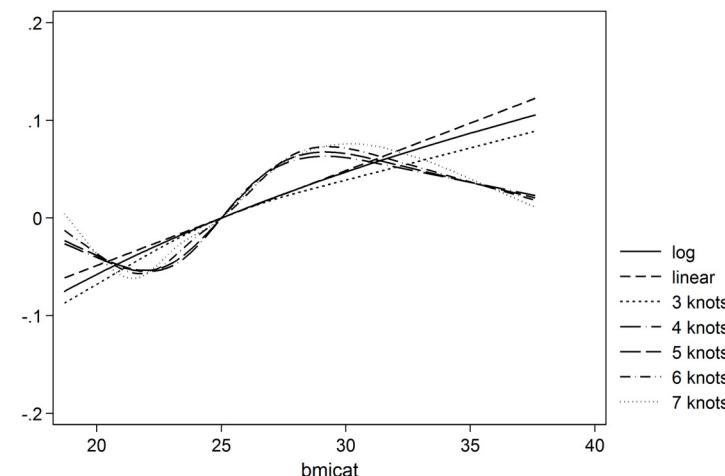
17

Flexible modelling of response curves - cubic splines

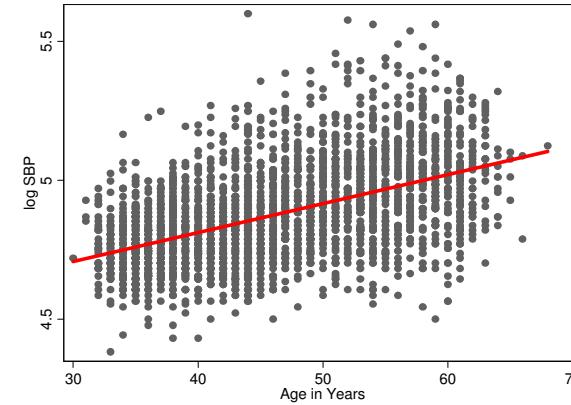


18

Flexible modelling of response curves - cubic splines



19

Flexible modelling of response curves - cubic splines
Log SBP against age for 2650 women with fitted straight line.

20

Flexible modelling of response curves - cubic splines

```
drop sage1
regress lsbp age sage?
-----+-----+-----+-----+-----+-----+
      lsbp |     Coef.   Std. Err.      t   P>|t|  [95% Conf. Interval]
-----+-----+-----+-----+-----+-----+
      age |  .0067837  .0035322   1.92   0.055  -.0001425  .0137099
      sage2 |  -.0005598  .0525269  -.01   0.991  -.1035577  .1024381
      sage3 |  .0553357  .1336906   0.41   0.679  -.2068131  .3174845
      sage4 |  -.1398205  .1547781  -.09  .0366  -.4433189  .1636778
      sage5 |  .0932052  .1207685   0.77   0.440  -.1436051  .3300155
      _cons |  4.527844  .1253021  36.14   0.000  4.282144  4.773544
-----+-----+-----+-----+-----+-----+
testparm sage?
( 1) sage2 = 0
( 2) sage3 = 0
( 3) sage4 = 0
( 4) sage5 = 0
      F( 4, 2644) =      3.81
      Prob > F =  0.0043
```

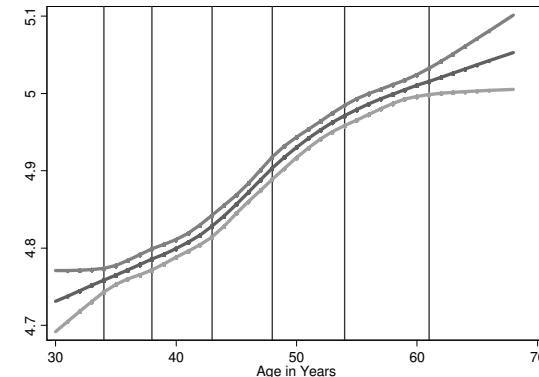
Test of linearity
The hypothesis is rejected

The relationship is not linear, but how does it look?

21

Flexible modelling of response curves - cubic splines

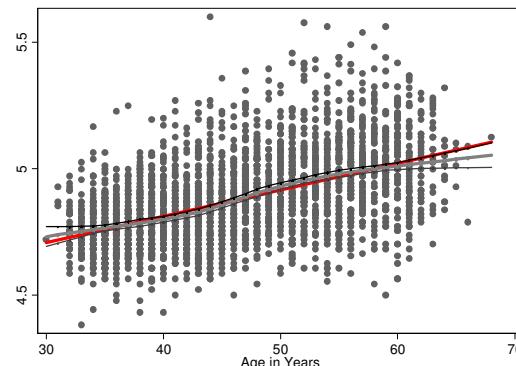
```
predict fit if e(sample)           // fit values
predict fitsd if e(sample), stdp  // standard error
generate low=fit-1.96*fitsd     // lower ci-limit
generate high=fit+1.96*fitsd    // upper ci-limit
line fit low high age           // plot
```



22

Flexible modelling of response curves - cubic splines

Compare with the straight line model:

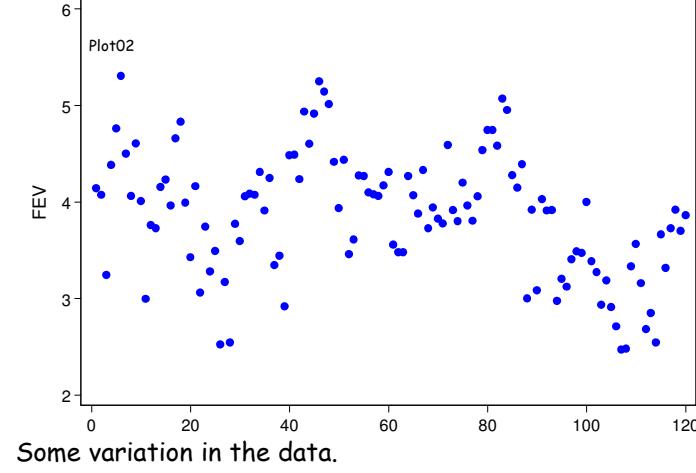


Although, there is 'statistical significant' non-linearity, it has no practical implications- the straight line model is a valid approximation.

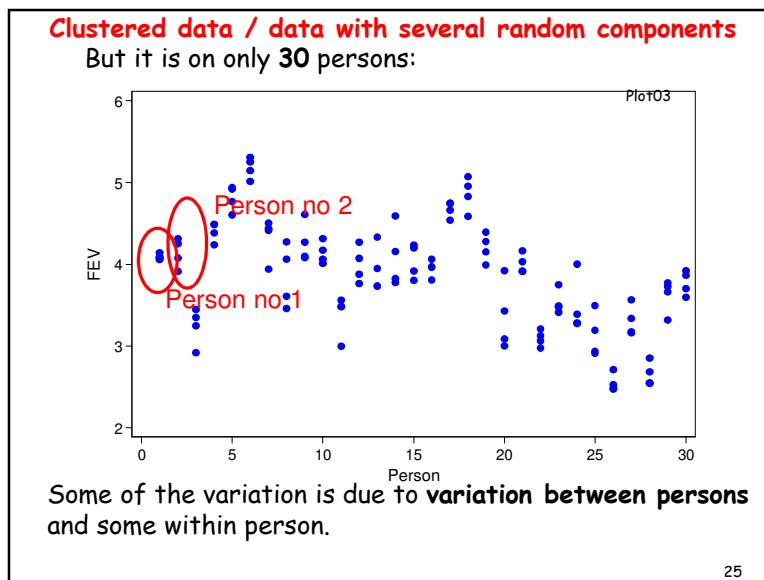
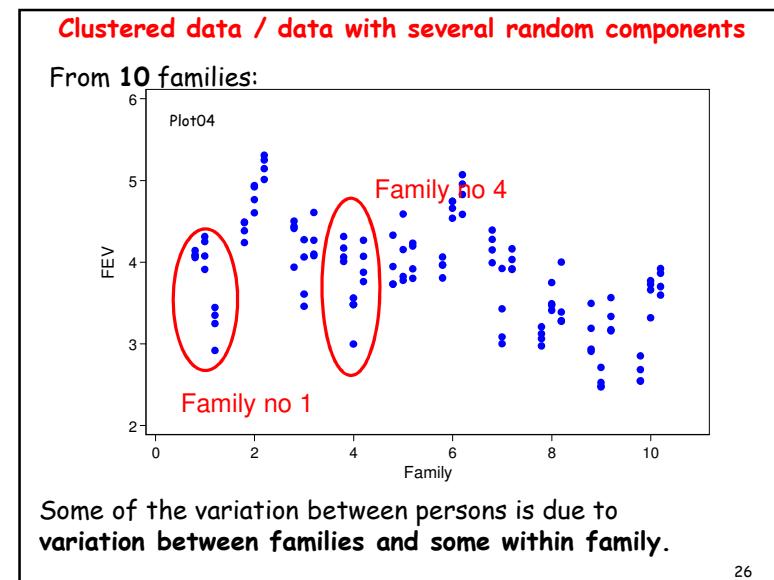
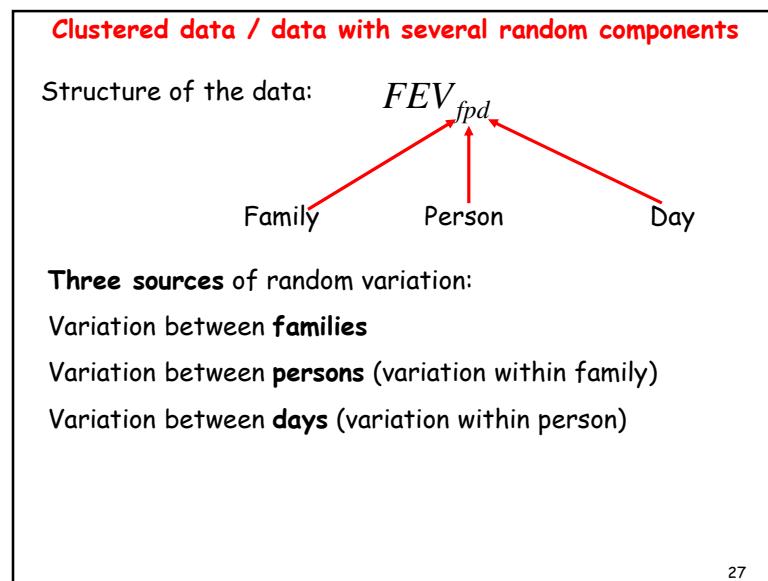
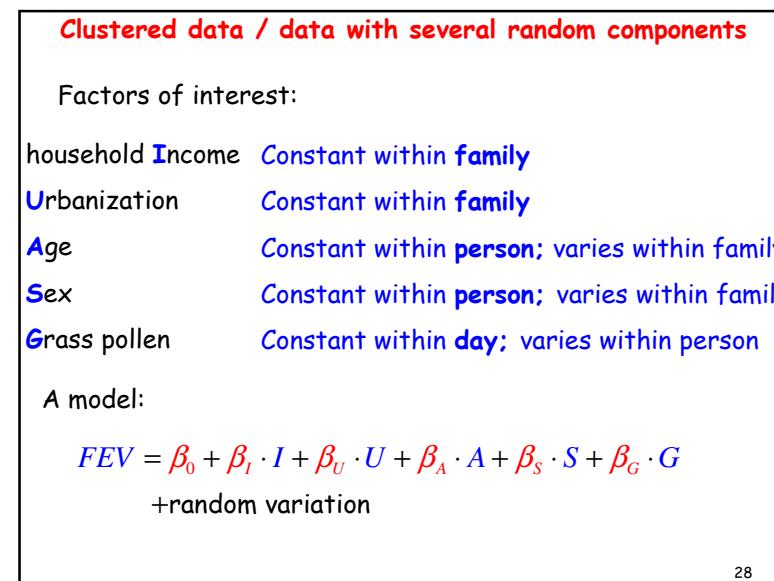
23

Clustered data / data with several random components

120 measurements of FEV:



24



Clustered data / data with several random components

$$FEV = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G$$

+random variation

If the three levels/sources of random variation are not taken into account :

- The precision of β_I and β_U are highly overestimated
- The precision of β_A and β_S are overestimated
- The estimates of β_I and β_U will be biased if the not all families are represented by the same number of persons and each person is measured the same number of times.
- The estimates of β_A and β_S will be biased if not all persons are measured the same number of times.

29

Clustered data / data with several random components

$$FEV = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G$$

+ F_f + P_{fp} + E_{fpd}

variance

F_f	: Random family contribution	σ_F^2
P_{fp}	: Random person contribution	σ_P^2
E_{fpd}	: Random day contribution	σ_E^2

$$\text{var}(FEV_{fpd}) = \sigma_F^2 + \sigma_P^2 + \sigma_E^2$$

Variance components

Assumed to be normal distributed

30

Clustered data / data with several random components

Systematic part

$$FEV = \boxed{\beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G}$$

+ F_f + P_{fp} + E_{fpd}

Random part

$\beta_0, \beta_I, \beta_U, \beta_A, \beta_S$ and β_G Quantify the **systematic** variation

σ_F^2, σ_P^2 and σ_E^2 Quantify the **random** variation

This is a:

- Variance component model
- Mixed model (both systematic and random variation)
- Multilevel model

The theory behind and the understanding of such models is well **established!!!**

31

Flexible modelling of response curves - cubic splines

knots: a_1, a_2, \dots, a_k

sage₁ = age

$$\text{sage}_{j+1} = (age - a_j)_+^3 - (age - a_{k-1})_+^3 \frac{a_k - a_j}{a_k - a_{k-1}}$$

$$+ (age - a_k)_+^3 \frac{a_{k-1} - a_j}{a_k - a_{k-1}}$$

32