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Linear regression, collinerarity, splines and extensions
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General things for regression models:
Collinearity - correlated explanatory variables
Flexible modelling af response curves - Cubic splines
Normal regression models - an extension

Clustered data / data with several random components

Collinearity

Consider a subsample of the serum cholesterol data set
and the three models:

model O: regress logscl sex sbp dbp
model 1: regress logscl sex dbp
model 2: regress logscl sex shp
" variable | modelo modell model2 _
_____________ T
sbp | .00126448 “oonasss— EStimate
.00087992 .0005548 «—— Se

|

| 0.1524 &———> (.0075
dbp | .00056517 00239702 —
|
|

.00164485 .0010424
0.7315+—>  0.0226
sex | .02080574  .02446746 .0197773 :
02636149 02631111 .0261304s EGCh BP-measure is

0.4310 0.3536 0.4501 1t
5.1444085 5.1555212 5.1615877 Sfa-hs.hcal

|

|

| .09912234  .09909537  .08539118 significan‘l', when the
,,,,,,,,,,,,, 1o 00000 %% other is removed!

|

Collinearity
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SBP and DBP are highly positively correlated, that will lead
to highly negatively correlated estimates!!!
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legend: b/se/p 2
Collinearity

This can be seen by listing the correlation between the
estimates.

In Stata by the command: vce, cor
regress logscl sbp dbp sex
vce,cor
| sbp dbp sex _cons
_____________ o e
sbp | 0000

dbp || _-0.7750 | 1.0000
sex | -0.0967 0.1135 1.0000
_cons | -0.0780 -0.5044 -0.4665 1.0000

If two estimates are highly correlated, it indicates that it is
very difficult to estimate the “independent effect” of the
each of the two variables.

Often it is even nonsense to try to do it!

Often it is better to try to reformulate the problem.

Linear regression models for continuous and binary data: Note
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Collinearity

One way to work around the problem of collinearity is
to ‘ortogonalize’ it:
Create two new variable:

one measures the blood pressure

and another that measure the difference in
systolic and diastolic blood pressure.

Some candidates:
(sbp+dbp) /2 and (sbp-dbp)
| (sbp+dbp)/2  and  (sbp/dbp) |
Tn(sbp*dbp)/2 and Tn(sbp/dbp)

We will here consider the second pair.
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Collinearity
avebp=(sbp+dbp) /2 and bpratio=(sbp/dbp)
25 *e Plot02
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regress logscl avebp bpratio sex

vce,cor
| avebp bpratio sex _cons
_____________ e e
avebp | 0000
bpratio | 1.0000
sex | 0.0382 -0.1041 1.0000
_cons | -0.4542 -0.6874 -0.2585 1.0000

5
Collinearity
The serum cholesterol data set and the three models:
model O: regress logscl sex avebp bpratio
model 1: regress logscl sex avebp
model 2: regress logscl sex bpratio
" variable | modelo modell model2 |
Blood pressure
avebp | .00198973 .00206564
| .0007887  .00076285 seems to play a role,
| 0. 01285 0. 0074
bpratio | .02769662 .07148118 H
| .07067134 “o6oas246 | | The ratio between
| 0.6956 0.3048 |
sex | .02060675 .02168128 .01806662 SBP Clnd DBP mlghT
| .02632924 .026128 .02667689 | hot.
| 0.4348 0.4077 0.4991
_cons | 5.1003417 5.1351912 5.2485724
| .12936418 .09374803 .11685799
| 0.0000 0.0000 0.0000
,,,,,,,,,,,,, T
N | 194 194 194
legend: b/se/p 7

Linear regression models for continuous and binary data: Note

Collinearity
Look out for it:

*systolic and diastolic blood pressure

*24 hour blood pressure and ‘clinical’ blood pressure
weight and height

-age and parity

*age and time since menopause

*BMI and skinfold measure

*age , birth cohort and calendar time

*volume and concentration

Remember you will need a huge amount of data to disentangle

the effects of correlated explanatory variables .
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Flexible modelling of response curves - cubic splines Flexible modelling of response curves - cubic splines
. regress 1nSBP bl.sex age45 1nBMI .2
Source | 53 df MS Number of obs = 200
e F(3, 196) = 16.46
Model | 1.0557271 3 .351909033 Prob > F = 0.0000
Residual | 4.18969054 196 .021375972 R-squared = 0.2013 14
————————————— -==—---=-------------——-———————————  Adj R-squared = 0.1890 )
Total | 5.24541764 199 .026358883  Root MSE = 14621
InsBP | Coef std. Err t P>|t] [95% Conf. Interval] 0
sex T
Men | 0 (base)
women |  .0036329  .0208905 0.17 0.862 -.0375662 0448319
|
age45 |  .0065384  .0012844 5.09 0.000 .0040053 .0090715 14
TnBMI | .25834  .0758295 3.41  0.001 .1087935 4078864
_cons | 4.025028 .2449553 16.43 0.000 3.541941 4.508114 log
77777777777777777777777777777777777777777777777777777777 —— finbmilow
. cisd 2 —— finbmihigh
) T T T T T
sb(error): .14620524
95% CI: ( .13305319 ; .16226524 ) 20 25 ,30 35 40
bmicat
9 10
Flexible modelling of response curves - cubic splines Flexible modelling of response curves - cubic splines
21 21
14 14
0- 0-
— log
1 1 — flnbmilow
. . —— finbmihigh
— linear — linear
— fbmi2_low — fbmi2_low
-2 — fbmi2_hig -2 — fbmi2_hig
T T T T T T T T T T
20 25 30 35 40 20 25 30 35 40
bmicat bmicat
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Linear regression models for continuous and binary data: Note
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Flexible modelling of response curves - cubic splines
We want to model the relationship between SBP and bmi
more flexible.

There are several ways to do this, including fractional
polynomial, splines and cubic splines.

We will here look at restricted cubic splines as they are
implemented in Stata.

If one want to use the restricted cubic splines you start
by generating a set of new independent variables:

mkspline sbmi=bmi, cubic nknots(4) display

| knotl knot2 knot3 knot4
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Flexible modelling of response curves - cubic splines

The mksp1ine command will generate 3 new variables
named sbmil to sbmi3, which are functions of bmi.

Where bmi . 104 —
. . . sbmi
sbmi2=0 if bmi<19.9 |___ .
. . I s sbmi3
sbmi3=0 if bmi<23.4,
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Flexible modelling of response curves - how to
mkspline sbmi=bmi,cubic nknots(4) display
| knotl knot2 knot3 knot4
bmi | 19.91 23.4 26 31.37
regress 1nSBP bl.sex age45 sbmi*
TnsBP | Coef std. Err t P>|t| [95% conf. Interval]
_____________ o
sex |
Men | 0 (base)
women | .0109297  .0212642 0.51 0.608 -.031009 .0528685
|
age45 | .0066376  .0012758 5.20 0.000 .0041214 .0091537
sbmil | -.0108155 .0141345 -0.77 0.445 -.0386926 .0170615
sbmi2 | .1046104 .0517492 2.02 0.045 .002547 .2066737
sbmi3 | -.3405112 .1557292 -2.19 0.030 -.6476507 -.0333716
_cons | 5.027883 .3041192 16.53 0.000 4.428078 5.627687
. * test for straight line
. testparm sbmi2 sbmi3
(1) sbmi2 =0
(2) sbmi3 =0
FC 2, 194) = 2.92
Prob > F = 0.0563
15

Linear regression models for continuous and binary data: Note
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Flexible modelling of response curves - cubic splines

*preparing for plot
quietly:Tevelsof bmi, Tocal(levels)

quietly:xblc sbmi*, covname(bmi) at( r(levels)') reference(25) ///
generate(bmicat fbmi4 fbmi4_low fbmi4_high)

*plotting
label var fbmi4 "4 knots"
Tline fbmi4 fbmi4_low fbmi4_high bmicat ///
,1co(blue red red) Tpa( 1...) vylab(-.2(.1).2) name(knots4,replace)

— 4knots
—— fomi4_low
—— fbmi4_high

20 25 30 35 40
bmicat

16
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Flexible modelling of response curves - cubic splines Flexible modelling of response curves - cubic splines
24 2
1 N 1 -
07 0_
1 11
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Flexible modelling of response curves - cubic splines Flexible modelling of response curves - cubic splines
2 Log SBP against age for 2650 women with fitted straight line.

— log
——— linear
------- 3 knots
—— 4 knots
— — 5 knots
— = 6 knots
7 knots

20 25 30 35 40
bmicat

50
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Linear regression models for continuous and binary data: Note
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Flexible modelling of response curves - cubic splines

drop sagel
regress 1sbp age sage?

1sbp | Coef std. Err t P>|t] [95% Conf. Interval]
_____________ A o o
age | .0067837  .0035322 1.92 0.055 -.0001425 .0137099

sage2 | -.0005598 .0525269 -0.01 0.991 -.1035577 .1024381

sage3 | .0553357  .1336906 0.41 0.679 -.2068131 .3174845

sage4 | -.1398205 .1547781 -0.90 0.366 -.4433189 .1636778

sage5 | .0932052 .1207685 0.77 0.440 -.1436051 .3300155

_cons | 4.527844 .1253021 36.14 0.000 4.282144 4.773544

testparm sage?

(1) sage2 =0 . .
(2 sage3 -0 Test of Imear'.tty. .
(3) saged =0 The hypothesis is rejected
(4) sage5 =0
F( 4, 2644) = 3.81
Prob > F = 0.0043

The relationship is not linear, but how does it look ?

21
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Flexible modelling of response curves - cubic splines

predict fit if e(sample)
predict fitsd if e(sample),stdp
generate low=fit-1.96*fitsd
generate hig=fit+1.96*fitsd
Tine fit Tow hig age

/// fit values

/// standard error
/// Tower ci-Timit
/// upper ci-Timit
/// plot

o /é
7

50
Age in Years
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Flexible modelling of response curves - cubic splines
Compare with the straight line model:

©
0

45

Age in Years
Although, there is 'statistical significant' non-linearity, it
has no practical implications- the straight line model is a
valid approximation.
23

Linear regression models for continuous and binary data: Note

Clustered data / data with several random components
120 measurements of FEV:
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Some variation in the data.
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Clustered data / data with several random components
But it is on only 30 persons:
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Some of the variation is due to variation between persons
and some within person.
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Clustered data / data with several random components

From 10 families:
o
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Some of the variation between persons is due to
variation between families and some within family.
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Clustered data / data with several random components
Structure of the data: FEVP
Family Person Day

Three sources of random variation:
Variation between families
Variation between persons (variation within family)

Variation between days (variation within person)

27

Clustered data / data with several random components

Factors of interest:

household Income Constant within family

Urbanization
Age
Sex

6Grass pollen

A model:

Constant within family
Constant within person; varies within family
Constant within person; varies within family

Constant within day: varies within person

Linear regression models for continuous and binary data: Note

FEV=0+p0 -1+, - U+p,-A+5,-S+5,-G
+random variation

28
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Clustered data / data with several random components Clustered data / data with several random components

FEVZﬂ()"'ﬁI'I+ﬁU'U+1BA'A+ﬁ5'S+;BG'G FEV=ﬁ0+,B,-I+ﬁU 'U+ﬁA'A+1Bs'S+ﬁ(;'G
+random variation +Ff +P. +E

f fod
If the three levels/sources of random variation are

variance

not taken into account : F, : Random family contribution o2

* The precision of 3, and /3, are highly overestimated Py, | + Random person contribution o’

+ The precision of 3, and f are overestimated Epq | ¢ Random day contribution o5’

+ The estimates of 5, and /3, will be biased if the not all P
families are represented by the same number of persons var(FEV;,,) =0} +0, + 0}
and each person is measured the same number of times. W

+ The estimates of 3, and S will be biased if not all persons Variance components
are measured the same number of times.

Assumed to be normal distributed

29
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Clustered data / data with several random components
Systematic part

knots:  a,,a,,...,q,
FEV =B+ p,- 1+, -U+pB,-A+ S-S+ ,-G

sage, = age
W+ P, +Ey,

Flexible modelling of response curves - cubic splines

3 3 a4 —aj
Random part sage;., = (age —a; )+ —(age-a,_,), “—a
kT %k
By, B, By Bis Bs and B, Quantify the systematic variation a —a
k-1 Jj
+(age—a,) —
o;.0p and o Quantify the random variation (age -a), a, —a,,
This is a:

*Variance component model
*Mixed model (both systematic and random variation)
‘Multilevel model

The theory behind and the understanding of such models is
well established!l!
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Linear regression models for continuous and binary data: Note
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