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Linear regression, collinerarity, splines and extensions 
Morten Frydenberg ©

Section of Biostatistics, Aarhus Univ, Denmark

General things for regression models:

Collinearity - correlated explanatory variables

Flexible modelling af response curves - Cubic splines

Normal regression models – an extension

Clustered data / data with several random components
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Collinearity

Consider a subsample of the serum cholesterol data set 
and the three models:

model 0: regress logscl sex sbp dbp
model 1: regress logscl sex     dbp
model 2: regress logscl sex sbp

-----------------------------------------------------
Variable |   model0       model1       model2    

-------------+---------------------------------------
sbp |  .00126448                  .0014988  sbp |  .00126448                  .0014988  sbp |  .00126448                  .0014988  sbp |  .00126448                  .0014988  

|  .00087992                  .0005548  |  .00087992                  .0005548  |  .00087992                  .0005548  |  .00087992                  .0005548  
|     0.1524                    0.0075  |     0.1524                    0.0075  |     0.1524                    0.0075  |     0.1524                    0.0075  

dbp |  .00056517    .00239702               dbp |  .00056517    .00239702               dbp |  .00056517    .00239702               dbp |  .00056517    .00239702               
|  .00164485     .0010424               |  .00164485     .0010424               |  .00164485     .0010424               |  .00164485     .0010424               
|     0.7315       0.0226|     0.7315       0.0226|     0.7315       0.0226|     0.7315       0.0226

sex |  .02080574    .02446746     .0197773  
|  .02636149    .02631111    .02613048  
|     0.4310       0.3536       0.4501  

_cons |  5.1444085    5.1555212    5.1615877  
|  .09912234    .09909537    .08539118  
|     0.0000       0.0000       0.0000  

-------------+---------------------------------------
N |        194          194          194  

-----------------------------------------------------
legend: b/se/plegend: b/se/plegend: b/se/plegend: b/se/p

Each BP-measure is 
statistical 
significant, when the 
other is removed!
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Collinearity

SBP and DBP are highly positively correlated, that will lead 
to highly negatively correlated estimates!!!

Plot01
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Collinearity

regress logscl sbp dbp sex 
vce,cor

|      sbp      dbp      sex    _cons
-------------+------------------------------------

sbp |   1.0000
dbp |  -0.7750   1.0000
sex |  -0.0967   0.1135   1.0000

_cons |  -0.0780  -0.5044  -0.4665   1.0000

This can be seen by listing the correlation between the 
estimates.
In Stata by the command: vce, cor

If two estimates are highly correlated, it indicates that it is 
very difficult to estimate the “independent effect” of the 
each of the two variables.

Often it is even nonsense to try to do it!

Often it is better to try to reformulate the problem.
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Collinearity

One way to work around the problem of collinearity is 
to ‘ortogonalize’ it:

Create two new variable:

one measures the blood pressure

and  another that measure the difference in 
systolic and diastolic blood pressure.

Some candidates:

(sbp+dbp)/2 and (sbp-dbp)

(sbp+dbp)/2 and (sbp/dbp)

ln(sbp*dbp)/2 and ln(sbp/dbp)

We will here consider the second pair.
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Collinearity

avebp=(sbp+dbp)/2 and bpratio=(sbp/dbp)

regress logscl avebp bpratio sex
vce,cor

|    avebp  bpratio      sex    _cons
-------------+------------------------------------

avebp |   1.0000
bpratio |  -0.2456   1.0000

sex |   0.0382  -0.1041   1.0000
_cons |  -0.4542  -0.6874  -0.2585   1.0000

Only weakly 
associated
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Collinearity

The serum cholesterol data set and the three models:

model 0: regress logscl sex avebp bpratio
model 1: regress logscl sex avebp
model 2: regress logscl sex       bpratio

-----------------------------------------------------
Variable |   model0       model1       model2    

-------------+---------------------------------------
avebp |  .00198973    .00206564               

|   .0007887    .00076285               
|     0.0125       0.0074               

bpratio |  .02769662                 .07148118  
|  .07067134                 .06946246  
|     0.6956                    0.3048  

sex |  .02060675    .02168128    .01806662  
|  .02632924      .026128    .02667689  
|     0.4348       0.4077       0.4991  

_cons |  5.1003417    5.1351912    5.2485724  
|  .12936418    .09374803    .11685799  
|     0.0000       0.0000       0.0000  

-------------+---------------------------------------
N |        194          194          194  

-----------------------------------------------------
legend: b/se/p

The ratio between 
SBP and DBP might 
not.

Blood pressure 
seems to play a role,
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Collinearity
Look out for it:

•systolic and diastolic blood pressure

•24 hour blood pressure and ‘clinical’ blood pressure

•weight and height

•age and parity

•age and time since menopause

•BMI and skinfold measure

•age , birth cohort and calendar time

•volume and concentration

•……

Remember you will need a huge amount of data to disentangle 
the effects of correlated explanatory variables
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Flexible modelling of response curves – cubic splines

. regress lnSBP b1.sex age45 lnBMI

Source |       SS           df MS      Number of obs =       200
-------------+---------------------------------- F(3, 196)       =     16.46

Model |   1.0557271         3  .351909033   Prob > F        =    0.0000
Residual |  4.18969054       196  .021375972   R-squared =    0.2013

-------------+---------------------------------- Adj R-squared =    0.1890
Total |  5.24541764       199  .026358883   Root MSE        =    .14621

------------------------------------------------------------------------------
lnSBP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
sex |
Men  |          0  (base)

Women |   .0036329   .0208905     0.17   0.862    -.0375662    .0448319
|

age45 |   .0065384   .0012844     5.09   0.000     .0040053    .0090715
lnBMI |     .25834   .0758295     3.41   0.001     .1087935    .4078864
_cons |   4.025028   .2449553    16.43   0.000     3.541941    4.508114

------------------------------------------------------------------------------

. cisd

SD(error): .14620524
95% CI: ( .13305319 ; .16226524 ) 
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Flexible modelling of response curves – cubic splines

11

Flexible modelling of response curves – cubic splines
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Flexible modelling of response curves – cubic splines
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Flexible modelling of response curves – cubic splines

mkspline sbmi=bmi, cubic nknots(4) display

|     knot1      knot2      knot3      knot4 
-------------+--------------------------------------------

bmi |     19.91       23.4         26      31.37 

We want to model the relationship between SBP and bmi
more flexible.

There are several ways to do this, including fractional 
polynomial, splines and cubic splines.

We will here look at restricted cubic splines as they are 
implemented in Stata.

If one want to use the restricted cubic splines you start 
by generating a set of new independent variables:
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Flexible modelling of response curves – cubic splines

The mkspline command will generate 3 new variables 
named sbmi1 to sbmi3, which are functions of bmi.

Where bmi.
sbmi2=0 if bmi<19.9

sbmi3=0 if bmi<23.4
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Flexible modelling of response curves – how to

mkspline sbmi=bmi,cubic nknots(4) display
|     knot1      knot2      knot3      knot4 

-------------+--------------------------------------------
bmi |     19.91       23.4         26      31.37 

. regress lnSBP b1.sex age45 sbmi*
------------------------------------------------------------------------------

lnSBP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

sex |
Men  |          0  (base)

Women |   .0109297   .0212642     0.51   0.608     -.031009    .0528685
|

age45 |   .0066376   .0012758     5.20   0.000     .0041214    .0091537
sbmi1 |  -.0108155   .0141345    -0.77   0.445    -.0386926    .0170615
sbmi2 |   .1046104   .0517492     2.02   0.045      .002547    .2066737
sbmi3 |  -.3405112   .1557292    -2.19   0.030    -.6476507   -.0333716
_cons |   5.027883   .3041192    16.53   0.000     4.428078    5.627687

------------------------------------------------------------------------------
. * test for straight line
. testparm sbmi2 sbmi3 

( 1)  sbmi2 = 0
( 2)  sbmi3 = 0

F(  2,   194) =    2.92
Prob > F =    0.0563
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Flexible modelling of response curves – cubic splines
*preparing for plot
quietly:levelsof bmi, local(levels)

quietly:xblc sbmi*, covname(bmi) at(`r(levels)') reference(25) ///
generate(bmicat fbmi4 fbmi4_low fbmi4_high)

*plotting
label var fbmi4 "4 knots"
line fbmi4 fbmi4_low fbmi4_high bmicat ///

,lco(blue red red) lpa( 1...)  ylab(-.2(.1).2) name(knots4,replace)



Morten Frydenberg Version date:10 November 2016

Linear regression models for continuous and binary data: Note 
3 5

17

Flexible modelling of response curves – cubic splines
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Flexible modelling of response curves – cubic splines
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Flexible modelling of response curves – cubic splines
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Flexible modelling of response curves – cubic splines
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Log SBP against age for 2650 women with fitted straight line.
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Flexible modelling of response curves – cubic splines
drop sage1
regress lsbp age sage? 
------------------------------------------------------------------------------

lsbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

age |   .0067837   .0035322     1.92   0.055    -.0001425    .0137099
sage2 |  -.0005598   .0525269    -0.01   0.991    -.1035577    .1024381
sage3 |   .0553357   .1336906     0.41   0.679    -.2068131    .3174845
sage4 |  -.1398205   .1547781    -0.90   0.366    -.4433189    .1636778
sage5 |   .0932052   .1207685     0.77   0.440    -.1436051    .3300155
_cons |   4.527844   .1253021    36.14   0.000     4.282144    4.773544

------------------------------------------------------------------------------
testparm sage?
( 1)  sage2 = 0
( 2)  sage3 = 0
( 3)  sage4 = 0
( 4)  sage5 = 0

F(  4,  2644) =    3.81
Prob > F =    0.0043

Test of linearity 
The hypothesis is rejected

The relationship is not linear, but how does it look ?
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Flexible modelling of response curves – cubic splines
predict fit if e(sample) /// fit values
predict fitsd if e(sample),stdp            /// standard error
generate low=fit-1.96*fitsd /// lower ci-limit
generate hig=fit+1.96*fitsd /// upper ci-limit
line fit low hig  age                      /// plot
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Flexible modelling of response curves – cubic splines

4
.5

5
5

.5

30 40 50 60 70
Age in Years

Compare with the straight line model:

Although, there is  ‘statistical significant’ non-linearity, it 
has no practical implications- the straight line model is a 
valid approximation.
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120 measurements of FEV:

Some variation in the data.

Clustered data / data with several random components

Plot02
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But it is on only 30 persons:

Some of the variation is due to variation between persons
and some within person.

Person no 2

Person no 1

Clustered data / data with several random components

Plot03
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From 10 families:

Some of the variation between persons is due to 
variation between families and some within family.

Family no 1

Family no 4

Clustered data / data with several random components
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Structure of the data:
fpdFEV

Family Person Day

Three sources of random variation:

Variation between families

Variation between persons (variation within family)

Variation between days (variation within person)

Clustered data / data with several random components

28

household Income

Urbanization

Age

Sex

Grass pollen

Constant within family

Constant within family

Constant within person; varies within family

Constant within person; varies within family 

Constant within day; varies within person

Factors of interest:

0

random variation

I U A S GFEV I U A S Gβ β β β β β= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+

Clustered data / data with several random components

A model:
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If the three levels/sources of random variation are 
not taken into account :

• The precision of βΙ and  βU are highly overestimated

• The precision of βΑ and  βS are overestimated

• The estimates of βΙ and  βU will be biased if the not all 
families are represented by the same number of persons
and each person is measured the same number of times.

• The estimates of βΑ and  βS will be biased if not all persons 
are measured the same number of times.

0

random variation

I U A S GFEV I U A S Gβ β β β β β= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+

Clustered data / data with several random components
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Ff :  Random family contribution

Pfp :  Random person contribution

Efpd :  Random day contribution

variance

σF
2

σP
2

σE
2

( ) 2 2 2
var fpd F P EFEV σ σ σ= + +

Variance components

Assumed to be normal distributed

0 I U A S G

f fp fpd

FEV I U A

F P E

S Gβ β β β β β= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+ + +

Clustered data / data with several random components
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2 2 2
,F P Eσ σ σ and 

Systematic part

Random part

0 , , , ,I U A S Gβ β β β β β and Quantify the systematic variation

Quantify the random variation 

This is a:

•Variance component model

•Mixed model (both systematic and random variation)

•Multilevel model 

The theory behind and the understanding of such models is 
well established!!!

0 I U A S G

f fp fpd

FEV I U A

F P E

S Gβ β β β β β= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+ + +

Clustered data / data with several random components
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Flexible modelling of response curves – cubic splines
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