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The simple linear regression model only models how the 

dependent variable, y, depend on one independent variable 

(covariate) , x1.

We are often interested in how several independent variables, 

x1 , x2 ,…, xk , influence the dependent variable , y.

Sometimes we want to adjust the influence of some of the 
information, such as age and sex, before we look at the 
‘effect’ of other variables.

Why do we need a multiple regression
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We will here start by considering a random subsample 
consisting of 200 persons from the Frammingham study with 
focus on the baseline characteristics:
A multiple linear regression  model:

A multiple linear regression model

Where the errors, E, are assumed to be independent and

normal with mean zero and standard deviation σ . 

Note, that the variable woman is a indicator variable, that 
it is 

one if the person is a woman
and 

zero if the person  is a man. 

( ) ( )0 1 2 3ln lnsbp age woman bmi Eβ β β β= + ⋅ + ⋅ + ⋅ +
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The first coefficient (the constant term) is the expected

ln(sbp) for 

a man (that is ok!)

age=0 ??????

bmi=1 kg/m2   ?????? ( ln(1)=0 ).

As in the simple linear regression this is not of any interest.

But again we can control the interpretation, by choosing  

relevant reference values for age and bmi.  E.g.

Interpretation of the coefficients 0 – the constant

( ) ( )0 1 2 3ln lnsbp age woman bmi Eβ β β β= + ⋅ + ⋅ + ⋅ +

( ) ( )0 1 2 345
2

ln
5

ln
bmi

sbp age woman Eα β β β
 

= + ⋅ − + ⋅ + ⋅ + 
 

age45 lnBMI25
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The expected ln(sbp) for a man with bmi=27 kg/m2 is:

Interpretation of the coefficients 1

The difference is: 1.7β1

We see that this difference 

•does not depend on the age of the first man.

•does not depend on the bmi as long as it is the same for the 
two men.

•would be the same if the two persons were women.

( )0 1 3 27lnageβ β β+ ⋅ + ⋅

The expected ln(sbp) for another man with the same bmi, but 

1.7 year older: ( ) ( )0 1 31.7 7l 2nageβ β β+ ⋅ + + ⋅

( ) ( )0 1 2 3ln lnsbp age woman bmi Eβ β β β= + ⋅ + ⋅ + ⋅ +
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The expected ln(sbp) for a 50 year old man with bmi=27
kg/m2 is:

The difference is: β2

We see that this difference 

•does not depend on the age as long as it is the same for the 
two persons.

•does not depend on the bmi as long as it is the same for the 
two persons.

( )0 1 2 35 2l0 n 7β β β β+ ⋅ + + ⋅

The expected ln(sbp) for woman with the same age and  bmi

( )0 1 350 7l 2nβ β β+ ⋅ + ⋅

Interpretation of the coefficients 2

( ) ( )0 1 2 3ln lnsbp age woman bmi Eβ β β β= + ⋅ + ⋅ + ⋅ +
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The expected ln(sbp) for a woman who is 50 year old:

We see that this difference 

•does not depend on the bmi of the first woman.

•does not depend on the age as long as it is the same for the 
two women.

•would be the same if the two persons were men.

( )0 1 2 350 ln bmiβ β β β+ ⋅ + + ⋅

The expected ln(sbp) for another woman with the same age, 

but with a bmi which is 10% higher:

( ) ( ) ( )3 31.1 1.1ln ln lnbmi bmiβ β ⋅ ⋅ − = ⋅ The difference

Interpretation of the coefficients 3

( )0 1 2 3 1.50 1ln bmiβ β β β+ ⋅ + + ⋅ ⋅

( ) ( )0 1 2 3ln lnsbp age woman bmi Eβ β β β= + ⋅ + ⋅ + ⋅ +
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As the bmi is introduced on the log-scale, then “differences “ 
of this variable is measured relatively.

So comparing a pair of persons who only differ in bmi .

One having bmi=25 kg/m2 and the other bmi=27 kg/m2 .

Then the expected difference in ln(sbp) is:

( ) ( ) ( )3 31.1 1.1ln ln lnbmi bmiβ β ⋅ ⋅ − = ⋅ 

Interpretation of the coefficients 4

3 3

27
0.077

25
lnβ β
 

⋅ = ⋅ 
 If the bmi’s were 21 kg/m2 and 

23 kg/m2 , then the expected 

difference in ln(sbp) would be:
3 3

23
0.091

21
lnβ β
 

⋅ = ⋅ 
 

( ) ( )0 1 2 3ln lnsbp age woman bmi Eβ β β β= + ⋅ + ⋅ + ⋅ +
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That is a non-linear model on the sbp scale! 

The error is multiplicative.

As medians are preserved by the exponential transformation 
then the estimates are measuring the effects on the median
sbp.

An example: The age and bmi adjusted median sbp is a factor 

γ2 higher for women compared to men.

Interpretation of the coefficients 5

( ) ( )0 1 2 3ln lnsbp age woman bmi Eβ β β β= + ⋅ + ⋅ + ⋅ +

Taking the expone
ntial we get:

( )3

0 1 2 expage womansbp bmi E
βγ γ γ= ⋅ ⋅ ⋅ ⋅

( ) ( ) ( )0 0 1 1 2 2exp , exp expwhere and  γ β γ β γ β= = =
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( )2

1

0 0,
k

p p

p

NY x E Eβ β σ
=

= + ⋅ +∑ ∼

Y the dependent variable

(x1 , x2 ,…,xk) the independent variables.

2. The unexplained random deviations are independent. 

3. The unexplained random deviations have the same 
distributions.

4. This distribution is normal.

The multiple linear regression in general

This model is based on the assumptions:

1. The expected value of Y is 
1

0 p

k

p

p

xβ β
=

+ ⋅∑
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The multiple linear regression in general

We see that the assumptions fall in two parts:

The first concerning the systematic part  

and the three other which focus on the error, the unexplained 
random variation.

Before we turn to how one can check some of the assumptions, 
we will take a closer look at the first assumption.

1

0 p

k

p

p

xβ β
=

+ ⋅∑The expected value of Y is 

( )2

1

0 0,
k

p p

p

NY x E Eβ β σ
=

= + ⋅ +∑ ∼
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This is based on three (sub) assumptions:

a.Additivity: The contribution from each of the independent 
variables are added.

b.Proportionality: The contribution from a independent 

variable is proportional to its value (with a factor β )

c.No effectmodification: The contribution from one 
independent variables is the same whatever the values are 
for the other.

The assumption of linearity

The expected value of Y is 
1

0 p

k

p

p

xβ β
=

+ ⋅∑
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If one consider two persons who differ with

∆x1 in x1 , ∆x2 in x2 … and ∆xk in xk 

then the difference in the expected value of Y is :

The assumption of linearity

The expected value of Y is 
1

0 p

k

p

p

xβ β
=

+ ⋅∑

1

p

k

p

p
xβ

=

⋅ ∆∑

Again we see that the contribution for each of the 
explanatory variables: 

are added, 
are proportional to the difference 
and does not dependent of the differences in the other
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It is almost impossible to find the estimates by hand, but easy 
if you use a computer.

In Stata:   regress lnSBP age45 woman lnBMI25

(Note first we have to generate lnSBP, age45, woman and
lnBMI25)

Estimation

Source |       SS       df       MS             Number of obs =     200

---------+------------------------------ F(  3,   196) =   16.46
Model |  1.05572698     3  .351908994          Prob > F      =  0.0000

Residual |  4.18969066   196  .021375973          R-squared     =  0.2013
---------+------------------------------ Adj R-squared =  0.1890

Total |  5.24541764   199  .026358883          Root MSE      =  .14621
-------------------------------------------------------------------------
lnSBP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

--------+----------------------------------------------------------------
woman |   .0036329   .0208905     0.17   0.862    -.0375662    .0448319
age45 |   .0065384   .0012844     5.09   0.000     .0040053    .0090715

lnBMI25 |   .2583399   .0758295     3.41   0.001     .1087934    .4078864
_cons |   4.856592   .0154266   314.82   0.000     4.826169    4.887016

-------------------------------------------------------------------------
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The last part of the output:

Estimation

Root MSE      =  .14621

-------------------------------------------------------------------------
lnSBP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

--------+----------------------------------------------------------------
woman |   .0036329   .0208905     0.17   0.862    -.0375662    .0448319
age45 |   .0065384   .0012844     5.09   0.000     .0040053    .0090715

lnBMI25 |   .2583399   .0758295     3.41   0.001     .1087934    .4078864
_cons |   4.856592   .0154266   314.82   0.000     4.826169    4.887016

-------------------------------------------------------------------------

σ̂

ˆ 'the sβ The CI ’sthe se’s

Test for β2 =0

The hypothesis: “no difference in  ln(sbp) between men and 
women adjusted for age and bmi”

No CI for σ !
It should be calculated “by hand”

16

Estimated systematic part
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= + ⋅ − + ⋅ + ⋅  
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Stata special – plotting response curves

After a regression commando, Stata leaves several 
information in the memory of the computer for later use.

You can get a list by writing “ereturn list “.
We have already used this feature in the calculation of the 
confidence interval for σ. 

Another example:

. display %12.7f _b[woman] %12.7f _se[woman]   
0.0036329   0.0208905

regress lnSBP age45 woman lnBMI25
-----------------------------------------------------------------------
lnSBP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

--------+----------------------------------------------------------------
woman |   .0036329   .0208905.0036329   .0208905.0036329   .0208905.0036329   .0208905 0.17   0.862    -.0375662    .0448319
age45 |   .0065384   .0012844     5.09   0.000     .0040053    .0090715

lnBMI25 |   .2583399   .0758295     3.41   0.001     .1087934    .4078864
_cons |   4.856592   .0154266   314.82   0.000     4.826169    4.887016

-------------------------------------------------------------------------

18

I have made a Stata command that extracts the estimated 
equations and the coefficients for later use.
The command file 

regeq.ado
and the small help file 

regeq.sthlp
should be place in your ado folder typically

c:\ado\personal.

You can run the regeq command after any linear or logistic 
regression estimation. 
Here you get the output :
estimated equation
4.85659  +0.003632 * woman  +0.006538 * age45 +0.25834* lnBMI25 
equation
b0 + b1 * woman + b2 * age45 + b3 * lnBMI25 

That is, the estimated equation and the formula.

Stata special – plotting “response” curves

19

Stata special – plotting “response” curves

Furthermore the estimated coefficients are stored as “ 
global macros”:

. macro list
b0:             4.856592269392944b0:             4.856592269392944b0:             4.856592269392944b0:             4.856592269392944
b3:             .2583398993331004b3:             .2583398993331004b3:             .2583398993331004b3:             .2583398993331004
b2:             .0065383788673611b2:             .0065383788673611b2:             .0065383788673611b2:             .0065383788673611
b1:             .0036328605876014b1:             .0036328605876014b1:             .0036328605876014b1:             .0036328605876014

S_E_depv:       lnSBP
S_E_cmd:        regress
.....

The global macros b0 to b3 contains the coefficients 
and can be used in calculations.
If you want to use the estimated coefficient to age45, 
then you just write $b2.

20

display $b0+$b1*0+$b2*(30-45) +$b3*ln(27/25)
4.7783987

Stata special – plotting “response” curves

You could also get this (with CI) using the lincom command:

display ln(27/25)

.07696104

. lincom -15*age45 + .07696104*lnBMI25+_cons

( 1) - 15 age45 + .076961 lnBMI25 + _cons = 0

------------------------------------------------------------------------------
lnSBP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) |   4.778399   .0266891   179.04   0.000     4.725764    4.831033

------------------------------------------------------------------------------

The expected log(SBP) for a 30 year old man with BMI=27
remember: Y= b0 + b1 * woman + b2 * age45 + b3 * lnBMI25 
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We can plot this by using the plot function in Stata:
twoway                                                                    ///

( function Y=$$$$b0 + $$$$b1 * 0 +$$$$b2 * (30-45) + $$$$b3 * ln(xxxx/25), range(bmi) ) ///
, legend(off) ytit("expected ln(SBP)") xtit("BMI") xlab( 15(5)40) 

Remember: Y = b0+ b1 * woman + b2 * age45 + b3 * lnBMI25 

The expected log(SBP) for a 30 year old man as a function 
of the BMI is given as:

Y = b0 + b1 *0 +b2 * (30-45) + b3 * ln(BMI/25) 
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Stata special – plotting response curves

twoway                                                                       ///

( function Y=$b0 + $b1 * 0 + $b2 * (30-45) + $b3 * ln(x/25)                   ///
, range(bmi) lco(blue) ) ///

( function Y=$b0 + $b1 * 1111 + $b2 * (50505050-45) + $b3 * ln(x/25)                   ///
, range(bmi) lco(red)  ) ///

,  ytit("expected ln(SBP)") xtit("BMI") xlab( 15(5)40)                        ///
legend(label(1 "30 year old man") label(2 "50 year old woman"))

The expected log(SBP) for a 30 year old man and a 50 year 
old woman as a function of the BMI is given as:
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Confidence intervals 

Just like in the simple regression we get : 

(except we have n-k-1 degrees of freedom).

Exact 95% confidence intervals , CI’s, for βp is found from 
the estimates and standard errors

( )0.975

1: sˆ e ˆ95%
p p pn k

tβ β β− −± ⋅CI f  or 

These confidence intervals are found in the output.

A confidence interval for σ can be found by cisd

Note that if n-k-1 is large then this percentile is close to 

1.96 and one can use the approximate confidence intervals:

( )95% 1.9: seˆ 6 ˆ
p p p

β β β± ⋅  Approx. CI for

Where          is the upper 97.5 percentile in the t-

distribution n-k-1 degrees of freedom.

0.975

1n kt − −
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The first part of the output:

The ANOVA table and the F-test

Source |       SS       df       MS             Number of obs =     200

---------+------------------------------ F(  3,   196) =   16.46
Model |  1.05572698     3  .351908994          Prob > F      =  0.0000

Residual |  4.18969066   196  .021375973          R-squared     =  0.2013
---------+------------------------------ Adj R-squared =  0.1890

Total |  5.24541764   199  .026358883          Root MSE      =  .14621

An analysis of variance table dividing the variation in y in 
two components: explained by the model (i.e. the 3
variables) and the residual (the rest)

A F-test testing the hypothesis: “all βs (except β0 ) is zero.”

Here the test is highly significant: The model explains a 

statistically significant part of the variation in y!



Morten Frydenberg Version date:06/11/2016

Linear regression models for continuous and binary data: Note 2.1 7

25

The F- test calculated as:

The F-test and R-squared 

Source |       SS       df MS             Number of obs =     200

---------+------------------------------ F(  3,   196) =   16.46
Model |  1.05572698     3  .351908994          Prob > F      =  0.0000

Residual |  4.18969066   196  .021375973          R-squared     =  0.2013
---------+------------------------------ Adj R-squared =  0.1890

Total |  5.24541764   199  .026358883          Root MSE      =  .14621

And under the hypothesis it follows an F-distribution 

with 3 and 196 degrees of freedom.

0.35519
16.46

0.02138
F = =

The RRRR----squaredsquaredsquaredsquared is the amount of the total variation explained 

by the model(=1.0557/5.2454).

As this will increase, if we include more variables in the model, 

one can look at the adjusted adjusted adjusted adjusted RRRR----squared =squared =squared =squared =(0.02636-

0.02138 )/0.02636
26

As in the simple linear regression one can find predicted
values, residuals, leverages and standardized residuals:

Predicted values, residuals and leverages
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a complicated formula

Predicted value

Residual

Leverage

Standardized-Residual

( )2

1

0 0,
k

p p

p

NY x E Eβ β σ
=

= + ⋅ +∑ ∼
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Although the formula for the leverage is complicated, the 
interpretation of leverage is the same:

A high leverage indicates that the data point has extreme
values of the explanatory variables and hence a high influence
on the estimates.

Leverage

28

As the model is much more complicated than the simple linear 
regression checking the model is also complicated

Again assumption no. 2: the errors should be independent, is 
mainly checked by considering how the data was collected.

The distribution of the error is checked by the same type of 
plot as for the simple linear regression.

•Plots of residuals versus fitted

•Plots of residuals versus each of the explanatory variables.

•Histogram and QQ-plot of the residuals.

Checking the model 1:
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rvfrvfrvfrvfplot         ,name(p1,replace)
rvprvprvprvpplot age45   ,name(p2,replace)
rvprvprvprvpplot lnBMI25 ,name(p3,replace)
rvprvprvprvpplot woman   ,name(p4,replace)
graph combine p1 p2 p3 p4

residual versus fitted
residual versus predictor

Plot02

Not informative se next page
30

sd=0.131       sd=0.157

predict res if e(sample),res
qplot res, over(sex) ///

trscale(invnorm(@)) mco(blue red) msy(x Oh)    name(p3,replace)
graph box res        , over(sex)                      name(p4,replace)
graph combine p3 p4,col(1) 
by woman: sum res

Plot03

???

Diagnostic plots for categorical variables – here woman (sex)
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xtile age6=age,nq(6)
graph box res,over(age6)          name(p1,replace) 
dotplot res,over(age6) yline(0) name(p2,replace) 
graph combine p1 p2 ,col(1)
graph export Reg2_1_plot04.wmf, replace

Plot04

Diagnostic plots for continuous variables – dividing into groups

32

Plot05

Identifying special points

1017, 2337, 2187 have relative large residuals
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Assumption no. 2: the errors should be independent, is mainly 
checked by considering how the data was collected.

The assumption is violated if 

•some of the persons are relatives (and some are not) and the 
dependent variable have some genetic component.

•some of the persons were measured using one instrument and 
others with another.

•in general if the persons were sampled in clusters.

Checking the model 2: Independent errors ?

34

One should also try to check the validity of the linearity 
assumption that is the assumption of additivity, 
proportionality and no effect modification (no interaction).

It can be done by:

1. Introducing the explanatory variable in a different scale, 

e.g. adding age2 or log(age) ….

2. Introducing the explanatory variable as a categorical 

variable instead e.g. use age divided into agegroups instead 
as age in years.

3. Introducing interactions between some of the eplanatory 
variables.

4. ….

Checking the model 3: Extending the model


