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Multiple linear regression 1 Why do we need a multiple regression
Morten Frydenberg ©
Section of Biostatistics, Aarhus Univ, Denmark The simple linear regression model only models how the

dependent variable, y, depend on one independent variable

Why do we need multiple linear regression. )
(covariate) , x;.

An example ] ) ) )
Interpretation of the parameters We are often interested in how several independent variables,

The general model X[, Xy .., X, influence the dependent variable , y.

The assumptions. Sometimes we want to adjust the influence of some of the
The parameters. information, such as age and sex, before we look at the
Estimation. ‘effect’ of other variables.

The distribution of the estimates
Confidence intervals
The F-test , R-squared

Checking the model
Fitted values, residuals and leverage
Extending the model

A multiple linear regression model Interpretation of the coefficients O - the constant
We will here start by considering a random subsample In(sbp) B, -age+ f, - woman+ f,-In(bmi) + E
consisting of 200 persons from the Frammingham study with The first coefficient (the constant term) is the expected
focus on the baseline characteristics: In(sbp) for
A multiple linear regression model: .
a man (that is ok!)
In(sbp) = f3, + f3,-age + [, - woman + [3, - In(bmi) + E age=0 222272
Where the errors, E, are assumed to be independent and bmi=1 kg/m? 222772 (In(1)=0).
normal with mean zero and standard deviation o. As in the simple linear regression this is not of any interest.
Note, that the variable woman is a indicator variable, that But again we can control the interpretation, by choosing
it is relevant reference values for age and bmi. E.g. i
and one  if the person is a woman In(sbp) = e, + f3, - (age —45) + f3, - woman + f3, -ln(£]+ E
zero if the person is a man. -lnBMIZS
3 4
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Interpretation of the coefficients 1
In(sbp) = f3, age+ f3, - woman+ f3,-In(bmi)+ E
The expected In(sbp) for a man with bmi=27 kg/m? is:
B, + B, -age+ [, -In(27)
The expected In(sbp) for another man with the same bmi, but
1.7 year older':ﬁ0 + B -(age+1.7)+ A, -In(27)
The differenceis: 1.753,
We see that this difference

-does not depend on the age of the first man.

-does not depend on the bmi as long as it is the same for the
two men.

‘would be the same if the two persons were women.
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Interpretation of the coefficients 2
In(sbp) = f, + B, - age woman + f3, - In(bmi)+ E
The expected In(sbp) for a 50 year old man with bmi=27
kg/m? is: B,+ B, -50 +4, -1In(27)
The expected In(sbp) for woman with the same age and bmi
B,+ 0, -50+ B,  +p,-In(27)
The difference is: f3,
We see that this difference

-does not depend on the age as long as it is the same for the
two persons.

-does not depend on the bmi as long as it is the same for the
two persons.

Interpretation of the coefficients 3
In(sbp) = f3, + f, - age + B, - woman In(bmi)+E
The expected In(sbp) for a woman who is 50 year old:
B+ B, -50 + S, + 3, - In(bmi)
The expected In(sbp) for another woman with the same age,
but with a bmi which is 10% higher:

B+ B,-50 +ﬂz+ﬁ3~ln(l.l~bmi)
The difference  f3, -[ln(l.l-bmi)—ln(bmi)] =/, -In(1.1)
We see that this difference

-does not depend on the bmi of the first woman.

-does not depend on the age as long as it is the same for the
two women.

‘would be the same if the two persons were men.

Linear regression models for continuous and binary data: Note 2.1

Interpretation of the coefficients 4

In(sbp)=f,+ f3 -age+ﬁ2-womanln(bmi)+E
B, -[n(1.1-bmi)—1n(bmi) | = B, -In(1.1)

As the bmi is introduced on the log-scale, then “differences "
of this variable is measured relatively.

So comparing a pair of persons who only differ in bmi .
One having bmi=25 kg/m? and the other bmi=27 kg/m? .

Then the expected difference in In(sbp) is:
27

If the bmi's were 21 kg/m? and
23 kg/m? , then the expected 23
difference in In(sbp) would be: B, oln(aj = £,-0.091

8
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Interpretation of the coefficients 5 The multiple linear regression in general
In(sbp)|= B, + B, - age + B, - woman + [3, - In(bmi) + E Y the dependent variable
quing the expone (X, X5 5000 the independent variables.
ntial we get: wge . woman .
sbp =¥, - 1%, - bmi” -exp(E) .
where y, =exp(/4,). 7 =exp(/,) and 7, =exp(/3,) Y=4+> 8, x,+E E~ N(0,0'z)
p=1
That is a non-linear model on the sbp scalel This model is based on the assumptions:
. T . k
The error is multiplicative. 1. The expected value of Yis /5, +> /3 -x,
As medians are preserved by the exponential transformation p=l
then the estimates are measuring the effects on the median 2. The unexplained random deviations are independent.
sbp- 3. The unexplained random deviations have the same
An example: The age and bmi adjusted median sbp is a factor distributions.
%5 higher for women compared o men. 4. This distribution is normal.
9 10
The multiple linear regression in general The assumption of linearity
k
k .
Y =5, +Zﬁp x,+E E~ N(O,O'Z) The expected value of Yis /3 +Zl,3,, "X,
=
p=1

i i : - .
We see that the assumptions fall in two parts This is based on three (sub) assumptions:

The first concerning the systematic part a. Additivity: The contribution from each of the independent

and the three other which focus on the error, the unexplained variables are added.

random variation. b.Proportionality: The contribution from a independent

Before we turn to how one can check some of the assumptions, variable is proportional to its value (with a factor /)

we will ake a closer look at the first assumption. . o
c. No effectmodification: The contribution from one

r independent variables is the same whatever the values are
The expected value of Yis /3 + Z X, for the other.

p=1

1 12
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The assumption of linearity Estimation
k

It is almost impossible to find the estimates by hand, but easy

The expected value of Yis S, + 2./, x, ]
= if you use a computer.

If one consider two persons who differ with In Stata: regress 1nSBP age45 woman 1nBMI2S5

Ax, inx,, Ax, in x, .. and Ax, in x, (Note first we have to generate 1TnSBP, age45, woman and

1nBMI25)
then the difference in the expected value of Yis : source | ss df Ms Number of obs = 200
--------- b FC 3, 196) = 16.46
k Model | 1.05572698 3 .351908994 Prob > F = 0.0000
Zﬂ) . A}C) Residual | 4.18969066 196 .021375973 R-squared = 0.2013
- F L [ [ o Adj R-squared = 0.1890
P= Total | 5.24541764 199 .026358883 Root MSE = .14621
Again we see ’rhg‘r the contribution for each of the S P — R [95% Conf. ntervall
explanatory variables: [ | o D
woman | .0036329 .0208905 0.17 0.862 -.0375662 .0448319
are added, . . age45 | .0065384 .0012844 5.09 0.000 .0040053 .0090715
are proportional to the difference TnBMI25 |  .2583399  .0758295 3.41  0.001 .1087934 4078864
and does not dependent of the differences in the other _coons 1 4BSe%0nsaaee iz 0.000 | H.Sene9 | 4.88TOIS
13 14
Estimation Estimated systematic part
The last part of the output:|No CI for o bmi
P P L should be calculated “by hand" In(sbp) = 4.8566 +0.0065- (age —45) +0.0036 - woman + 02583 In| 7
o "1 protor 1
| Root mse = .14621]
TnsBpP | coef. std. Err t P>|t| [95% conf. Interval] 5 5
——————— + ettt 7
woman | .0036329 .0208905 0.862 -.0375662 .0448319 _ / .
age45 | .0065384 .0012844 . . .0040053 .0090715 & 49 AGE / & 49 B
TnBMI25 | .2583399 .0758295 3.41 \0.001 .1087934 .4078864 % 60 A i N MI /
_cons | 4.856592 .0154266 314.82 0.000 4.826169 4.887016 3 55 7 é 3 ;6
77777777777777777 A 777777777‘7777777777 77777777777777777777777‘7777777 ‘é" 4.8 50 § 4.8
the f's  these's The CI's ° | 45 // w
40 25 A
471 35 471 20
Test for 5, =0 30
The hypothesis: "no difference in In(sbp) between men and vl ol 19

T T T T T T
25 30 35 40 45 50 55 60

N
&
IS
S

T
15 20 25 30
|

women adjusted for age and bmi" M Age
age=45 bmi=25 age=50 bmi=35

Linear regression models for continuous and binary data: Note 2.1 4
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Stata special - plotting response curves
regress 1nSBP age45 woman 1nBMI25

TnsBP | Coef std. Err t P>|t]| [95% conf. Interval]
________ S
woman | .0036329  .0208905 0.17 0.862 -.0375662 .0448319
age4s | .0065384  .0012844 5.09 0.000 .0040053 .0090715
nBMI2S | .2583399  .0758295 3.41 0.001 .1087934 .4078864
_cons | 4.856592 .0154266  314.82 0.000 4.826169 4.887016

After a regression commando, Stata leaves several
information in the memory of the computer for later use.

You can get a list by writing "ereturn Tist".
We have already used this feature in the calculation of the

confidence interval for o.
Another example:

. display %12.7f _b[woman] %12.7f _se[woman]
0.0036329 0.0208905

17

Stata special - plotting “response” curves

I have made a Stata command that extracts the estimated
equations and the coefficients for later use.
The command file
regeq.ado
and the small help file
regeq.sthlp
should be place in your ado folder typically
c:\ado\personal.

You can run the regeq command after any linear or logistic
regression estimation.
Here you get the output :

estimated equation

4.85659 +0.003632 * woman +0.006538 * age45 +0.25834* TnBMI25
equation

b0 + bl * woman + b2 * age45 + b3 * 1nBMI25

That is, the estimated equation and the formula.

Stata special - plotting “"response” curves

Furthermore the estimated coefficients are stored as "
global macros":

. macro list

bO: 4.856592269392944
b3: .2583398993331004
b2: .0065383788673611
bl: .0036328605876014
S_E_depv: TnsBpP

S_E_cmd: regress

The global macros b0 to b3 contains the coefficients
and can be used in calculations.

If you want to use the estimated coefficient to age45,
thenyou just write $b2.

19

Stata special - plotting “response” curves
The expected log(SBP) for a 30 year old man with BMI=27

remember: vy= b0 + bl * woman + b2 * age45 + b3 * TnBMI2S

display $b0+$b1*0+$b2*(30-45) +$b3*1n(27/25)
4.7783987

You could also get this (with CT) using the lincom command:

display 1n(27/25)
.07696104

. Tincom -15%*age45 + .07696104*1nBMI25+_cons

(1) - 15 age45 + .076961 TnBMI25 + _cons = 0

20
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Remember: v = b0+ bl * woman + b2 * age45 + b3 * TnBMI25 Stata specual - pIOTT'ng response curves
The expected log(SBP) for a 30 year old man as a function The expected log(SBP) for a 30 year old man and a 50 year

of the BMI is given as: old woman as a function of the BMI is given as:
Y = b0 + bl #0 +b2 * (30-45) + b3 * Tn(BMI/25) twoway , , 7/
( function Y=$b0 + $b1l * 0 + $b2 * (30-45) + $b3 * In(x/25) ///
. . . . . , range(bmi) lco(blue) ) ///
We can plot this by using the plot function in Stata: ( function Y=38b0 + Sb1 * 1 + $b2 * (50-45) + $b3 * Tn(x/25) 71/
twoway /// . . . . , range(bmi) Tco(red) ) ///
( function Y=$b0 + $bl * 0 +$b2 * (30-45) + $b3 * In(x/25), range(bmi) ) /// »ytit( ex"“te.‘f In(sBP)") Xt1t.(, BML") x'IaE( 15(5)40) " 4

, Tegend(off) ytit("expected Tn(SBP)™) xtit("BMI™) x1ab( 15(5)40) Tegend(label(1 "30 year old man") Tabel(2 "50 year old woman™))

o
4.9

497

4.8

expected In(SBP)
expected In(SBP)

. —— 30 year old man

—== 50 year old woman

15 20 25 o 30 35 40 1‘5 20 25 i 30 35 40
21 22
Confidence intervals The ANOVA table and the F-test
Just like in the simple regression we get : The first part of the output:
(except we have n-k-1 degrees of freedom). An analysis of variance table dividing the variation in y in
Exact 95% confidence intervals , CT's, for /3, is found from two components: explained by the model (i.e. the 3
the estimates and standard errors variables) and the residual (the rest)
95% CI for j8,: 3, +10°7, -se(3,) !
Source | Ss df MS Number of obs = 200
0975 - OO C 3, 196) = 16.46
Where tnfzfl is the upper 97.5 percentile in the t- Mode1 T 1.05572698 3 .351908994 brob » = 0.0000
diSTI"ibUﬁOﬂ n_k_l degr‘ees Of fr‘eedom. Residual | 4.18969066 196 .021375973 R-squared = 0.2013
————————— o Adj R-squared = 0.1890
These confidence intervals are found in the output. Total | 5.24541764 199 .026358883 / Root MSE = -6
A confidence interval for ¢ can be found by cisd A F-test testing the hypothesis: "all fs (except f3,) is zero."
Note that if n-k-1 is large then this percentile is close to Here the test is highly significant: The model explains a
1.96 and one can use the approximate confidence intervals: statistically significant part of the variation in y!
Approx. 95% CI for f3,: 3, £1.96-se(3, ) .

Linear regression models for continuous and binary data: Note 2.1 6
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The F-test and R-squared
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0.35519
The F- test calculated as: F=—""""-1646
0.02138
Source | Ss Number of obs = 200
--------------------------------------- FC 3, 196) = 16.46
Model 1.05572698 351908994 Prob > F =_0.0000
Residual 4.18969066 196 021375973 LR-sguared = 0,2013
—————————————————————————————————————— ared = 0.

Total | 5.24541764 .026358883 RoOt MSE

And under the hypo’rhesis it follows an F-distribution
with 3 and 196 degrees of freedom.

The R-squared is the amount of the total variation explained
by the model(=1.0557/5.2454).

As this will increase, if we include more variables in the model,
one can look at the adjusted R-squared =(0.02636-
0.02138 )/0.02636

25

Predicted values residuals and leverages
Y = ﬁ0+2ﬁ,xp+E E~N(0,07)

As in the simple linear regression one can find predicted
values, residuals, leverages and standardized residuals:

Predicted value: S,=5+D.8,-x,
p=1
A k N
Residua': 7;-=y,'_§),'=yi_ ﬁ0+2ﬁp"xpi
p=1
Leverage: h, = a complicated formula

Standardized-Residual : z = i

26

Leverage

Although the formula for the leverage is complicated, the
interpretation of leverage is the same:

A high leverage indicates that the data point has extreme
values of the explanatory variables and hence a high influence
on the estimates.

27

Linear regression models for continuous and binary data: Note 2.1

Checking the model 1:

As the model is much more complicated than the simple linear
regression checking the model is also complicated

Again assumption no. 2: the errors should be independent, is
mainly checked by considering how the data was collected.

The distribution of the error is checked by the same type of
plot as for the simple linear regression.

*Plots of residuals versus fitted
*Plots of residuals versus each of the explanatory variables.

*Histogram and QQ-plot of the residuals.

28
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Plot02

Residuals

Residuals
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rvfplot ,name(pl,replace) . .

rvpplot age45 ,name(p2,replace) residual versus fitted
rvpplot 1nBMI25 ,name(p3,replace) r'esidual versus pr‘edic’ror‘
rvpplot woman ,name(p4,replace)

graph combine pl p2 p3 p4

| Not informative se next page

2

dotplot

res,over(age6) yline(0) name(p2,replace)

graph combine pl p2 ,col(1)
graph export Reg2_1_plot04.wmf, replace

Plot04

Residuals
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Residuals
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6 quantiles of age

Diagnostic plots for continuous variables - dividing into groups

xtile age6=age,nq(6)
graph box res,over(age6) name(pl,replace)

31

Diagnostic plots for categorical variables - here woman (sex
predict res if e(sample),res
gplot res, over(sex) ///
trscale(invnorm(@)) mco(blue red) msy(x oh) name(p3,replace)
graph box res , over(sex) name(p4, replace)
graph combine p3 p4,col(1)
by woman: sum res
g s :
€ 2 : ??2?
FE
&, s © ‘ ‘ © Women
Plot03 * ? Jnvna?m(F‘) : ‘
2
& o S —
B
—
5d=0"131 sd=0:157
30
Identifying special points
14
754
k'
g
2 5
3
25
Plot05
Q%‘w 5 + sx18 18]
0 05 A
Normalized residual squared
1017, 2337, 2187 have relative large residuals
2
#o i s
Zr j
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Checking the model 2: Independent errors ?

Assumption no. 2: the errors should be independent, is mainly
checked by considering how the data was collected.

The assumption is violated if

+some of the persons are relatives (and some are not) and the
dependent variable have some genetic component.

*some of the persons were measured using one instrument and
others with another.

«in general if the persons were sampled in clusters.

33
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Linear regression models for continuous and binary data: Note 2.1

Checking the model 3: Extending the model

One should also try to check the validity of the linearity
assumption that is the assumption of additivity,
proportionality and no effect modification (no interaction).

It can be done by:

1. Introducing the explanatory variable in a different scale,
e.g. adding age? or log(age) ....

2. Introducing the explanatory variable as a categorical
variable instead e.g. use age divided into agegroups instead
as age in years.

3. Introducing interactions between some of the eplanatory
variables.

4. .
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