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Binary regression models
Odds and odds ratios (repetition from Day 4)
Logistic regression and odds ratio

A simple logistic regression model
Post term delivery and age of the woman

Comparing two groups after adjustment for a covariate
Post term delivery and parity - adjusting for age

Linear and logistic regression models - a comparison

Why do we need regression models?
Adjustment, Effect modification, Prediction
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Overview

Data to analyse Type of analysis Unpaired/Paired Type Day
Continuous One sample mean Irrelevant Parametric Day 1
Nonparametric Day 3
Two sample mean Non-paired Parametric Day 2
Nonparametric Day 2
Paired Parametric Day 3
Nonparametric Day 3
Regression Non-paired Parametric Day 5
Several means Non-paired Parametric Day 6
Nonparametric Day 6
Binary One sample mean Irrelevant Parametric Day 4
Two sample mean Non-paired Parametric Day 4
Paired Parametric Day 4
Regression Non-paired Parametric Day7
Time to event  One sample: Cumulative risk Irrelevant Nonparametric Day 8
Regression: Rate/hazard ratio Non-paired Semi-parametric Day 8
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Binary regression models

There are three main types of binary regression models:
A. for the risk difference.

B. for the risk ratio.

C. for the odds ratio.

One could call them respectively binary regression models
for the risk difference/risk ratio/odds ratio. Often,
however, B. is called log-linear binary regression model and
C. is called logistics regression model.

There is a long tradition for using logistic regression when
considering binary outcome. Some of the reasons are:

It is the mathematical nicest model for binary outcome,
and hence the first type of models that was included in the
statistical software.
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Binary regression models

If you have a case-control design, then you want to work
with odds ratios.

If the event is rare, then it will give you relative risk
estimates.

Tt is one of the few models for binary data that ensures
that the estimated probability is between zero and one.

The logistic regression model is by far the most common
model.

In many applications the logistic regression it is not the
most natural choice, but used anyway, as in the data example
today.
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Binary regression models
Stata has implemented a specific function for logistic
regression
Togit outcome covariates , or

which is however identical to the command
binreg outcome covariate , or

Regression models for the risk ratio and risk difference can
be performed by replacing the option “or” with “rr” or "rd"
in the last command.

The discussion today are equally relevant for binary
regression models for the risk ratio and risk difference.
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Example: Post term delivery and parity

Question: How does the risk of post term delivery depend
on parity?

Data: Parity and gestational age for 12,311 women in the age
of 20 to 39. Post term delivery defined as a gestational age
larger than 40 weeks.

Parity N Postterm Risk

First child 5,938 1,722 29.0 (28.8; 30.2)%
Not first child 6,373 1,677 26.3 (25.2; 27.4)%
Total 12,311 3,399 27.6 (26.8; 28.4)%

Model: Independent samples from two binomial distributions.

Let 7 and 77 be the probability (risk) of post term delivery
among women giving birth to their first child or not,

respectively (note, 7 and 77 does not seem small risks).
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Example: Post term delivery and parity
The assumptions behind the model was discussed on day 4.

On that day we also looked at three different measures of
associations: Risk Difference, Relative Risk and Odds Ratio.
And the chi-square test for no association.

Today we will look closer at the Odds Ratio.

Risk difference -2.7 (-4.3; -1.1)%
Relative risk 0.91 (0.86; 0.96)
Odds ratio 0.87 (0.81; 0.95)

X?:11.09 p=0.001

In the table above we compare 77 to 73, i.e. women giving
birth to their first child is the reference group.

We see that the risk is (statistically significant) smaller if
the woman already had a child.
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Odds and risk

The odds is defined as 77(1-7) , i.e. the probability of post
term delivery divided by the probability of not having a post
term delivery.

odds = T

1-m7

If the odds is equal 0 0.5=1/2, then the risk of post term
delivery is only half of the risk of not having a post term
delivery.

We can also go from odds to risk: _ _odds

" 1+o0dds
We see that
odds=05 gives 77= 0.5/(1+0.5)=0.3333.
odds=1 gives 77=1/(1+1)=0.5.
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Odds and odds ratios

The odds ratio comparing parity>0 to the reference is given by

_odds _7/(1-7)  m{1l-7m)
odds, m/(1-m) m,01-m)

OR,

Itis easily seenthat 74 =77, < odds, = odds, = OR=1

OR has nice properties:
Switching reference group or event will just lead to 1/0R, e.g.
odd 1
OR, =" =
odds OR,
And of course the estimates and confidence intervals will

transform similarly.
OR, i1 —1'—11—1 14(1.06;1.2)
''0.870095 081 VT
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Odds ratios and relative risks
The odds ratio is related to the relative risk:

_al-m) oo (1-7m)
ot e )

We can see that if the event is rare, i.e. both 77 and 77 are
small, then the last ratio is close to 1/1=1.

So for a rare event we have:

OR=RR
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Estimating the odds ratios
The odds ratio is of course estimated by:
~ 7t 1- 7z,
ORo = 2= T)
76 172

Another way to find the estimate is to make the ‘classical’
2x2 table:

Event
Exposed Yes No
P o~ ald
Yes a b ORp=——
No c d ble
Post term
Parity>0 Yes No
Yes 1677 4696 ~5 _1,67704,216 .
0o =————— =0.874:
No 1,722 4,216 1,722004,696
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Odds ratios - why inference on the log-scale
The odds ratio is limited to be positive.

A value in the interval O to 1 corresponds to lower risk
among the Parity>0.

A value from 1 to infinity corresponds to higher risk among
the Parity>0

Lower iah isk
| rlisk Higher ris OR,
] T
00.25 1
If we switch "exposed” and "unexposed” we get

Higher Lower risk o
I risk I I Ro
0 1 4.0
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Odds ratios - why inference on the log-scale
The log-odds ratio is not limited.

A value in the interval -infinity to O corresponds to lower
risk among the Parity>0.

A value from O to infinity to higher risk among the Parity>0

| Lower risk | Higher risk
|

log(0.25)=-log(4.0) 0 log(OR,)

If we switch "exposed” and “unexposed” we get

Higher risk | Lower risk |09|(OR01
I I
(0} log(4.0)
Symmetry on the log scalelll
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Odds ratios - Approx. CI (Woolf/Wald )

So on the log scale we have a symmetric measure of
association.

On the log scale it makes sense to find the CI as 'usual’,
i.e. as estimatetl.96*se .

Using the notation from page 8 we have:

- 3202

se(ln(&e))z\/ L, 11,1 00403

1,677 4,696 1,711 4,216

CI In(OR)=1In(0.8743 + 1.9610.0408(~ 0.2134; 0.09
CI OR=(exp(-0.213} ;exp- 0.055P=( 0.81,0)95
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Odds ratios - Testing

If one wants to test a hypothesis that the odds ratio has a
specific value: OR=0R,,,

then this is also done on the log-scale:

in(OR) -In(0R)

zbm = —
se( In(OR))
Could the odds be reduced by 10%, i.e. H: OR=0.9 ?
7 = In(0.8743 - I{ 0.9 _ 0719
0.0403

p=20Pz>|z,[) = 20P(z<-|z,[)= 0.4

The hypothesis cannot be rejected.
disp ( 1n(0.8743)-1n(0.9) )/ 0.0403
disp 2*normal( - abs(-0.719) )
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Logistic regression and odds ratio

Here we will see how one can find the odds ratio by logistic
regression.

Let Parl be an indicator variable for Parity>0,
i.e. Parl=1if parity>0 and Parl=0 if Parity==0.

Now we will look at the (logistic regression) model:
log(odds) = 3, + 3, (Par1

This is equivalent to:

odds = exp( 3, + 3, (Parl) = exq(3,) Dexéﬁl)Parl

and exp(3, + 3, (Parl)

T1+ exp(3, + 3, [Parl)

Basic Biostatistics - Day 7 - 26 October 2016
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Logistic regression and odds ratio
Parl
log(odds) = 3, + 3, [(Parl odds = exp( 3,) Dexi 3,)

We see that if Parity=0 then we have:

log(odds) = 3, | odds = exp(53,) |
and if Parity>0 then we have

log(odds) = 3, + 3, odds = exp(3,) Dexi{ 3,)

Combining we have

_ odds(if parity >0) _ exp(3,) Cexd ) = exp(/3)
°  odds(if parity =0) exp(/3,) )
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Logistic regression and odds ratio
log(odds) = 3, + 3, (Parl odds = exp(3,) Cex{ 5,) ™"
In summary we have that in the model:
The “intercept” 3 is the log odds in the “reference group”.

The “slope” f3, is the log OR.

That is, we can find the odds ratio from before by what is
called a logistic regression model.

So the computer will give us estimates and confidence
intervals for the odds in the reference group and the odds
ratio comparing the ‘exposed’ to the reference.
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Stata: Logistic regression and odds ratio

. use postterm.dta, clear

(Relationship between post term delivery, maternal age, and
parity.)

. Togit ptd ibO.parity, or

Iteration 0: log Tikelihood = -7253.9715
Iteration 1: log Tikelihood = -7248.429
Iteration 2: log Tikelihood = -7248.4278
Iteration 3: log Tikelihood = -7248.4278
Logistic regression Number of obs = 12311
LR chi2(1) = 1.09
Prob > chi2 = 0.0009
Log Tikelihood = -7248.4278 Pseudo R2 = 0.0008
ptd | odds Ratio Std.Err. z P>|z| [95% Conf.Interval]

_______ o e
parity
At Teast one previous delivery

|.8743241  .0352686 -3.33 0.001 .8078609 .9462552
_cons |.4084441  .0116812 -31.31 0.000 .3861793 .4319925
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A simple logistic regression model

We know that the age distribution among the two groups of
women is different - the women giving birth for the first time
are on average younger (27.5 years versus 30.2 years in the
data set).

It might be relevant to compare the two groups after
“adjustment for age”.

We will start by modeling the association between post term
delivery and age among the women with Parity==0.

The simplest logistic regression model is:
log(odds) = @, + @, (Age  odds = exp(a,) Cexfa,)™*
To get a sensible reference age:
log(odds) = a, +a, [[Age-30)  odds= exq{a,) Oexpa,
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Post term delivery and age (Parity==0)
log (OddS) = ta, [que_ 30) odds = eXF(ao) Dexféal)Age_BO

Age=30: log(odds) = a, odds = exp(a,) |

Age=31: g(odds) a,+a, )

Age=20: log(odds) =@, -10,  odds= exf{a,)Oexga,
odds = exp(a,) Cexfa,

odds = exf(a,,) Cep(a

odds = exp(a,

10

Age=21: log(odds) = a, — 9Lz,

5

)
)
.
)

Age=25: log(odds) = a, - 5021,

ORy; . 30 = €xp(a,) Dexp(a,)/ exfa,) = exfa,)
ORy; s 20 = €xp(a,) Cexp(a,)” /( exf{a,)Oexpa,) 10) ex(,)
ORys .20 = exp(a,) Cexi(a,)*/( exifa,)Dexga.) ™) = exfw )3
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Post term delivery and age (Parity==0)
log(odds) = a, +a, [[Age—30)  odds= exq{a,) Dexppa, )™
We saw:  Age=30: odds = exp(a,)
ORy; s 30 = €xp(a,)
ORy; s 20 = €xp(a,)
ORys 1 20 = €xp(a, )’

Post term delivery and age (Parity==0)

Using a computer we get:

log odds scale CcI H=0
est se lower upper z p

Const  -0.8446 00332 -09096 -07795 -2544 <0.0001
Age-30 00207 00071 00069 00345 293 0003

Exp
odds scale CI H=1
est se lower upper z p
Const 0.4297 0.4027 0.4586 -25.44 <0.0001
Age-30 1.0209 10069  1.0351 2.93 0.003

Note, only the estimates and the confidence intervals
should be transformed!
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That is,
exp(ay) is the odds in the reference (Age=30)
exp(a,) is the OR for 1 year difference.
and
— 5
ORsyears - ORlyear
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Post term delivery and age (Parity==0)
CI H=1
est lower upper z p
Odds if Age=30 0.4297 0.4027 04586 -25.44 <0.0001

One years age dif. 1.0209  1.0069 1.0351 2.93 0.003

From odds to probability:

Pr(post term if Age==30) =

0.4297 0.4027, 0.4586

1+ 0.4297( ¥ 0.4027 4 0.45g
=30.1(28.7;31.4)%

Five years age difference:

OR s =1.0209 ( 1.0069;1.0351
=1.11(1.03;1.19
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Stata: A simple logistic regression model

generate age30 = age-30
Tlogit ptd c.age30 if parity==0, or
**% output omitted ***
Logistic regression Number of obs = 5938
LR chi2(1) = 8.60
Prob > chi2 = 0.0034
Log Tikelihood = -3571.2597 Pseudo R2 = 0.0012
ptd | odds Ratio Std. Err. z P>|z| [95%Conf.Interval]
_______ o o e e
age30 | 1.020915 .0072015 2.93 0.003 1.006897 1.035127
_cons | .4297405 .0142675 -25.44 0.000 .4026671 .4586341
* 0dds ratio for 5 years difference
. lincom 5*age30, or
(1) 5*[ptdlage30 =0
ptd | odds Ratio Std. Err. z P>|z| [95% conf. Interval]
o
(1) | 1.109039 .0391159 2.93 0.003 1.034963  1.188417
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Post term delivery and age (Parity==0) - Formulations

Methods

The risk of post term delivery among women giving birth for
the first time was described by a logistic regression model
with age as a continuous variable. ...

Results

We found that five year age difference corresponds to an
odds ratio of 1.11(1.03; 1.19). A 30 year old woman giving birth
for the first time has 30(29;31)% risk of post term delivery.

Conclusion
The risk of post delivery among women giving birth for the
first time increases with the age of the woman....
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Logistic regression checking the model

Tt is outside the scope of this course to go into details on
how to check the model, so we will just state the assumptions
behind the model:

1. All the observations should be independent.

2. There is exactly the same two possible outcomes for
each observation.

3. The log odds is a linear function of age.

The last assumption can to some extend be checked by
plotting the fitted regression line and the observed odds
(with 95% CT) for each distinct age.
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Post term delivery and age (Parity==0)
log(odds) = a, + a, [{ Age - 30)

log odds
~
1
1
I—P—l
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Post term delivery and age (Parity==0)

Post term delivery and age (Parity==0)
exp(a, +a, [{Age- 30)

risk = : e = exp(ao ta, [que_ 39)
ivorfa. a0 Exmaatmveseathe ey
.5
1

o

Risk
e
—e—
—o—
—t—
Te
o
e
e
—e—
—e—
—e—i
]
Risk
[}
1
N\

20 25 30 35 40 01

T T T T T T
Maternal age in years -50 0 50 100 150 200

Age

Not linear! But almost
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Post term delivery parity adjusting for age Post term delivery and age
We now know that We fit the same model o the Parity>0 group
The risk of post term delivery increases with age and then look af the difference:
(among women with parity==0). log odds Slope log odds Age==30
. . . . est se  lower upper est se lower upper
The risk of post term delivery is smaller for Parity>O0. Paritys0 5025 0007 0012 0039 1037 0025 1093 0981
Women with Parity>0 are older. Parity==0 0021 0007 0007 0035 -0.845 0033 -0.910 -0.780
. L . Difference 0.005 0010 -0.015 0024 -0.193 0044 -0.279 -0.107
From this we can deduce that adjusting for age ( if I . —
reasonable) will increase the difference between the two The standard errors of the differences are found as usual:
arity groups.
partiy grotip ] _ . se(est ny>o—95tam==o)= sé + st
parity post term - negative association par panty perity>0 patity=0
SO * positive association We see that we can assume the slopes to be identical, we
age could also test the hypothesis:
We now show how to find an age adjusted estimate, when we S = 0.005- 0_ 05 p= 64%
; " " =——=0. = (
assume a linear “effect” of age on log odds. 0.010
Erik Parner Basic Biostatistics - Day 7 31 Erik Parner Basic Biostatistics - Day 7 32

Basic Biostatistics - Day 7 - 26 October 2016



Erik Parner 25-10-2016

Post term delivery and age - assuming identical slopes Post term delivery and age - assuming identical slopes
If we assume identical slopes, then we can write the model: The model is easily fitted by a computer:
log(odds) = y, + ), [{ Age-30) + y, OParl

(Age-20) part log odds Slope log odds Age==30
e— ar
odds = exp( Y ) EEXd }/1) ’ Dexpéyz ) est se  lower upper est se lower upper
Parity>0 -1.036 0.029 -1.092 -0.981
We see that Parity==0 0023 0005 0013 0033 535 (031 -0.900 -0.778
. . . Difference 0 -0.197 0.043 -0.281 -0.114
exp(p) is the odds among 30-year old with Parity==0.

exp(ip)-exp(5) is the odds among 30-year old with Parity>0. The age adjusted OR comparing Parity>0 fo Parity==0:

exp(y)A is the odds ratio for the age difference A ORlO : exp(—O.lQ‘)( exp- 0.291 ;ekp 0-1)])4: 0.§21 0.755:0)

years among women in the same Parity group.
and if we compare Parity==0 to Parity>0:

exp(s) is the odds ratio comparing Parity>0 to 1 1 1
Parity==0, at the same age. ORO : ( ; 321-22 1.12;1.3
y==U, 9 1°0.821\0.892 0.75 ( ’
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Stata: Two simple logistic regression models Stata: Two simple logistic regression models
A logistic regression with the g coefficients in the output: bO: parity=0 ##: we allow c: age30 is
- - i or different considered
* The two models in the same analysis, such that is set to be fl ff . ith
. * we can compare the two groups the r'ef. slopes C'OH‘I'IHUOUS wit
. Togit ptd ib0.parity##c.age30 linear effect
*%% output omitted *¥* - NV
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff logit ptd ib0.parity##c.age30
___________ pr | Coef: std: Frr. 7 Prlzl [95% confintervall Difference in *** output omitted ***
parity | inTgrcepT for || cmm e
At least one previous delivery parity land 0 || ptd | Coef. std. Err. z P>lz| [95
| -.1927641 .0438288 -4.40 0.000 -.278667 -.1068611 ; X‘""f’"* ***************************************
age30 | .0206988 .007054  2.93 0.003 .0068732 .0345244 Slope for parity parity | _
| 0 -w’one pr\e\”o;;Zggllverg438288 4.40 0.000
parity#c.age30 | : : - . -4. . -.
At least one previous delivery Difference in | age30 ‘l -0206988 007054 2.93 0.003 .0
.0045463 .0098178 0.46 0.643 -.0146963 .0237888 i
: Tlopg gor parity parity#c.age30 | ) )
_cons | -.8445738 .0332003 -25.44 0.000 -.9096451 -.7795025 an At least one previous delivery
_______________________________________________________________________ Int Ti 1 | .0045463 .0098178 0.46 0.643 -.0
ntersection —~—— |
for parity O " cons | -.8445738 .0332003 -25.44 0.000 -.9
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Stata: Two simple logistic regression models

The estimates can be placed on a graph
log(odds)

(difference in slopes)
1 parity#c.age30

parity {
At least..

_cons ‘[

age30
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Stata: Two simple logistic regression models

* The two models in the same analysis, such that
. * we can compare the two groups
. logit ptd ib0.parity c.age30

%% output omitted ***

parity |
At Tleast one previous delivery
| -.1974712 .0425807 -4.64 0.000 -.2809278 -.1140145

age30 | .0230464 .0049045 4.70 0.000 .0134337 .032659
_cons | -.8389922 .0308945 -27.16 0.000 -.8995443 -.7784401
Togit, or
ptd | odds Ratio Sstd. Err. z P>|z]| [95% conf.Interval]
,,,,,,,,,,,,,,, o e e e
parity |
At Tleast one previous delivery
| .8208038 .0349504 -4.64 0.000 .7550829 .892245
age30 | 1.023314 .0050188 4.70 0.000 1.013524 1.033198
_cons | .4321458 .0133509 -27.16 0.000 .406755 .4591216
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Stata: Two simple logistic regression models

. Togit ptd ibO.parity c.age30
%% output omitted ***

Differencein ||~~~ WrPwr omietel oo
|nfercepf for ptd | Coef. std. Err. z P>|z| [95

parity 1 and O .\Wﬁf”ﬁ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
parity

Slope for both || At Teast one previous delivery

arityOand 1 [ | -.1974712 .0425807 -4.64 0.000 -.2
party \ageso | .0230464 .0049045 4.70 0.000 .0
_cons | -.8389922 .0308945 -27.16 0.000 -.8
T
for parity O
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Post term delivery and Parity - Formulations

Methods
The risk of post term delivery among women was modeled by
a logistic regression model with age as a continuous variable....

Results versionl

Comparing Parity >0 to Parity==0 the crude odds ratio was
0.87(0.81;0.95). The age adjusted odds ratio was
0.82(0.76;0.89).

Results version2

Comparing Parity==0 to Parity>0 the crude odds ratio was
1.14(1.06;1.24). The age adjusted odds ratio was
1.22(1.12;1.32).

Conclusion ??
Women giving birth for the first time have a 22% (12%;32%)
higher odds of post term delivery compared to other women

of the same age. .....
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The odds can be predicted by

odds = exp(y, + y, [{ Age— 30) + y/, [(Par1)
The risk can be predicted by
exp(y, + 1, [{Age- 30 + y, (Par1)

=
N Ts ex0(y, + v, [{Age-30) + y, (Par1)

Odds ratio is not always relative risk

A women of age 30 in the data seft:
Parity O: 0odds=0.3547  risk=0.2618
Parity 1: 0odds=0.4321  risk=0.3017
OR=1.22 RR=1.15
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Post term delivery and age - assuming identical slopes

log(odds) = y, + y, [{ Age - 30) + y, (Par1

i ﬁ—gﬁ#ﬁﬁg— '-'#‘ i

Post term delivery and age - assuming identical slopes
exp(), + 1, [{Age- 30 + y, (Parl)

risk =
1+ ex(y, + 1, [{ Age- 30) + y, (Par1)
.51
A T
Bl
.1
2IO 2IS 3I0 3I5 4IO
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Linear and logistic regression - a comparison

In alinear regression the outcome is continuous:
Lung function, Blood pressure, BMI, concentrations...

In alogistic regression the outcome is binary:
Post term delivery, gender, dead/alive, sick/ well, BMI>30.

Neither of the models make any assumptions about the
explanatory variable!!
In both models they can be continuous, binary or categorical.

In both models we have to assume independence between
observations.

In both models we assume linearity -
of expected value or the log odds.

Both models are readily fitted by standard statistical
packages.
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Regression models in general - why? Adjustment

You have now looked at two of the most commonly used
regression models in their most simple forms, involving one
continuous and one binary explanatory variable.

You have seen how one can use such models for adjustment:
What is the 'effect’ of the binary ‘exposure’ when adjusting
for the continuous variable?

Exactly the same models could answer the question:

What is the ‘effect’ (slope) of the continuous ‘exposure’ when
adjusting for the binary variable?

E.g. what is the increase in risk of post term delivery
associated with age when we adjust for parity?

Often one has several explanatory variables, a mixture of
continuous, binary and categorical and the purpose is to
adjust for more than one.

In such case one mig}?;L?Bﬁ' a mulﬂple regression model. w5
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Regression models in general - why? Effect modification

We have also seen how we could compare the ‘effect’ of one
explanatory variable for subgroups described by another
explanatory variable (effect modification):

What is difference in the PEFR-height relationship for men
and women?

What is the difference in the Risk-age relationship for the
two parity groups?

Typically by comparing the slopes.

Often one has several explanatory variables, a mixture of
continuous, binary and categorical and the purpose is to model
effect modification between explanatory variables.

In such case one might apply a multiple regression model.
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Regression models in general - why? Prediction

We could also have used exactly the same models for
prediction/prognosis:

What is the expected PEFR for a person with a given sex and
a given height?

What is the risk of post term delivery for women of a given
age having her first child?

Often one has several explanatory variables, a mixture of
continuous, binary and categorical and the purpose is to make
prediction for a person with a given set of characteristics.
In such a case one might apply a multiple regression model.
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