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PhD course in Basic Biostatistics – Day 7
Erik Parner, Department of Biostatistics, Aarhus University©

Binary regression models

Odds and odds ratios (repetition from Day 4)

Logistic regression and odds ratio

A simple logistic regression model 
Post term delivery and age of the woman

Comparing two groups after adjustment for a covariate
Post term delivery and parity - adjusting for age

Linear and logistic regression models – a comparison

Why do we need regression models?
Adjustment, Effect modification, Prediction
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Overview

Data to analyse Type of analysis Unpaired/Paired Type Day

Continuous One sample mean Irrelevant Parametric Day 1

Nonparametric Day 3

Two sample mean Non-paired Parametric Day 2

Nonparametric Day 2

Paired Parametric Day 3

Nonparametric Day 3

Regression Non-paired Parametric Day 5

Several means Non-paired Parametric Day 6

Nonparametric Day 6

Binary One sample mean Irrelevant Parametric Day 4

Two sample mean Non-paired Parametric Day 4

Paired Parametric Day 4

Regression Non-paired Parametric Day 7

Time to event One sample: Cumulative risk Irrelevant Nonparametric Day 8

Regression: Rate/hazard ratio Non-paired Semi-parametric Day 8
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Binary regression models

There are three main types of binary regression models:
A. for the risk difference.
B. for the risk ratio.
C. for the odds ratio.

One could call them respectively binary regression models 
for the risk difference/risk ratio/odds ratio. Often, 
however, B. is called log-linear binary regression model and 
C. is called logistics regression model. 

There is a long tradition for using logistic regression when 
considering binary outcome. Some of the reasons are:

It is the mathematical nicest model for binary outcome, 
and hence the first type of models that was included in the 
statistical software.
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Binary regression models

If you have a case-control design, then you want to work 
with odds ratios.

If the event is rare, then it will give you relative risk
estimates.

It is one of the few models for binary data that ensures 
that the estimated probability is between zero and one.

The logistic regression model is by far the most common 
model.

In many applications the logistic regression it is not the 
most natural choice, but used anyway, as in the data example 
today.
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Binary regression models

Stata has implemented a specific function for logistic 
regression

logit outcome covariates , or

which is however identical to the command
binreg outcome covariate , or

Regression models for the risk ratio and risk difference can 
be performed by replacing the option “or” with “rr” or “rd” 
in the last command.

The discussion today are equally relevant for binary 
regression models for the risk ratio and risk difference.
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Example: Post term delivery and parity

Question: How does the risk of post term delivery depend 
on parity?

Data: Parity and gestational age for 12,311 women in the age 
of 20 to 39. Post term delivery defined as a gestational age 
larger than 40 weeks.

Parity N Postterm Risk

First child 5,938 1,722 29.0 (28.8; 30.2)%

Not first child 6,373 1,677 26.3 (25.2; 27.4)%

Total 12,311 3,399 27.6 (26.8; 28.4)%

Model: Independent samples from two binomial distributions.

Let π0 and π1 be the probability (risk) of post term delivery 
among women giving birth to their first child or not, 

respectively (note, π0 and π1 does not seem small risks).

Erik Parner Basic Biostatistics - Day 7 7

Example: Post term delivery and parity

The assumptions behind the model was discussed on day 4.

On that day we also looked at three different measures of 
associations: Risk Difference, Relative Risk and Odds Ratio.
And the chi-square test for no association.

Today we will look closer at the Odds Ratio.

In the table above we compare π1 to π0, i.e. women giving 
birth to their first child is the reference group.

We see that the risk is (statistically significant) smaller if 
the woman already had a child.

Risk difference -2.7 (-4.3; -1.1)%
Relative risk 0.91 (0.86; 0.96)
Odds ratio 0.87 (0.81; 0.95)

X2=11.09  p=0.001

Erik Parner Basic Biostatistics - Day 7 8

Odds and risk

The odds is defined as π/(1-π) , i.e. the probability of post 
term delivery divided by the probability of not having a post 
term delivery.

1
odds

π
π

=
−

If the odds is equal to 0.5=1/2, then the risk of post term 
delivery is only half of the risk of not having a post term 
delivery. 
We can also go from odds to risk:

1

odds

odds
π =

+
We see that 

odds = 0.5 gives   π = 0.5/(1+0.5)=0.3333.

odds = 1 gives   π = 1/(1+1)=0.5.
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Odds and odds ratios

( )
( )

( )
( )

1 01 11
10

0 0 0 0 1

11

1 1

odds
OR

odds

π ππ π
π π π π

⋅ −−
= = =

− ⋅ −

OR has nice properties: 
Switching reference group or event will just lead to 1/OR, e.g.

The odds ratio comparing parity>0 to the reference is given by

0
01

1 10

1odds
OR

odds OR
= =

And of course the estimates and confidence intervals will 
transform similarly.

It is easily seen that 1 0 1 0 1odds odds ORπ π= ⇔ = ⇔ =

( )01

1 1 1
: ; 1.14 1.06;1.24
0.87 0.95 0.81

OR
  = 
 
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Odds ratios and relative risks

The odds ratio is related to the relative risk: 

( )
( )

( )
( )

1 0 0
10 10

0 1 1

1 1

1 1
OR RR

π π π
π π π

⋅ − −
= = ⋅

⋅ − −

We can see that if the event is rare, i.e. both π1 and π0 are 
small, then the last ratio is close to 1/1=1.

So for a rare event we have:

OR RR≈
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Estimating the odds ratios

The odds ratio is of course estimated by: 

� ( )
( )

1 0
10

0 1

ˆ ˆ1

1ˆ ˆ
OR

π π
π π

⋅ −
=

⋅ −

Another way to find the estimate is to make the ‘classical’ 
2x2 table: 

Exposed Yes No

Yes a b

No c d

Event

�
10

a d
OR

b c

⋅=
⋅

Parity>0 Yes No

Yes 1,677 4,696

No 1,722 4,216

Post term

�
10

1,677 4,216
0.8743

1,722 4,696
OR

⋅= =
⋅
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Odds ratios – why inference on the log-scale

The odds ratio is limited to be positive.

A value in the interval 0 to 1 corresponds to lower risk 
among the Parity>0.

A value from 1 to infinity corresponds to higher risk among 
the Parity>0

0 1

If we switch “exposed” and “unexposed” we get

0 1

Lower riskHigher 
risk

0.25

4.0

Lower 
risk

Higher risk
10OR

01OR
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Odds ratios – why inference on the log-scale

The log-odds ratio is not limited.

A value in the interval -infinity to 0 corresponds to lower 
risk among the Parity>0.

A value from 0 to infinity to higher risk among the Parity>0

If we switch “exposed” and “unexposed” we get

log(0.25)=-log(4.0) 0

Lower risk Higher risk

( )10log OR

log(4.0)

Higher risk Lower risk ( )01log OR

0

Symmetry on the log scale!!!
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Odds ratios – Approx. CI (Woolf/Wald )

So on the log scale we have a symmetric measure of 
association.

On the log scale it makes sense to find the CI as ‘usual’,
i.e. as  estimate±±±±1.96*se .

Using the notation from page 8 we have:

�( )( ) 1 1 1 1
se ln OR

a b c d
= + + +

�( )( )
( ) ( ) ( )

( ) ( )( ) ( )

1 1 1 1
se ln 0.0403

1,677 4,696 1,711 4,216

ln ln 0.8743 1.96 0.0403 0.2134; 0.0552

exp 0.2134 ;exp 0.0552 0.81;0.95

CI 

CI 

OR

OR

OR

= + + + =

= ± ⋅ = − −

= − − =
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Odds ratios – Testing

If one wants to test a hypothesis that the odds ratio has a 
specific value: OR=OR0,

then this is also done on the log-scale:
�( ) ( )

�( )( )
0ln ln

se ln
obs

OR

R
z

OR

O

−
=

( ) ( )

( ) ( )

ln 0.8743 ln 0.9
0.719

0.0403

2 Pr 2 Pr 0.47

obs

obs obs

z

p z z z z

−
= = −

= ⋅ > = ⋅ < − =

Could the odds be reduced by 10%, i.e. H: OR=0.9 ?

The hypothesis cannot be rejected.
disp (  ln(0.8743)-ln(0.9)  )/ 0.0403
disp 2*normal( - abs(-0.719)  )
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Logistic regression and odds ratio

Here we will see how one can find the odds ratio by logistic 
regression.

Let Par1 be an indicator variable for Parity>0 ,

i.e.  Par1=1 if parity>0  and  Par1=0 if Parity==0.

Now we will look at the (logistic regression) model:

( ) 0 1log 1o Pd rd as β β= + ⋅
This is equivalent to:

( ) ( ) ( )0

1

1 0 11exp exp exp
Par

Pao rdds β β β β= + ⋅ = ⋅

and ( )
( )

0 1

0 1

exp

1 exp

1

1

Par

Par

β β
β

π
β

+ ⋅
=

+ + ⋅



Erik Parner 25-10-2016

Basic Biostatistics  - Day 7 - 26 October 2016 5

Erik Parner Basic Biostatistics - Day 7 17

Logistic regression and odds ratio

( ) ( ) ( ) 1

0 1 0 11log exp exp
Par

odds odPa dsrβ β β β= + ⋅ = ⋅

We see that if Parity=0 then we have:

( ) ( )0 0log expodds oddsβ β= =

and if Parity>0 then we have

( ) ( ) ( )0 1 0 1log exp expodds oddsβ β β β= + = ⋅

( )
( )

( ) ( )
( ) ( )0 1

110
0

exp exp0
exp

0 exp

β β
β

β
⋅>

= = =
=

odds if parity
OR

odds if parity

Combining we have
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Logistic regression and odds ratio

( ) ( ) ( ) 1

0 1 0 11log exp exp
Par

odds odPa dsrβ β β β= + ⋅ = ⋅

In summary we have that in the model:

The “intercept” β0 is the log odds in the “reference group”.

The “slope” β1 is the log OR.

That is, we can find the odds ratio from before by what is 
called a logistic regression model.

So the computer will give us estimates and confidence 
intervals for the odds in the reference group and the odds 
ratio comparing the ‘exposed’ to the reference.
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Stata: Logistic regression and odds ratio

. use postterm.dta, clear
(Relationship between post term delivery, maternal age, and 
parity.)

. logit ptd ib0.parity, or

Iteration 0:   log likelihood = -7253.9715  
Iteration 1:   log likelihood =  -7248.429  
Iteration 2:   log likelihood = -7248.4278  
Iteration 3:   log likelihood = -7248.4278  

Logistic regression                      Number of obs =  12311
LR chi2(1) =   1.09

Prob > chi2 = 0.0009
Log likelihood = -7248.4278                  Pseudo R2 = 0.0008
---------------------------------------------------------------

ptd | Odds Ratio Std.Err.     z   P>|z|  [95% Conf.Interval]
-------+-------------------------------------------------------
parity 
At least one previous delivery 

|.8743241   .0352686   -3.33  0.001   .8078609  .9462552
_cons |.4084441   .0116812  -31.31  0.000   .3861793  .4319925
---------------------------------------------------------------
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A simple logistic regression model

( ) ( ) ( )0 1 0 1log exp exp
Age

odds odAg dseα α α α= + ⋅ = ⋅

We know that the age distribution among the two groups of 
women is different – the women giving birth for the first time 
are on average younger (27.5 years versus 30.2 years in the 
data set).

It might be relevant to compare the two groups after 
“adjustment for age”.

We will start by modeling the association between post term 
delivery and age among the women with Parity==0. 

The simplest logistic regression model is:

To get a sensible reference age:

( ) ( ) ( ) ( )0 1

0

1

3

0log 30 exp exp
Age

odds odA sg deα α α α −= + ⋅ − = ⋅
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( ) ( ) ( ) ( )0 1

0

1

3

0log 30 exp exp
Age

odds odA sg deα α α α −= + ⋅ − = ⋅

( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0 0

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

10

9

5

log exp

log exp exp

log 10 exp exp

log 9 exp exp

log 5 exp ex

30 :

31:

20 :

21:

2 p5:

α α
α α α α

α α α α

α α α α

α α α α

−

−

−

= =

= + = ⋅

= − ⋅ = ⋅

= − ⋅ = ⋅

=

=

=

=

− ⋅ = ⋅

=

=

odds odds

odds odds

odds odds

odds odds

odd

Age

Age

Age

A

s odds

ge

Age

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

0 1 0 1

0 1 0 1 1

0 1 0 1 1

9 10

5 10 5

exp exp exp exp

exp exp exp exp exp

exp exp exp exp exp

α α α α

α α α α α

α α α α α

− −

− −

= ⋅ =

= ⋅ ⋅ =

= ⋅ ⋅ =

31 vs 30

21 vs 20

25 vs 20

OR

OR

OR

Post term delivery and age (Parity==0)
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Post term delivery and age (Parity==0)

( ) ( ) ( ) ( )0 1

0

1

3

0log 30 exp exp
Age

odds odA sg deα α α α −= + ⋅ − = ⋅

( )
( )
( )

1

1

1

5

exp

exp

exp

α
α

α

=

=

=

31 vs 30

21 vs 20

25 vs 20

OR

OR

OR

( )030 : expoddsAge α= =We saw:

That is, 

exp(α0) is the odds in the reference (Age=30)

exp(α1) is the OR for 1 year difference.

and

5
5 1=years yearOR OR
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log odds scale

est se lower upper z p

Const -0.8446 0.0332 -0.9096 -0.7795 -25.44 <0.0001

Age-30 0.0207 0.0071 0.0069 0.0345 2.93 0.003

CI H = 0

Exp
odds scale

est se lower upper z p

Const 0.4297 0.4027 0.4586 -25.44 <0.0001

Age-30 1.0209 1.0069 1.0351 2.93 0.003

CI H = 1

Post term delivery and age (Parity==0)

Using a computer we get:

Note, only the estimates and the confidence intervals 
should be transformed!
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est lower upper z p

Odds if Age=30 0.4297 0.4027 0.4586 -25.44 <0.0001

One years age dif. 1.0209 1.0069 1.0351 2.93 0.003

CI H = 1

From odds to probability:

( ) 0.4297 0.4027 0.4586
Pr ;

1 0.4297 1 0.4027 1 0.4586

30.1(28.7;31.4)%

post term if ==30Age
 =  + + + 

=
Five years age difference:

( )
( )

55
5 1.0209 1.0069;1.0351

1.11 1.03;1.19

yearsOR =

=

Post term delivery and age (Parity==0)
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Stata: A simple logistic regression model

generate age30 = age-30
logit ptd c.age30 if parity==0, or

*** output omitted ***  
Logistic regression                      Number of obs =   5938

LR chi2(1) =   8.60
Prob > chi2 = 0.0034

Log likelihood = -3571.2597                  Pseudo R2 = 0.0012
---------------------------------------------------------------

ptd | Odds Ratio  Std. Err.    z   P>|z|  [95%Conf.Interval]
-------+-------------------------------------------------------
age30 |  1.020915  .0072015    2.93  0.003  1.006897  1.035127
_cons |  .4297405  .0142675  -25.44  0.000  .4026671  .4586341
---------------------------------------------------------------
. * Odds ratio for 5 years difference
. lincom 5*age30, or
( 1)  5*[ptd]age30 = 0
---------------------------------------------------------------
ptd | Odds Ratio  Std. Err.    z   P>|z|   [95% Conf. Interval]
----+----------------------------------------------------------
(1) |  1.109039  .0391159    2.93  0.003    1.034963   1.188417
---------------------------------------------------------------
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Post term delivery and age (Parity==0) - Formulations

Methods
The risk of post term delivery among women giving birth for 
the first time was described by a logistic regression model 
with age as a continuous variable. …

Results
We found that five year age difference corresponds to an 
odds ratio of 1.11(1.03; 1.19). A 30 year old woman giving birth 
for the first time has 30(29;31)% risk of post term delivery.

Conclusion
The risk of post delivery among women giving birth for the 
first time increases with the age of the woman….  
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Logistic regression checking the model

It is outside the scope of this course to go into details on 
how to check the model, so we will just state the assumptions 
behind the model:

1. All the observations should be independent.

2. There is exactly the same two possible outcomes for
each observation.

3. The log odds is a linear function of age.

The last assumption can to some extend be checked by 
plotting the fitted regression line and the observed odds 
(with 95% CI) for each distinct age.
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( ) ( )0 1log 30odds Ageα α= + ⋅ −
Post term delivery and age (Parity==0)

-2

-1.5

-1

-.5

0

lo
g 

od
ds

20 25 30 35 40
Maternal age in years
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( )( )
( )( )

0 1

0 1

exp 30

1 exp 30

Age
risk

Age

α α
α α

+ ⋅ −
=

+ + ⋅ −

Post term delivery and age (Parity==0)

.1

.2

.3

.4

.5

R
is

k

20 25 30 35 40
Maternal age in years

Not linear! But almost
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0

.2

.4

.6

.8

1

R
is

k

-50 0 50 100 150 200
Age

( )( )
( )( )

0 1

0 1

exp 30

1 exp 30

Age
risk

Age

α α
α α

+ ⋅ −
=

+ + ⋅ −

Post term delivery and age (Parity==0)

Extrapolating we see the 
non-linearity.
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Post term delivery parity adjusting for age

We now know that 

• The risk of post term delivery increases with age
(among women with parity==0).

• The risk of post term delivery is smaller for Parity>0.

• Women with Parity>0 are older.

From this we can deduce that adjusting for age ( if 
reasonable) will increase the difference between the two 
parity groups.

We now show how to find an age adjusted estimate, when we 
assume a linear “effect” of age on log odds.

parity post term 

age

-

++

- negative association
+ positive association
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Post term delivery and age

We fit the same model to the Parity>0 group
and then look at the difference:

( )
0 0

2 2
0 0se se se

parity parityparity parityest est
> ==> ==− = +

log odds

est se lower upper est se lower upper

Parity>0 0.025 0.007 0.012 0.039 -1.037 0.029 -1.093 -0.981

Parity==0 0.021 0.007 0.007 0.035 -0.845 0.033 -0.910 -0.780

Difference 0.005 0.010 -0.015 0.024 -0.193 0.044 -0.279 -0.107

Slope log odds Age==30

The standard errors of the differences are found as usual:

We see that we can assume the slopes to be identical, we 
could also test the hypothesis:

0.005 0
0.5 64%

0.010
z p

−= = =
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We see that

exp(γ0) is the odds among 30-year old with Parity==0.

exp(γ0)•exp(γ2) is the odds among 30-year old with Parity>0.

exp(γ1)A is the odds ratio for the age difference A
years among women in the same Parity group.

exp(γ2) is the odds ratio comparing Parity>0 to 
Parity==0 , at the same age.

Post term delivery and age – assuming identical slopes 

If we assume identical slopes, then we can write the model:

( ) ( )
( ) ( )( ) ( )3

0 1

1

2

1

0

20

log 30

exp exp exp

1
Age Par

odds

odd

Age Par

s

γ γ γ

γ γ γ−

= + ⋅ − + ⋅

= ⋅ ⋅
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log odds

est se lower upper est se lower upper

Parity>0 -1.036 0.029 -1.092 -0.981

Parity==0 -0.839 0.031 -0.900 -0.778

Difference 0 -0.197 0.043 -0.281 -0.114

0.033

Slope log odds Age==30

0.023 0.005 0.013

The age adjusted OR comparing Parity>0 to Parity==0:

( ) ( ) ( )( ) ( )exp 0.197 exp 0.281 ;exp 0.114 0.821 0.755;0.892:
10

OR − − − =

and if we compare Parity==0 to Parity>0:

( )1 1 1
; 1.22 1.12;1.32

0.821 0.892 0.755
:

01
OR   = 

 

Post term delivery and age – assuming identical slopes 

The model is easily fitted by a computer:
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Stata: Two simple logistic regression models

. * The two models in the same analysis, such that

. * we can compare the two groups

. logit ptd ib0.parity##c.age30

*** output omitted ***
-----------------------------------------------------------------------

ptd |     Coef.  Std. Err.     z  P>|z|  [95% Conf.Interval]
---------------+-------------------------------------------------------

parity |
At least one previous delivery 

| -.1927641  .0438288  -4.40  0.000   -.278667 -.1068611
age30 |  .0206988  .007054    2.93  0.003   .0068732  .0345244

|
parity#c.age30 |
At least one previous delivery  

|  .0045463  .0098178   0.46  0.643  -.0146963  .0237888
|

_cons | -.8445738  .0332003 -25.44  0.000  -.9096451 -.7795025
-----------------------------------------------------------------------

A logistic regression with the � coefficients in the output:
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Stata: Two simple logistic regression models

logit ptd ib0.parity##c.age30

*** output omitted ***

-----------------------------------------------------------------------
ptd |     Coef.  Std. Err.     z  P>|z|  [95% Conf.Interval]

---------------+-------------------------------------------------------
parity |

At least one previous delivery 
| -.1927641  .0438288  -4.40  0.000   -.278667 

age30 |  .0206988  .007054    2.93  0.003   .0068732  .0345244
|

parity#c.age30 |
At least one previous delivery  

|  .0045463  .0098178   0.46  0.643  -.0146963  .0237888
|

_cons | -.8445738  .0332003 -25.44  0.000  -.9096451 
-----------------------------------------------------------------------

b0: parity=0 
is set to be 
the ref.

c: age30 is 
considered 
continuous with 
linear effect

##: we allow 
for different 
slopes

Intersection
for parity 0

Difference in 
slope for parity 
1 and 0

Slope for parity 
0

Difference in 
intercept for 
parity 1 and 0
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Stata: Two simple logistic regression models

_cons

parity
At least… 

age30

(difference in slopes)
parity#c.age30 

The estimates can be placed on a graph

log(odds)

age30
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Stata: Two simple logistic regression models

. * The two models in the same analysis, such that

. * we can compare the two groups

. logit ptd ib0.parity c.age30

*** output omitted ***
-----------------------------------------------------------------------

ptd |     Coef.  Std. Err.     z  P>|z|  [95% Conf.Interval]
---------------+-------------------------------------------------------

parity |
At least one previous delivery 

| -.1974712  .0425807  -4.64  0.000  -.2809278 -.1140145
age30 |  .0230464  .0049045   4.70  0.000   .0134337  .032659
_cons | -.8389922  .0308945 -27.16  0.000  -.8995443 -.7784401

-----------------------------------------------------------------------
. logit, or
-----------------------------------------------------------------------

ptd | Odds Ratio Std. Err.    z  P>|z|   [95% Conf.Interval]
---------------+-------------------------------------------------------

parity |
At least one previous delivery  

| .8208038  .0349504  -4.64  0.000    .7550829   .892245
age30 | 1.023314  .0050188   4.70  0.000    1.013524  1.033198
_cons | .4321458  .0133509 -27.16  0.000     .406755  .4591216

-----------------------------------------------------------------------
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Stata: Two simple logistic regression models

. logit ptd ib0.parity c.age30

*** output omitted ***
-----------------------------------------------------------------------

ptd |     Coef.  Std. Err.     z  P>|z|  [95% Conf.Interval]
---------------+-------------------------------------------------------

parity |
At least one previous delivery 

| -.1974712  .0425807  -4.64  0.000  -.2809278 
age30 |  .0230464  .0049045   4.70  0.000   .0134337  .032659
_cons | -.8389922  .0308945 -27.16  0.000  -.8995443 

-----------------------------------------------------------------------Intersection
for parity 0

Slope for both 
parity 0 and 1

Difference in 
intercept for 
parity 1 and 0
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Post term delivery and Parity - Formulations

Methods
The risk of post term delivery among women was modeled by 
a logistic regression model with age as a continuous variable.…

Results version1
Comparing Parity >0 to Parity==0 the  crude odds ratio was 
0.87(0.81;0.95). The age adjusted odds ratio was 
0.82(0.76;0.89).

Results version2
Comparing Parity==0 to Parity>0 the crude odds ratio was 
1.14(1.06;1.24). The age adjusted odds ratio was 
1.22(1.12;1.32).

Conclusion ??
Women giving birth for the first time have a 22% (12%;32%) 
higher odds of post term delivery compared to other women 
of the same age. …..
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The odds can be predicted by

Odds ratio is not always relative risk

A women of age 30 in the data set:
Parity 0: odds=0.3547 risk=0.2618
Parity 1:  odds=0.4321      risk=0.3017

OR=1.22  RR=1.15

( )0 1 2e 0 1xp( 3 )Age Ps arodd γ γ γ= + ⋅ − + ⋅
The risk can be predicted by

( )( )
( )( )

0 1 2

0 1 2

exp 30

1 ex

1

1p 30

Age Par

Age Par
risk

γ γ γ
γ γ γ

+ ⋅ − + ⋅
=

+ + ⋅ − + ⋅
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Post term delivery and age – assuming identical slopes 
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Post term delivery and age – assuming identical slopes 
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Linear and logistic regression – a comparison

In a linear regression the outcome is continuous: 
Lung function, Blood pressure, BMI, concentrations…

In a logistic regression the outcome is binary:
Post term delivery, gender, dead/alive, sick/ well, BMI>30.

Neither of the models make any assumptions about the 
explanatory variable!!
In both models they can be continuous, binary or categorical.

In both models we have to assume independence between 
observations.

In both models we assume linearity –
of expected value or the log odds.

Both models are readily fitted by standard statistical 
packages. 
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Regression models in general – why? Adjustment 

You have now looked at two of the most commonly used 
regression models in their most simple forms, involving one 
continuous and one binary explanatory variable.

You have seen how one can use such models for adjustment: 
What is the ‘effect’ of the binary ‘exposure’ when adjusting
for the continuous variable?

Exactly the same models could answer the question: 
What is the ‘effect’ (slope) of the continuous ‘exposure’ when 
adjusting for the binary variable?
E.g. what is the increase in risk of post term delivery 
associated with age when we adjust for parity?

Often one has several explanatory variables, a mixture of 
continuous, binary and categorical and the purpose is to 
adjust for more than one. 
In such case one might apply a multiple regression model.
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Regression models in general – why? Effect modification 

We have also seen how we could compare the ‘effect’ of one 
explanatory variable for subgroups described by another 
explanatory variable (effect modification):

What is difference in the PEFR-height relationship for men 
and women?
What is the difference in the Risk-age relationship for the 
two parity groups?

Typically by comparing the slopes.

Often one has several explanatory variables, a mixture of 
continuous, binary and categorical and the purpose is to model 
effect modification between explanatory variables. 
In such case one might apply a multiple regression model.
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Regression models in general – why?  Prediction

We could also have used exactly the same models for 
prediction/prognosis:

What is the expected PEFR for a person with a given sex and 
a given height?
What is the risk of post term delivery for women of a given 
age having her first child?

Often one has several explanatory variables, a mixture of 
continuous, binary and categorical and the purpose is to make 
prediction for a person with a given set of characteristics.
In such a case one might apply a multiple regression model.


