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    0 1 2logit 45Pr obese woman age       

Consider the model: 

     obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sex | 
          1  |  (base)    
          2  |   .2743976   .0903385     3.04   0.002     .0973374    .4514579 
             | 
       age45 |   .0344723   .0051354     6.71   0.000     .0244072    .0445374 
       _cons |  -2.147056   .0721981   -29.74   0.000    -2.288561    -2.00555 
------------------------------------------------------------------------------ 

Here men are reference.  

If we want to find the log odds for a 45 year old women 
we can calculate by hand 2.1470.2741.873 

But what about confidence interval? 
 
We could change the reference to women and fit the 
model once more.  
But……. 

The lincom command after logit or regress 
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    0 1 2logit 45Pr obese woman age       

Stata has a command that can be used for this: “lincom” 
 
 lincom _cons+2.sex 
 
 ( 1)  [obese]2.sex + [obese]_cons = 0 
 
------------------------------------------------------------------------------ 
       obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         (1) |  -1.872658    .058136   -32.21   0.000    -1.986602   -1.758714 
------------------------------------------------------------------------------ 
 

To get to the risk/probability with confidence interval: 
disp invlogit(r(estimate)) 
.13323448 
 
disp invlogit(r(estimate)-1.96*r(se)) ";“ /// 
     invlogit(r(estimate)+1.96*r(se)) 
.12061656 ;  .1469518 

The lincom command after logit or regress 
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Some examples: 

Log Odds for a 42 year old woman:  
lincom _cons+2.sex-age45*3 

 ( 1)  [obese]2.sex - 3*[obese]age45 + [obese]_cons = 0 

------------------------------------------------------------------------------ 
       obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         (1) |  -1.976075   .0639755   -30.89   0.000    -2.101465   -1.850685 
------------------------------------------------------------------------------ 

Odds ratio for 4.5 age difference: 

 
 lincom age45*4.5,or 
 ( 1)  4.5*[obese]age45 = 0 
------------------------------------------------------------------------------ 
       obese | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         (1) |   1.167804   .0269869     6.71   0.000     1.116091    1.221914 
------------------------------------------------------------------------------ 

    0 1 2logit 45Pr obese woman age       

The lincom command after logit or regress 
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All inference in logistic regression models are based on 
asymptotics, i.e. assuming that you have a lot of data ! 

Rule of thumb:  
You should have at least 15 events per variable  
(parameter) in the model. 

A large standard error typical indicates that you have too 
little information concerning the variable and that the 
estimate and standard error are not valid. 

Lower your ambitions or get more data ! 

An exact method exists. 

But it will also give wide confidence intervals. 

Logistic regression models: Do you have enough data? 
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In the linear regression we saw some example of statistics: 

residuals, standardized residuals and leverage 

which can be used in the model checking and search for 
strange or influential data points. 

Such statistics can also be defined for the logistic regression 
model. 

But they are much more difficult to interpret and cannot in 
general be recommended. 

Checking the validity of a logistic regression model will mainly 
be based on comparing it with other more complicated models. 

Logistic regression models: Diagnostics 
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Logit estimates                              Number of obs   =       4690 
                                             LR chi2(2)      =      55.68 
                                             Prob > chi2     =     0.0000 
Log likelihood = -1767.7019                  Pseudo R2       =     0.0155 
------------------------------------------------------------------------- 
  obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------+---------------------------------------------------------------- 
    sex | 
     1  |  (base)    
     2  |   .2743976   .0903385     3.04   0.002     .0973374    .4514579 
        | 
  age45 |   .0344723   .0051354     6.71   0.000     .0244072    .0445374 
  _cons |  -2.147056   .0721981   -29.74   0.000    -2.288561    -2.00555 
------------------------------------------------------------------------- 

A common, and to some extend informative, test of fit is the 
Hosmer-Lemeshow test. 

Consider the model for obesity from Day 4 

 

Logistic regression models: Test of fit 

Significantly better than nothing – but is it good? 

    0 1 2logit 45Pr obese woman age       
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What about comparing the estimated prevalence with the 
observed prevalence? 

In the Hosmer-Lemeshow test the data is divided into groups 
(traditionally 10) according to the estimated probabilities 

and the observed and expected counts are compared in these 
groups by a chi-square test. 

Most programs, that can fit a logistic regression model, can 
calculate this test. 

In Stata it is done by (after fitting the model): 

estat gof, group(10) table 

The data is divided into deciles after the estimated 
probabilities. 

Logistic regression models: Test of fit 
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OUTPUT 
Logistic model for obese, goodness-of-fit test 
  (Table collapsed on quantiles of estimated probabilities) 
  +--------------------------------------------------------+ 
  | Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total | 
  |-------+--------+-------+-------+-------+-------+-------| 
  |     1 | 0.0841 |    64 |  40.9 |   462 | 485.1 |   526 | 
  |     2 | 0.0953 |    43 |  45.5 |   453 | 450.5 |   496 | 
  |     3 | 0.1045 |    44 |  44.6 |   398 | 397.4 |   442 | 
  |     4 | 0.1112 |    42 |  50.3 |   422 | 413.7 |   464 | 
  |     5 | 0.1217 |    44 |  51.4 |   394 | 386.6 |   438 | 
  |     6 | 0.1332 |    52 |  63.0 |   441 | 430.0 |   493 | 
  |     7 | 0.1456 |    53 |  61.7 |   389 | 380.3 |   442 | 
  |     8 | 0.1592 |    62 |  69.8 |   392 | 384.2 |   454 | 
  |     9 | 0.1834 |    98 |  89.9 |   424 | 432.1 |   522 | 
  |    10 | 0.2407 |    99 |  83.8 |   314 | 329.2 |   413 | 
  +--------------------------------------------------------+ 
       number of observations =      4690 
             number of groups =        10 
      Hosmer-Lemeshow chi2(8) =        26.01 
                  Prob > chi2 =         0.0010 

One problem: 
Too many in 
the tails 

Logistic regression models: Test of fit 

Significant difference between observed and expected! 
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logit obese i.sex##age45 
 estat gof, group(10) table 
Logistic model for obese, goodness-of-fit test 
  (Table collapsed on quantiles of estimated probabilities) 
  +--------------------------------------------------------+ 
  | Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total | 
  |-------+--------+-------+-------+-------+-------+-------| 
  |     1 | 0.0796 |    36 |  35.9 |   466 | 466.1 |   502 | 
  |     2 | 0.1011 |    42 |  41.1 |   406 | 406.9 |   448 | 
  |     3 | 0.1053 |    49 |  49.6 |   429 | 428.4 |   478 | 
  |     4 | 0.1096 |    50 |  54.8 |   458 | 453.2 |   508 | 
  |     5 | 0.1124 |    52 |  54.2 |   436 | 433.8 |   488 | 
  |     6 | 0.1153 |    51 |  46.4 |   355 | 359.6 |   406 | 
  |     7 | 0.1182 |    52 |  53.9 |   410 | 408.1 |   462 | 
  |     8 | 0.1590 |    76 |  70.3 |   428 | 433.7 |   504 | 
  |     9 | 0.2133 |    96 |  91.8 |   391 | 395.2 |   487 | 
  |    10 | 0.3310 |    97 | 103.0 |   310 | 304.0 |   407 | 
  +--------------------------------------------------------+ 
       number of observations =      4690 
             number of groups =        10 
      Hosmer-Lemeshow chi2(8) =         2.43 
                  Prob > chi2 =         0.9650 

The model ‘fits’ – when we look at it this way !!!!!!! 

Logistic regression models: Test of fit 
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Used in two situations: 

1. Matched studies (binary response). 

2. Unmatched studies with a confounder with many  
 distinct values. 

In 1. the models correspond to the way data was collected. 

In 2. the method adjust for a ‘mathematical’ flaw in the 
unconditional method. 

An example of situation 2:  
The confounder is “kommune”  having 275 distinct values.  

 

Conditional logistic regression 
When 
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The logistic regression model (outcome disease yes/no): 

ln(odds) in reference ln(odds ratios) 

Conditional logistic regression 
What 

Suppose the model above hold in each strata: 
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ln(odds) in reference 
different in each strata 

ln(odds ratios) 
the same in each strata 
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ln(odds) different in each strata 

We are not interested in these ! 

In a matched study these are ‘controlled’. 

In a conditional logistic regression one ‘condition on the 
odds in each strata’ , i.e. the case/control ratio. 

In the conditional model the  ’s disappear ! 

The  ’s , the log OR’s, are still in and can be estimated. 

   
1
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i
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
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Conditional logistic regression 
What 
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A study of cancer in the oral cavity 

Matched on gender and 10-year age groups 

Ten strata (genage) 

Here we focus on  

textile-worker and  

life time consumption of alcohol (three groups) 

Conditional logistic regression 
How 
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----------------------------------------------------------------------------- 
      cancer |     Coef.   Std. Err.      z     P>|z|            CI 
-------------+---------------------------------------------------------------- 
     textile |   .5022796   .4141317     1.21   0.225    -.3094036    1.313963 
      alkcon | 
          0  |  (base)    
          1  |   .4628618   .2823836     1.64   0.101    -.0905998    1.016323 
          2  |   2.716577    .323265     8.40   0.000     2.082989    3.350165 
´     genage | 
          1  |  (base)    
          2  |    .245086   1.251388     0.20   0.845     -2.20759    2.697762 
          3  |  -.4940138   .5503273    -0.90   0.369    -1.572635    .5846079 
          4  |    .179786   .6406249     0.28   0.779    -1.075816    1.435388 
          5  |  -.2899853   .5482076    -0.53   0.597    -1.364452    .7844818 
          6  |   .2127169   .6262462     0.34   0.734    -1.014703    1.440137 
          7  |  -.2305881   .5355411    -0.43   0.667    -1.280229    .8190532 
          8  |   .5507988   .5263922     1.05   0.295    -.4809109    1.582509 
          9  |   .0315165   .5884123     0.05   0.957     -1.12175    1.184783 
         10  |   .5572024   .5595749     1.00   0.319    -.5395442    1.653949 
       _cons |  -1.469219    .476301    -3.08   0.002    -2.402752   -.5356865 
------------------------------------------------------------------------------ 

logistic regression in Stata 
logit cancer textile i.alkcon i.genage 

Part of the output:  

Conditional logistic regression 
How 
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------------------------------------------------------------------------------ 
      cancer |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     textile |   .4929143    .410305     1.20   0.230    -.3112687    1.297097 
      alkcon | 
          0  |  (base)    
          1  |    .452672   .2792327     1.62   0.105     -.094614     .999958 
          2  |   2.660894   .3193692     8.33   0.000     2.034942    3.286846 
------------------------------------------------------------------------------ 

 

clogit cancer textile i.alkcon, group(genage) or 
------------------------------------------------------------------------------ 
      cancer | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     textile |    1.63708   .6717022     1.20   0.230      .732517    3.658661 
      alkcon | 
          0  |  (base)    
          1  |   1.572508   .4390957     1.62   0.105      .909724    2.718168 
          2  |   14.30908   4.569879     8.33   0.000     7.651811    26.75835 
------------------------------------------------------------------------------ 

The syntax: 

clogit cancer textile i.alkcon,group(genage) 

Part of the output:  

Conditional logistic regression in Stata 
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Other methods to analysis of binary response data 
Relative Risk models 

Logistic regression model focus on the Odds Ratios 

This is the correct thing to do in case-control 
studies. 

In follow-up studies Relative Risk is often the 
appropriate measure of association, (personal risk). 

I.e. a model like this might be more relevant:  

  0 1 2 3Pr event p RR RR RR   

    
1

ln Pr event given the covariates
p

i

ii x 


  

          0 1 2 3ln Pr ln ln ln lnevent p RR RR RR   

That is linear on log-probability scale 
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Other methods to analysis of binary response data 
Risk difference models 

Logistic regression model focus on the Odds Ratios 

This is the correct thing to do in case-control 
studies. 

In follow-up studies Risk Difference is often the 
appropriate measure of association, (community 
effect). 

I.e. a model like this might be more relevant:  

  0 1 2 3Pr event p RD RD RD   

That is linear on probability scale 

   
1

Pr event given the covariates
p

i

ii x 


  
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Other methods to analysis of binary response data 
Estimatong RR or RD models 

The Relative Risk models and the Risk Difference models 
can be estimated in many programs using what is called 
Generalized (not general) Linear Models.  

In Stata this is most easily done by the binreg command 
with the option rr og rd. 

But be careful – estimation procedure might not 
work/converges, as  
 the risk of the event in a RR-model is not  
 restricted to be below one. 
 the risk of the event in a RD-model is not  
 restricted to be positive or below one. 
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Other methods to analysis of binary response data 

Three different models for Obese “=“ sex “+” age 

Plot01 
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Missing data – example 1 

Consider the Frammingham study and imagine, that (due to a 
limited budget) only 500 measurements of SBP were allowed. 

It was decided to take SBP measurements on 100 random 
participants in each of the age groups -40 and 60+ and 150 in 
each of the age groups 40-50 and 50-60. 

That is we have missing SBP on 4190 of the 4,690 participants! 

A short description of the design and the data: 
---------------------------------------------------------- 
   agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp) 
----------+----------------------------------------------- 
       0- |      1,325         100      122.18    15.4327 
      40- |      1,684         150      130.85    22.2366 
      50- |      1,346         150      140.93    22.4819 
      60- |        335         100      149.51    26.9251 
          |  
    Total |      4,690         500      135.87    24.0783 
---------------------------------------------------------- 
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Missing data – example 1 

We note: 
This is not a completely random sample  
– the chance of being sample depends on age group! 

 The overall (total) average SBP is a biased estimate of the 
mean SBP among participants in the Frammingham study! 

 I.e. an analysis of the 500 participants (a complete data 
analysis) will be biased. 

---------------------------------------------------------- 
   agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp) 
----------+----------------------------------------------- 
       0- |      1,325         100      122.18    15.4327 
      40- |      1,684         150      130.85    22.2366 
      50- |      1,346         150      140.93    22.4819 
      60- |        335         100      149.51    26.9251 
          |  
    Total |      4,690         500      135.87    24.0783 
---------------------------------------------------------- 
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Missing data – example 1 

We also note: 
Within each age group the sample is completely random. 

 Within each age group the average SBP is an unbiased 
estimate of the mean SBP in the age group.  

 We know the size of each age group.  

 We can calculate an unbiased estimate of the total mean 
by weighing the group averages. 

---------------------------------------------------------- 
   agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp) 
----------+----------------------------------------------- 
       0- |      1,325         100      122.18    15.4327 
      40- |      1,684         150      130.85    22.2366 
      50- |      1,346         150      140.93    22.4819 
      60- |        335         100      149.51    26.9251 
          |  
    Total |      4,690         500      135.87    24.0783 
---------------------------------------------------------- 
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Missing data – example 1 

122.18 130.85 140.93 149.1325 1684 1346 335

469

51
132.62

0

      


An unbiased estimate can be found as the weighted average 
of the group averages using the group sizes as weights: 

Conclusion: Although this is not a completely random sample, 
we have enough information in the data to find an unbiased 
estimate!!!! 
(Assuming completely random sample within age group!) 

---------------------------------------------------------- 
   agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp) 
----------+----------------------------------------------- 
       0- |      1,325         100      122.18    15.4327 
      40- |      1,684         150      130.85    22.2366 
      50- |      1,346         150      140.93    22.4819 
      60- |        335         100      149.51    26.9251 
          |  
    Total |      4,690         500      135.87    24.0783 
---------------------------------------------------------- 
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Assuming that SBP is related to age: 

Being missing is not independent of the unobserved SBP. 

but 

Being missing is independent of the unobserved SBP,  
  when we know the age group of the individual. 

The first statement means that the data is not missing 
completely at random (MCAR). 

The second statement corresponds to missing at random 
(MAR), i.e. that given all what we have observed (including 
age group), then the missingness is (completely) random, i.e. 
independent of the unobserved data. 

Mathematically Missing At Random implies that one (in 
theory) has enough information in the observed data to 
correct for the missing data – in principle. 
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Missing completely at random (MCAR).  
The observed data is a (completely) random sample: 
 A complete data analysis will be unbiased 

Missing at random (MAR) 
Given all what we have observed, then the missingness 
is (completely) random (independent of the unobserved 
data): 
The biased sampling might be adjusted for. 

Missing not at random (MNAR)  
Non of the two above apply: 
We will need further assumptions in order to analyse 
the data. 

Missing data: Standard terminology 
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When the data is missing at random, then one can, in 
theory, make unbiased inference based on the observed 
data. 

In the SBP example such an analysis could be to use the 
weighted average SBP instead of the biased unweighted 
average. 

In general  

If the sampled persons are not a completely random sample, 

but the ith person is sampled with a known probability, pi , 

then we can obtain unbiased estimates by weighing the ith 
person with 1/pi . 

The method is called Inverse Probability Weighing. 

Missing at random 
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The SBP data:  
Four different sampling probabilities and weights: 

Inverse probability weighting 

0 0 0

1 1 1

2 2 2

3 3 3

100 1325 0.0755 1 13.25

150 1684 0.0891 1 11.23

150 1346 0.1114 1 8.97

100 335 0.2985 1 3.35

p w p

p w p

p w p

p w p

   

   

   

   

That is information from each of the youngest should 
weight by 13.25 and information from the each of the 
oldest should weight by 3.35.  
Sampling weights can be used in many Stata commands: 
 mean sbp [pw= sampw] 
Mean estimation                     Number of obs    =     500 
-------------------------------------------------------------- 
             |       Mean   Std. Err.     [95% Conf. Interval] 
-------------+------------------------------------------------ 
         sbp |   132.6242   1.032943      130.5947    134.6536 
-------------------------------------------------------------- 
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Missing values – not by design 
Most often the missing is not per design  
and both in the outcome and in the covariates: 

id y x1 x2 x3 

1 o o o o 

2 o m o o 

3 m o o o 

4 m m o o 

5 o o o o 

6 o m m o 

Here we have only complete data on 2 persons, but partial 
information on 4 additoinal persons. 

o observed 

m observed 
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Missing values – not by design 

If the missing is completely at random,  
then the analysis of the complete cases  
will be unbiased. 

If this is not the case, then complete  
data analysis can give biased estimates. 

If the data is missing at random, then  
it is in theory possible to make an  
unbiased analysis of all the data. 

id y x1 x2 x3 

1 o o o o 

2 o m o o 

3 m o o o 

4 m m o o 

5 o o o o 

6 o m m o 
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Imputation 

One way to try solve the problem with  
missing is to fill in the data for the missing 
values and then make the analysis on the  
whole data set with the ‘imputed’ values. 

The imputation can be done in many ways. 

One way is to fill in an “average” value. 

id y x1 x2 x3 

1 o o o o 

2 o m o o 

3 m o o o 

4 m m o o 

5 o o o o 

6 o m m o 

id y x1 x2 x3 

1 o o o o 

2 o a1 o o 

3 ay o o o 

4 ay a1 o o 

5 o o o o 

6 o a1 a2 o 

This could be the total average of the  
observed values for the specific variable or  
the average in a relevant subgroup. 

This method will not in general solve the bias problem. 

And of course the standard error stated in the output, 
when you analyse the imputed data set, is wrong. 
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Imputation by observed mean in age group: 
bysort agegrp: egen msbp=mean(sbp) 
generate isbp=sbp 
replace isbp=msbp if missing(sbp) 
 
mean isbp 
Mean estimation                     Number of obs    =    4690 
-------------------------------------------------------------- 
             |       Mean   Std. Err.     [95% Conf. Interval] 
-------------+------------------------------------------------ 
        isbp |   132.6242   .1627486      132.3051    132.9432 
-------------------------------------------------------------- 

Correct analysis using sampling weights: 
mean sbp [pw=sampw] 
Mean estimation                     Number of obs    =     500 
-------------------------------------------------------------- 
             |       Mean   Std. Err.     [95% Conf. Interval] 
-------------+------------------------------------------------ 
         sbp |   132.6242   1.032943      130.5947    134.6536 
-------------------------------------------------------------- 

The missing SBP example 

Correct mean,  but a much too small standard error –  
incorrectly assuming 4690 independent observations. 
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Imputation – random multiple 

A fixed imputation will not take into account 
the random variation of the unobserved 
observation or the uncertainty of the  
parameters. 

Imputation methods should add some random 
variation to the imputed data. 

For that we need a statistical model for the missing data.  

In multiple imputations one generates several imputed data 
sets. 

For each imputed data set one fit the model of interest. 

The point estimate, then the average across the imputed data 
sets. 

One tricky thing is calculation of the standard errors. 

id y x1 x2 x3 

1 o o o o 

2 o m o o 

3 m o o o 

4 m m o o 

5 o o o o 

6 o m m o 
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Multiple imputations 

Questions: 

How to find the models from which to  
generate the missing data? 

How should you handle missing data in this 
process? 

How to find the uncertainty (standard errors) of the 
estimates? 

Bookkeeping.  

 

Most important: Missing at random is required! 

id y x1 x2 x3 

1 o o o o 

2 o m o o 

3 m o o o 

4 m m o o 

5 o o o o 

6 o m m o 
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use sbpdata,clear 
mi set mlong 
mi register imputed sbp 
(4190 m=0 obs. now marked as incomplete) 
 
 mi impute regress sbp i.agegrp, add(20) 
 
Univariate imputation                   Imputations =       20 
Linear regression                             added =       20 
Imputed: m=1 through m=20                   updated =        0 
               |              Observations per m               
               |---------------------------------------------- 
      Variable |   complete   incomplete   imputed |     total 
---------------+-----------------------------------+---------- 
           sbp |        500         4190      4190 |      4690 
-------------------------------------------------------------- 
(complete + incomplete = total; imputed is the minimum across m 
 of the number of filled in observations.) 

The missing SBP example 
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codebook, comp 
 
Variable     Obs Unique      Mean       Min   Max  Label 
-------------------------------------------------------------------------------- 
sbp        84300  83383  132.3204  44.52609   270  Systolic Blood Pressure 
id         88490   4690  2352.429         1  4699   
agegrp     88490      4  1.107481         0     3   
_mi_id     88490   4690  2357.795         1  4690   
_mi_miss    4690      2  .8933902         0     1   
_mi_m      88490     21  9.943496         0    20   
-------------------------------------------------------------------------------- 
 
sum if _mi_m==1 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         sbp |      4190    131.2507    21.65931   59.92363   209.6556 
          id |      4190    2352.611     1359.59          2       4699 
      agegrp |      4190    1.105251    .8895275          0          3 
      _mi_id |      4190    2358.483    1331.661        101       4690 
    _mi_miss |         0 
       _mi_m |      4190           1           0          1          1 
 

The missing SBP example 
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. table agegrp if _mi_m>0, c(count sbp mean sbp sd sbp) 
 
---------------------------------------------- 
   agegrp |     N(sbp)   mean(sbp)     sd(sbp) 
----------+----------------------------------- 
       0- |     24,500    121.5843    22.32535    20*1225=24500 
      40- |     30,680    131.1271    22.37045 
      50- |     23,920    141.2539    22.4434 
      60- |      4,700    150.2313    22.19089    20*235=4700 
---------------------------------------------- 
 
. table agegrp if _mi_m==0,c(count sbp mean sbp sd sbp) 
 
---------------------------------------------- 
   agegrp |     N(sbp)   mean(sbp)     sd(sbp) 
----------+----------------------------------- 
       0- |        100      122.18    15.4327 
      40- |        150      130.85    22.2366 
      50- |        150      140.93    22.4819 
      60- |        100      149.51    26.9251 
---------------------------------------------- 
 

The missing SBP example 
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mi estimate: mean sbp 
 
Multiple-imputation estimates                     Imputations     =         20 
Mean estimation                                   Number of obs   =       4690 
                                                  Average RVI     =     7.4275 
                                                  Complete DF     =       4689 
DF adjustment:   Small sample                     DF:     min     =      23.43 
                                                          avg     =      23.43 
Within VCE type:     ANALYTIC                             max     =      23.43 
 
------------------------------------------------------------------------------ 
        Mean |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         sbp |   132.6799   1.017506   130.40   0.000     130.5772    134.7826 
------------------------------------------------------------------------------ 

The missing SBP example 

Correct analysis using sampling weights: 
mean sbp [pw=sampw] 
Mean estimation                     Number of obs    =     500 
-------------------------------------------------------------- 
             |       Mean   Std. Err.     [95% Conf. Interval] 
-------------+------------------------------------------------ 
         sbp |   132.6242   1.032943      130.5947    134.6536 
-------------------------------------------------------------- 
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use sbp2data,clear 
codebook,comp 
 
Variable    Obs Unique      Mean   Min   Max  Label 
-------------------------------------------------------------------------------- 
sex        4188      2  1.566141     1     2  Sex 
sbp        4216    112  132.6945    80   270  Systolic Blood Pressure 
dbp        4281     67  82.62766    40   148  Diastolic Blood Pressure 
scl        4192    244  228.2011   115   568  Serum Cholesterol 
age        4245     37   46.0636    30    66  Age in Years 
bmi        4218    245  25.63148  16.2  57.6  Body Mass Index 
id         4690   4690  2349.172     1  4699   
-------------------------------------------------------------------------------- 
xi:regress sbp age i.sex 
i.sex             _Isex_1-2           (naturally coded; _Isex_1 omitted) 
      Source |       SS       df       MS              Number of obs =    3406 
-------------+------------------------------           F(  2,  3403) =  320.62 
       Model |  281261.425     2  140630.713           Prob > F      =  0.0000 
    Residual |  1492627.36  3403  438.621029           R-squared     =  0.1586 
-------------+------------------------------           Adj R-squared =  0.1581 
       Total |  1773888.79  3405   520.96587           Root MSE      =  20.943 
------------------------------------------------------------------------------ 
         sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   1.072026   .0423621    25.31   0.000     .9889686    1.155084 
     _Isex_2 |   .2701054   .7247534     0.37   0.709    -1.150891    1.691101 
       _cons |   83.39557   2.017962    41.33   0.000     79.43903    87.35211 
------------------------------------------------------------------------------ 

A more complicated example 
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misstable pattern sbp age sex,freq 
 
   Missing-value patterns 
     (1 means complete) 
 
              |   Pattern 
    Frequency |  1  2  3 
  ------------+------------- 
        3,406 |  1  1  1 
              | 
          407 |  1  1  0 
          386 |  1  0  1 
          359 |  0  1  1 
           46 |  1  0  0 
           44 |  0  1  0 
           37 |  0  0  1 
            5 |  0  0  0 
  ------------+------------- 
        4,690 | 
 
  Variables are  (1) age  (2) sbp  (3) sex 

A more complicated example 
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mi set mlong 
mi ice sbp age o.sex bmi dbp scl       , add(20)  
   #missing | 
     values |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |      2,489       53.07       53.07 
          1 |      1,670       35.61       88.68 
          2 |        467        9.96       98.64 
          3 |         60        1.28       99.91 
          4 |          4        0.09      100.00 
------------+----------------------------------- 
      Total |      4,690      100.00 
 
   Variable | Command | Prediction equation 
------------+---------+------------------------------------------------------- 
        sbp | regress | age _Isex_2 bmi dbp scl 
        age | regress | sbp _Isex_2 bmi dbp scl 
        sex | ologit  | sbp age bmi dbp scl 
    _Isex_2 |         | [Passively imputed from (sex==2)] 
        bmi | regress | sbp age _Isex_2 dbp scl 
        dbp | regress | sbp age _Isex_2 bmi scl 
        scl | regress | sbp age _Isex_2 bmi dbp 
------------------------------------------------------------------------------ 
 

A more complicated example 
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codebook,comp 
 
Variable     Obs Unique      Mean       Min       Max  Label 
-------------------------------------------------------------------------------- 
sex        48208      2  1.568682         1         2  Sex 
sbp        48236   9585  132.3171  55.04445       270  Systolic Blood Pressure 
dbp        48301   8239  82.44462  39.00607       148  Diastolic Blood Pressure 
scl        48212  10200  227.2202  71.84563       568  Serum Cholesterol 
age        48265   8932  45.94714  14.28921  83.50232  Age in Years 
bmi        48238   9679  25.52701  10.58046      57.6  Body Mass Index 
id         48710   4690  2348.166         1      4699   
_mi_id     48710   4690  2330.321         1      4690   
_mi_miss    4690      2  .4692964         0         1   
_mi_m      48710     21  9.489017         0        20   
-------------------------------------------------------------------------------- 

A more complicated example 
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A more complicated example 

 mi estimate: regress sbp age sex 
 
Multiple-imputation estimates                     Imputations     =         20 
Linear regression                                 Number of obs   =       4690 
                                                  Average RVI     =     0.1115 
                                                  Complete DF     =       4687 
DF adjustment:   Small sample                     DF:     min     =     784.98 
                                                          avg     =     982.49 
                                                          max     =    1366.36 
Model F test:       Equal FMI                     F(   2, 1480.0) =     397.31 
Within VCE type:          OLS                     Prob > F        =     0.0000 
 
------------------------------------------------------------------------------ 
         sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         age |   1.074694   .0376721    28.53   0.000     1.000792    1.148595 
         sex |   .2725589   .6618376     0.41   0.681    -1.026622     1.57174 
       _cons |    82.8989   2.061978    40.20   0.000     78.85135    86.94646 
------------------------------------------------------------------------------ 
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A statistical model: 

Systematic part 

Random part 
X This is not needed 

due to the binomial 
error 

Clustered data / data with several random components 
Dichotomous outcome 
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That is, an ordinary logistic regression + random components. 

•A generalized linear mixed model 

•A multilevel model for dichotomous outcome 

Comments 1: 

•It is important to include the relevant random 
components in the model. 

•‘Multilevel models’ is essential in medical/epidemiological 
research. 

Clustered data / data with several random components 
Dichotomous outcome 
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Comments 2: 

•The theory and insight into the models for non-normal 
data are not yet fully developed. 

•The main problem being that it is very difficult to find 
valid (unbiased) estimates. 

•Several software programs falsely claim to estimate the 
models.  

•Some programs like Stata and NLwin can give you valid 
estimates if you take care and have a lot of data.  

Advice: 
Do not try to estimate this kind of models without consulting 
a specialist. 

Clustered data / data with several random components 
Dichotomous outcome 
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If the models only involve one random component, e.g. 
variation between families or between GP’s, 

then methods exist which can adjust the standard errors. 

Remember that if the data contains clusters, then the 
precision of the estimates are overestimated, that is, the 
reported standard errors are too small. 

So-called robust methods or sandwich estimates of the 
standard errors will (try to) adjust for this problem. 

Only a few programs have this option – Stata does! 

 

Clustered data / data with one random components 
Dichotomous outcome 


