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Linear and Logistic regression - Note 6

The lincom command after logit or regress
Consider the model:
logit(Pr(obeSe)) =B, + 3, - woman + f3, - (age —45)

obese | coef. std. Err. z P>z [95% Conf. Interval]
+
sex |
1 | (base)
2 | .2743976  .0903385 3.04 0.002 .0973374 4514579
|
age45 | .0344723 .0051354 6.71  0.000 0244072 .0445374

_cons | -2.147056  .0721981 -29.74  0.000 -2.288561 -2.00555

Here men are reference.

If we want to find the log odds for a 45 year old women
we can calculate by hand —2.147+0.274=—1.873

But what about confidence interval?

We could change the reference to women and fit the
model once more.
But.....
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The lincom command affer logit or regress
logit(Pr(obese)) = B, + 3, - woman + f3, -(age — 45)
Stata has a command that can be used for this: “lincom"

Tincom _cons+2.sex

( 1) [obese]2.sex + [obese]_cons = 0

obese | coef. std. Err. z P>z| [95% conf. Interval]

+
(@ | -1.872658 .058136  -32.21  0.000 -1.986602 -1.758714

To get to the risk/probability with confidence interval:
disp invlogit(r(estimate))
.13323448

disp inviogit(r(estimate)-1.96*r(se)) ";“ ///
invlogit(r(estimate)+1.96*r(se))
.12061656 ; .1469518
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The lincom command after logit or regress
logit(Pr(obese)) = B, + 3, - woman + f3, - (age — 45)
Some examples:
Log Odds for a 42 year old woman:

Tincom _cons+2.sex-age45*3

(1) [obese]2.sex - 3*[obeselage45 + [obese]_cons = 0

obese | Coef. std. Err. z P>|z| [95% conf. Interval]

(1) | -1.976075 .0639755 -30.89  0.000 -2.101465  -1.850685

Odds ratio for 4.5 age difference:

Tincom age45%4.5,0r
(1) 4.5%[obese]age45 = 0

obese | odds Ratio scd/{rr. z  Pslzl  [95% conf. Interval]
| 1.167804 -%9869 6.71 0.000 1.116091 1.221914
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Logistic regression models: Do you have enough data?

All inference in logistic regression models are based on
asymptotics, i.e. assuming that you have a lot of data!

Rule of thumb:
You should have at least 15 events per variable
(parameter) in the model.

A large standard error typical indicates that you have too
little information concerning the variable and that the
estimate and standard error are not valid.

Lower your ambitions or get more data !
An exact method exists.

But it will also give wide confidence intervals.
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Logistic regression models: Diagnostics
In the linear regression we saw some example of statistics:
residuals, standardized residuals and leverage

which can be used in the model checking and search for
strange or influential data points.

Such statistics can also be defined for the logistic regression
model.

But they are much more difficult to interpret and cannot in
general be recommended.

Checking the validity of a logistic regression model will mainly
be based on comparing it with other more complicated models.
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Logistic regression models: Test of fit

A common, and to some extend informative, test of fit is the
Hosmer-Lemeshow test.

Consider the model for obesity from Day 4
logit(Pr(obeSe)) = B, + B, - woman + 3, - (age — 45)
Logit estimates

Number of obs = 4

LR chi2(2) = 55.68

Prob > chi2 = 0.0000
Log 1ikelihood = -1767.7019 do—R2 = 0355

7777777777777777777777777777777777777 Psetdo—Ra— +55
obese | coef. std. Err. z P>|z| [9, conf. Interval]
- S S

sex |

1 | (base)

2 | .2743976  .0903385 3.04 0.002 .0973374 4514579

|
age45 | .0344723 .0051354 6.71  0.000 .0244072 .0445374
_cons | -2.147056 .0721981 -29.74  0.000 -2.288561 -2.00555

Significantly better than nothing - but is it good?
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Logistic regression models: Test of fit

What about comparing the estimated prevalence with the
observed prevalence?

In the Hosmer-Lemeshow test the data is divided into groups
(traditionally 10) according to the estimated probabilities

and the observed and expected counts are compared in these
groups by a chi-square test.

Most programs, that can fit a l&gistic regression model, can
calculate this test.

In Stata it is done by (after fitting the model):
estat gof, group(10) table

The data is divided into deciles after the estimated
probabilities.
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Logistic regression models: Test of fit

OUTPUT

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

| Group | Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|------- +o—m - +-- oo e +-- - -
| 1] 0.0841 | | | 526 |
| 2 ] 0.0953 | | | 496 |
| 3 | 0.1045 | | | 442 |
| 4 ] 0.1112 | | | 464 |
| 5 1 0.1217 | | | 438 |
| 6 | 0.1332 | | 493 |
| 7 | 0.1456 | | 442 |
| 8 ] 0.1592 | | 454 |
| 9 | 0.1834 | 522 |
| 10 | 0.2407 | 413 |
number of observations One pr‘obl_em.
number of groups = 10 Too many in
Hosmer-Lemeshow chi2(8) = 26.01 i
Prob > chi2 = 0.0010 the tails

ISignificanT difference between observed and expected!
Morten Frydenberg
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Logistic regression models: Test of fit
Tlogit obese 1.sex##age45
estat gof, group(10) table
Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

| Group | prob | obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-=——--- i S + + + + |
| 1] 0.0796 | 36 | 35.9 | 466 | 466.1 | 502 |
| 2 | 0.1011 | 42 | 41.1 | 406 | 406.9 | 448 |
| 3 | 0.1053 | 49 | 49.6 | 429 | 428.4 | 478 |
| 4] 0.1096 | 50 | 54.8 | 458 | 453.2 | 508 |
| 5 | 0.1124 | 52 | 54.2 | 436 | 433.8 | 488 |
| 6 | 0.1153 | 51 | 46.4 | 355 | 359.6 | 406 |
| 7 | 0.1182 | 52 | 53.9 | 410 | 408.1 | 462 |
| 8 | 0.1590 | 76 | 70.3 | 428 | 433.7 | 504 |
| 9 ] 0.2133 | 96 | 91.8 | 391 | 395.2 | 487 |
| 10 | 0.3310 | 97 | 103.0 | 310 | 304.0 | 407 |
B +
number of observations = 4690
number of groups = 10
Hosmer-Lemeshow chi2(8) = 2.43
Prob > chi2 = 0.9650

The model ‘fits’ - when we look at it this way !
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Conditional logistic regression
When

Used in two situations:
1. Matched studies (binary response).

2.Unmatched studies with a confounder with many
distinct values.

In 1. the models correspond to the way data was collected.

In 2. the method adjust for a ‘'mathematical’ flaw in the
unconditional method.

An example of situation 2:
The confounder is “kommune” having 275 distinct values.
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Conditional logistic regression
What

The logistic regression model (outcome disease yes/no):
ln(odds):a+i(ﬁ, -x;)
i=1
In(odds) in reference In(odds ratios)
Suppose the model above hold in each strata:

In(odds) = c, +§(/J’, -x;)
i

In(odds) in reference In(odds ratios)
different in each strata the same in each strata
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Conditional logistic regression
What

In(odds) = c, +§:(,b’, -x;)
par}

In(odds) different in each strata
We are not interested in these !
In a matched study these are 'controlled'.

In a conditional logistic regression one ‘condition on the
odds in each strata’, i.e. the case/control ratio.

In the conditional model the «'s disappear !

The p's , the log OR's, are still in and can be estimated.
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Conditional logistic regression
How

A study of cancer in the oral cavity
Matched on gender and 10-year age groups
Ten strata (genage)

Here we focus on

textile-worker and

Jife time consumption of alcohol (three groups)

Conditional logistic regression
How
logistic regression in Stata
Togit cancer textile 1i.alkcon 1i.genage

Part of the output:

cancer | coef. std. Err. z P>|z| CcI
textile | .5022796 .4141317 1.21  0.225 -.3094036 1.313963
alkcon |
0 | (base)
1| .4628618 .2823836 1.64 0.101 -.0905998 1.016323
2 | 2.716577 323265 8.40  0.000 2.082989 3.350165
genage |

2| 1.251388 2.697762
3 35 .5846079

4 | .179786 .64 -1.075816 1.435388

5 | -.2899853 5482076 -1.364452 7844818

6 | .2127169  .6262462 -1.014703  1.440137

7 | -.2305881 53554, 0. =1.280229 .8190532

8 | .5507988 1. 0. ) 9 1.582509

9 | .5884123 0.05 0.957 -1.12175 184783

10 | .5595749 1.00 0.319 -.5395442 1.

_ ~1.469219  .476301  -3.08 0.002  -2.402752  -.5356865
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Conditional logistic regression in Stata
The syntax:

clogit cancer textile i.alkcon, group(genage)
Part of the output:

cancer | Coef.  std. Err. z P>|z| [95% conf. Interval]
+
textile | .4929143 .410305 1.20 0.230 -.3112687 1.297097
alkcon |
0 | (base)
1] .452672 .2792327 1.62 0.105 -.094614 1999958
2 | 2.660894  .3193692 8.33  0.000 2.034942 3.286846

clogit cancer textile i.alkcon, group(genage) or

cancer | odds Ratio std. Err. z P>|z| [95% conf. Interval]
+
textile | 1.63708  .6717022 1.20 0.230 .732517 3.658661
alkcon |
0 | (base)
1] 1.572508  .4390957 1.62 0.105 .909724 2.718168
2 | 14.30908  4.569879 8.33  0.000 7.651811 26.75835
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Other methods to analysis of binary response data
Relative Risk models

Logistic regression model focus on the Odds Ratios

This is the correct thing to do in case-control
studies.

In follow-up studies Relative Risk is often the
appropriate measure of association, (personal risk).

L.e. a model like this might be more relevant:
Pr(event) = p,x RR x RR, x RR,
In{Pr(event)} =In(p,)+In(RR )+In(RR,)+In(RR,)
In{Pr(event given the covariates)} = + 2(,6 -x,)
i=l

That is linear on log-probability scale
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Other methods to analysis of binary response data Other methods to analysis of binary response data
Risk difference models Estimatong RR or RD models
Logistic regression model focus on the Odds Ratios The Relative Risk models and the Risk Difference models
This is the correct thing to do in case-control can be estimated in many programs using what is called
studies. Generalized (not general) Linear Models.
In follow-up studies Risk Difference is often the In Stata this is most easily done by the binreg command
appropriate measure of association, (community with the option rrog rd.
effect). But be careful - estimation procedure might not
I.e. a model like this might be more relevant: work/converges, as
the risk of the event in a RR-model is not
Pr(event) = p, + RD, + RD, + RD, restricted to be below one.
. . p the risk of the event in a RD-model is not
Pr(event given the covariates)=a+Y (3 -x,) restricted to be positive or below one.
i=l

That is linear on probability scale
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Other methods to analysis of binary response data Missing data - example 1

Consider the Frammingham study and imagine, that (due to a

Three different models for Obese "=" sex "+" age limited budget) only 500 measurements of SBP were allowed.

257

—— OR-men —— OR-women s
—== RR-men ——— RR-women
RD - men RD - women

It was decided to take SBP measurements on 100 random
participants in each of the age groups -40 and 60+ and 150 in
each of the age groups 40-50 and 50-60.

That is we have missing SBP on 4190 of the 4,690 participants!
A short description of the design and the data:

agegrp | Freq. N(sbp) mean(sbp) sd(sbp)
RE Potor | | | Tt Ao e e
0- | 1,325 100 122.18 15.4327
40- | 1,684 150 130.85 22.2366
50- | 1,346 150 140.93 22.4819
054 60- | 335 100 149.51 26.9251
= T T T T T T T T |
30 35 40 45 50 55 60 65 70 Total | 4,690 500 135.87 24.0783
AgeinYears || mmmmmm oo
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Missing data - example 1 Missing data - example 1
agegrp | Freq. N(sbp)  mean(sbp) sd(sbp) agegrp | Freq. N(sbp)  mean(sbp) sd(sbp)
__________ T T
0- | 1,325 100 122.18 15.4327 0- | 1,325 100 122.18 15.4327
40- | 1,684 150 130.85 22.2366 40- | 1,684 150 130.85 22.2366
50- | 1,346 150 140.93 22.4819 50- | 1,346 150 140.93 22.4819
60- | 335 100 149.51 26.9251 60- | 335 100 149.51 26.9251
| |
Total | 4,690 500 135.87 24.0783 Total | 4,690 500 135.87 24.0783
We note: We also note:
This is not a completely random sample Within each age group the sample is completely random.

- i I
the chance of being sample depends on age group! Within each age group the average SBP is an unbiased

The overall (total) average SBP is a biased estimate of the estimate of the mean SBP in the age group.

- ; ; |
mean SBP among participants in the Frammingham study! We know the size of each age group.

IL.e. an analysis of the 500 participants (a complete data

analysis) will be biased. We can calculate an unbiased estimate of the total mean

by weighing the group averages.
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Missing data - example 1

agegrp | Freq. N(sbp) mean(sbp) sd(sbp)
0- | 1,325 100 122.18 15.4327
40- | 1,684 150 130.85 22.2366
50- | 1,346 150 140.93 22.4819
60- | 335 100 149.51 26.9251

|
Total | 4,690 500 135.87 24.0783

of the group averages using the group sizes as weights:

122.18-1325+130.85-1684+140.93-1346+149.51-335
4690

estimatellll
(Assuming completely random sample within age group!)
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An unbiased estimate can be found as the weighted average

=132.62

Conclusion: Although this is not a completely random sample,
we have enough information in the data to find an unbiased

25

Assuming that SBP is related to age:
Being missing is not independent of the unobserved SBP.
but

Being missing is independent of the unobserved SBP,
when we know the age group of the individual.

The first statement means that the data is not missing
completely at random (MCAR).

The second statement corresponds to missing at random
(MAR), i.e. that given all what we have observed (including
age group), then the missingness is (completely) random, i.e.
independent of the unobserved data.

Mathematically Missing At Random implies that one (in
theory) has enough information in the observed data to
correct for the missing data - in principle.
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Missing data: Standard terminology

Missing completely at random (MCAR).
The observed data is a (completely) random sample:
A complete data analysis will be unbiased

Missing at random (MAR)

is (completely) random (independent of the unobserved
data):
The biased sampling might be adjusted for.

Missing not at random (MNAR)

Non of the two above apply:

We will need further assumptions in order to analyse
the data.
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Given all what we have observed, then the missingness
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Missing at random

When the data is missing at random, then one can, in
theory, make unbiased inference based on the observed
data.

In the SBP example such an analysis could be to use the
weighted average SBP instead of the biased unweighted
average.

In general

If the sampled persons are not a completely random sample,
but the ith person is sampled with a known probability, p; ,
then we can obtain unbiased estimates by weighing the ith
person with 1/p; .

The method is called Inverse Probability Weighing.
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Inverse probability weighting

The SBP data:
Four different sampling probabilities and weights:

p, =100/1325=0.0755 w, =1/p, =13.25

p,=150/1684=0.0891 w, =1/p, =11.23

p, =150/1346=0.1114 w, =1/p, =8.97

p, =100/335 =0.2985  w, =1/p, =3.35
That is information from each of the youngest should
weight by 13.25 and information from the each of the
oldest should weight by 3.35.
Sampling weights can be used in many Stata commands:

mean sbp [pw= sampw]

Mean estimation Number of obs = 500

| Mean std. Err. [95% conf. Interval]

+
sbp | 132.6242  1.032943 130.5947 134.6536

Morten Frydenberg Linear and Logistic regression - Note 6
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Missing values - not by design
Most often the missing is not per design
and both in the outcome and in the covariates:

id|y | x;|x,|x;
1/ojojo]o O observed
2/o/m|jo|o m observed
3/miojo|o
4/ mim|o|o
5/o0|o|o|o0
6|/o/m/m|o

Here we have only complete data on 2 persons, but partial
information on 4 additoinal persons.
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Missing values - not by design Imputation TS T T
If the missing is completely at random, One way to try solve the problem with ; °orelele
. i y X, X . . . . . . . o a. o o
then the analysis of the complete cases ’1" AR missing is to fill in the data for the missing [—4——_
. . o o o o .
will be unbiased. oo oS values and then make the analysis on the o ol
- whole data set with the ‘imputed’ values. S
If this is not the case, then complete 3|mjojo]o mp Slojojojo
data analysis can give biased estimates. 4fmimjojo The imputation can be done in many ways. Slojal@]o
5|o|lo|o]o
If the data is missing at random, then 6o m[m|o One way is to fill in an “average” value.
it is in theory possible to make an
unbiased analysis of all the data. This could be the total average of the
observed values for the specific variable or
the average in a relevant subgroup.
This method will not in general solve the bias problem.
And of course the standard error stated in the output,
when you analyse the imputed data set, is wrong.
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The missing SBP example Imputation - random multiple —T——1——
Imputation by observed mean in age group: o _ ) SToTo
bysf,t agegrp: den msbp=mean (sbp) ge group A fixed umpu‘ra‘flor) will not take into account ; Z .: Z Z
generate isbp=sbp (sbo) the random variation of the unobserved 5
replace 1sbp=ms 1 missing(s: . . m o o o
P pensoe gtsop observation or the uncertainty of the P
mean isbp arameters.
Mean estimation Number of obs = 4690 P m S5l]ojojo]o
-------------------------------------------------------------- i 6|lo|m|m|o
| e T [95% conf. Tmtervall Imputation me'rhods should add some random
777777777 S — S variation to the imputed data.
ishp | 132.6242 .1627486 132.3051 132.9432 Lo
***************************** For that we need a statistical model for the missing data.
Correct mean, but a much too small standard error - In multiple imputations one generates several imputed data
incorrectly assuming 4690 independent observations. sets P P 9 P
Correct analysis using sampling weights: o . ‘
mean sbp [pw=sampw] For each imputed data set one fit the model of interest.
Mean estimation Number of obs = 500
| PN [95% comf. tnterval] The point estimate, then the average across the imputed data
,,,,,,,,,,,,, oo ol sets.
sbp | 132.6242 1.032943 130.5947  134.6536 ) o .
————————————————————————————— One tricky thing is calculation of the standard errors.
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Multiple imputations T T The missing SBP example
5 % |
Questions: 1]ofojojo use sbpdata,clear
2|lo|m|o|o mi set mlong
. . mi register imputed sbp
How to find The_ mpdels from which to 3 m|ofolo (4190 me0 0bs. now marked as incomplete)
generate the missing data? 4 m|mjolo
L . . 5/ 0|00 o mi impute regress sbp i.agegrp, add(20)
How shq)uld you handle missing data in this 6 o lmlmlo onivariate imputation Imputations - 2
pr‘OCZSS. Linear regression added = 20
. . Imputed: m=1 through m=20 updated = 0
How to find the uncertainty (standard errors) of the | observations per m
. ‘ ____________________
eshmm‘es? variable | complete incomplete imputed | total
. e Fomm -
Bookkeeping. sbp | 500 4190 4190 | 4690
(complete + incomplete = total; imputed is the minimum across m
of the number of filled in observations.)
Most important: Missing at random is required!
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The missing SBP example The missing SBP example
codebook, comp . table agegrp if _mi_m>0, c(count sbp mean sbp sd sbp)
variable Obs unique Mean Min  Max Label
agegrp | N(sbp)  mean(sbp) sd(sbp)
sbp 84300 83383 132.3204 44.52609 270 Systolic Blood Pressure
id 88490 4690 2352.429 1 4699 0- | 24,500 121.5843 22.32535 20*1225=24500
agegrp 88490 4 1.107481 0 3 40- | 30,680 131.1271 22.37045
_mi_id 88490 4690 2357.795 1 4690 50- | 23,920 141.2539 22.4434
_mi_miss 4690 2 .8933902 0 1 60- | 4,700 150.2313 22.19089 20%235=4700
_mi_m 88490 21 9.94349 (1] 20
. table agegrp if _mi_m==0,c(count sbp mean sbp sd sbp)
sum if _mi_m==1
variable | Obs Mean std. Dev. Min Max agegrp | N(sbp) mean (sbp) sd(sbp)
shp | 4190 131.2507 21.65931  59.92363  209.6556 0- | 100 122.18 15.4327
id | 4190 2352.611 1359.59 2 4699 40- | 150 130.85 22.2366
agegrp | 4190 1.105251 8895275 0 3 50- | 150 140.93 22.4819
_mi_id | 4190 2358.483 1331.661 101 4690 60- | 100 149.51 26.9251
_mi_miss | 0
_mi_m | 4190 1 0 1 1
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The missing SBP example A more complicated example
mi estimate: mean sbp use sbp2data,clear
codebook , comp
Mtiple-imputation estinates Inputacions - 20 Variable obs Uniae  Mean Min Max Label
égﬁﬁgiek‘éi - 7'2@23 sex 4188 2 1.566141 1 2 sex
. . ' 7 - sbp 4216 112 132.6945 80 270 Systolic Blood Pressure
OF adjustment:  small sample DF: ZL; = g:é dbp 4281 67 82.62766 40 148 Diastolic Blood Pressure
s . _ N scl 4192 244 228.2011 115 568 serum Cholesterol
within VCE type: ANALYTIC max = 23.43 age 4245 37 46.0636 30 66 Age in Years
l_)mi 4218 245 25.63148 16.2 57.6 Body Mass Index
Mean | Coef.  std. Err. t P>|t] [95% conf. Interval] id 4690 4??? 2349.172 1469
+ : -
xi:regress sbp age i.sex
sbp | 132.6799 1.017506 130.40 0.000 130.5772 134.7826 i.sex Teex 1-2 (naturally coded; _Tsex_1 omitted)
Source | Ss df Ms Number of obs = 3406
. . . . . + FC 2, 3403) 320.62
Correct analysis using sampling weights: Model | 281261.425 2 140630.713 prob > F 0.0000
mean sbp [pw=sampw] Residual | 1492627.36 3403 438.621029 R-squared = 0.1586
Mean estimation Number of obs 500 + Adj R-squared = 0.1581
__________________ . Total | 1773888.79 3405 520.96587 Root MSE = 20.943
_________ I Mean Std:fff:__ [95% conf. Interval] sbp | Coef. std. Err. t P>t [95% conf. Interval]
sbp | 132.6242  1.032943 130.5947  134.6536 age |  1.072026  .0423621  25.31  0.000 .9889686  1.155084
-- - _Isex_2 | .2701054 .7247534 0.37 0.709 -1.150891 1.691101
_cons | 83.39557  2.017962 41.33  0.000 79.43903 87.35211
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A more complicated example A more complicated example
misstable pattern sbp age sex,freq mi set mlong
mi ice sbp age o.sex bmi dbp scl , add(20)
Missing-value patterns #missing |
(1 means complete) values | Freq. Percent Ccum.
| Pattern 01 2,489 53.07 53.07
Frequency | 2 1 1,670 35.61 88.68
777777777777 oo 2 467 9.96 98.64
3,406 | 1 1 1 3] 60 1.28 99.91
| 4] 4 0.09 100.00
47| 11 0 +
36| 1 0 1 Total | 4,690 100.00
359 ] 0 1 1
46| 1 0 O variable | command | Prediction equation
4] 0 1 0 + +
371 0 0 1 sbp | regress | age _Isex_2 bmi dbp scl
51 0 0 0 age | regress | sbp _Isex_2 bmi dbp scl
sex | ologit | sbp age bmi dbp scl
4,690 | _Isex_ 2 | | [Passively imputed from (sex==2)]
bmi | regress | sbp age _Isex_2 dbp scl
variables are (1) age (2) sbp (3) sex dbp | regress | sbp age _Isex_2 bmi scl
scl | regress | shp age _Isex_2 bmi dbp
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A more complicated example

codebook , comp

variable Obs Unique Mean Min Max Label
sex 48208 2 1.568682 1 2 sex
sbp 48236 9585 132.3171 55.04445 270 systolic Blood Pressure
dbp 48301 8239 82.44462 39.00607 148 Diastolic Blood Pressure
scl 48212 10200 227.2202 71.84563 568 Serum cholesterol
age 48265 8932 45.94714 14.28921 83.50232 Age in Years
bmi 48238 9679 25.52701 10.58046 57.6 Body Mass Index
id 48710 4690 2348.166 1 4699
_mi_id 48710 4690 2330.321 1 4690
_mi_miss 4690 2 .4692964 0 1
—mi_m 48710 21 9.489017 0 20
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A more complicated example

mi estimate: regress sbp age sex

Multiple-imputation estimates Imputations = 20
Linear regression Number of obs = 4690
Average RVI = 0.1115

Complete DF = 4687

DF adjustment: small sample DF: min = 784.98
avg = 982.49

max = 1366.36

Model F test: Equal FMI F( 2, 1480.0) = 397.31
within VCE type: oLs Prob > F = 0.0000
sbp | coef. std. Err. t P>|t| [95% conf. Interval]

age | 1.074694 .0376721 28.53  0.000 1.000792 1.148595
sex |  .2725589  .6618376 0.41 0.681 -1.026622 1.57174
_cons 82.8989  2.061978 40.20 0.000 78.85135 86.94646
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Clustered data / data with several random components
Dichotomous outcome

A different outcome:

I 1 if the person has hayfewer

=
% 0 else

A statistical model:

Systematic part

logit(pr[, :1):|ﬁo P A+ Py U+, A+ fs-S+ ;-G

Random part This is not needed

due to the binomial

Clustered data / data with several random components
Dichotomous outcome

logit (H jy =1)= o+ B, -1+, -U+B,-A+fs-S+ ;-G
+F,+ P,
That is, an ordinary logistic regression + random components.
+A generalized linear mixed model
A multilevel model for dichotomous outcome
Comments 1:

+It is important to include the relevant random
components in the model.

error +'Multilevel models' is essential in medical/epidemiological
research.
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Clustered data / data with several random components
Comments 2: Dichotomous outcome
+The theory and insight into the models for non-normal
data are not yet fully developed.

+The main problem being that it is very difficult to find
valid (unbiased) estimates.

-Several software programs falsely claim to estimate the
models.

+Some programs like Stata and NLwin can give you valid
estimates if you take care and have a lot of data.

Advice:

Do not try to estimate this kind of models without consulting
a specialist.
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Clustered data / data with one random components
Dichotomous outcome

If the models only involve one random component, e.g.
variation between families or between GP's,

then methods exist which can adjust the standard errors.

Remember that if the data contains clusters, then the
precision of the estimates are overestimated, that is, the
reported standard errors are too small.

So-called robust methods or sandwich estimates of the
standard errors will (try to) adjust for this problem.

Only a few programs have this option - Stata does!
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