

Working with logistic regression models

Morten Frydenberg ©
Section of Biostatistics, Aarhus Univ, Denmark

The `lincom` command for logistic regression

Further remarks on logistic regression

Diagnostics: residuals and leverages

Enough data?

Test of fit: The Hosmer-Lemeshow test

Extensions to the ordinary logistic regression: Conditional logistic regression

Other methods for analysing binary data

Models for relative risks

Models for risk differences

Morten Frydenberg

Linear and Logistic regression - Note 6

Missing data

A small example - non completely random sample

Complete data analysis - bias

Missing at random vs missing **completely at random**

Introduction to techniques

Sampling weights

Imputation

Full modelling

Sensitivity analyses

Data with several random components: Binary outcome

Clustered binary data with one random component

Morten Frydenberg

Linear and Logistic regression - Note 6

2

The `lincom` command after logit or regress

Consider the model:

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
sex					
1 (base)					
2	.2743976	.0903385	3.04	0.002	.0973374 .4514579
age45	.0344723	.0051354	6.71	0.000	.0244072 .0445374
_cons	-2.147056	.0721981	-29.74	0.000	-2.288561 -2.00555

Here men are reference.

If we want to find the log odds for a 45 year old women we can calculate by hand $-2.147 + 0.274 = -1.873$

But what about confidence interval?

We could change the reference to women and fit the model once more.

But.....

Morten Frydenberg

Linear and Logistic regression - Note 6

3

The `lincom` command after logit or regress

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Stata has a command that can be used for this: "lincom"

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	-1.872658	.058136	-32.21	0.000	-1.986602 -1.758714

To get to the risk/probability with confidence interval:

`disp invlogit(r(estimate))`

.13323448

`disp invlogit(r(estimate)-1.96*r(se)) " //`

.12061656 ; .1469518

Morten Frydenberg

Linear and Logistic regression - Note 6

4

The `lincom` command after logit or regress

$$\text{logit}(\Pr(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Some examples:

Log Odds for a 42 year old woman:

obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	-1.976075	.0639755	-30.89	0.000	-2.101465 -1.850685

Odds ratio for 4.5 age difference:

obese	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
(1)	1.167804	.049869	6.71	0.000	1.116091 1.221914

Morten Frydenberg

Linear and Logistic regression - Note 6

Logistic regression models: Do you have enough data?

All inference in logistic regression models are based on asymptotics, i.e. **assuming that you have a lot of data!**

Rule of thumb:

You should have at least **15 events** per variable (parameter) in the model.

A **large standard error** typically indicates that you have too little information concerning the variable and that the **estimate and standard error are not valid**.

Lower your ambitions or get more data!

An exact method exists.

But it will also give wide confidence intervals.

Morten Frydenberg

Linear and Logistic regression - Note 6

6

Logistic regression models: Diagnostics

In the linear regression we saw some example of statistics:

residuals, standardized residuals and leverage

which can be used in the **model checking** and search for strange or **influential** data points.

Such statistics can also be defined for the logistic regression model.

But they are much more difficult to interpret and cannot in general be recommended.

Checking the validity of a logistic regression model will mainly be based on comparing it with other more complicated **models**.

Morten Frydenberg

Linear and Logistic regression - Note 6

7

Logistic regression models: Test of fit

A common, and to some extend informative, test of fit is the **Hosmer-Lemeshow test**.

Consider the model for obesity from Day 4

$$\text{logit}(\text{Pr}(\text{obese})) = \beta_0 + \beta_1 \cdot \text{woman} + \beta_2 \cdot (\text{age} - 45)$$

Logit estimates						
Number of obs = 4690						
obese	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]	
sex						
1	(base)					
2	.2743976	.0903385	3.04	0.002	.0973374	.4514579
age45	.0344723	.0051354	6.71	0.000	.0244072	.0445374
_cons	-2.147056	.0721981	-29.74	0.000	-2.288561	-2.00555

Significantly better than nothing - but is it good?

Morten Frydenberg

Linear and Logistic regression - Note 6

8

Logistic regression models: Test of fit

What about comparing the **estimated prevalence** with the **observed prevalence**?

In the Hosmer-Lemeshow test the data is **divided** into groups (traditionally 10) according to the **estimated probabilities**

and the **observed** and **expected** counts are compared in these groups by a chi-square test.

Most programs, that can fit a logistic regression model, can calculate this test.

In Stata it is done by (after fitting the model):

`estat gof, group(10) table`

The data is divided into **deciles** after the estimated probabilities.

Morten Frydenberg

Linear and Logistic regression - Note 6

9

Logistic regression models: Test of fit

OUTPUT

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

Group	Prob	Obs_1	Exp_1	Obs_0	Exp_0	Total
1	0.0841	64	40.9	462	485.1	526
2	0.0953	43	45.5	453	450.5	496
3	0.1045	44	44.6	398	397.4	442
4	0.1112	42	50.3	422	413.7	464
5	0.1217	44	51.4	394	386.6	438
6	0.1332	52	63.0	441	430.0	493
7	0.1456	53	61.7	389	380.3	442
8	0.1592	62	69.8	392	384.2	454
9	0.1834	98	89.9	424	432.1	522
10	0.2407	99	83.8	314	329.2	413

number of observations = 4690
number of groups = 10
Hosmer-Lemeshow chisq(8) = 26.01
Prob > chisq = 0.0010

One problem:
Too many in the tails

Significant difference between observed and expected!

Morten Frydenberg

Linear and Logistic regression - Note 6

10

Logistic regression models: Test of fit

`logit obese i.sex##age45`

`estat gof, group(10) table`

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

Group	Prob	Obs_1	Exp_1	Obs_0	Exp_0	Total
1	0.0796	36	35.9	466	466.1	502
2	0.1011	42	41.1	406	406.9	448
3	0.1053	49	49.6	429	428.4	478
4	0.1096	50	54.8	458	453.2	508
5	0.1124	52	54.2	436	433.8	488
6	0.1153	51	46.4	355	359.6	406
7	0.1182	52	53.9	410	408.1	462
8	0.1590	76	70.3	428	433.7	504
9	0.2133	96	91.8	391	395.2	487
10	0.3310	97	103.0	310	304.0	407

number of observations = 4690
number of groups = 10
Hosmer-Lemeshow chisq(8) = 2.43
Prob > chisq = 0.9650

The model 'fits' - when we look at it this way !!!!!!!

Morten Frydenberg

Linear and Logistic regression - Note 6

11

Conditional logistic regression

When

Used in two situations:

1. **Matched** studies (binary response).

2. **Unmatched** studies with a **confounder** with many distinct values.

In 1. the models correspond to the way data was collected.

In 2. the method adjust for a 'mathematical' flaw in the unconditional method.

An example of situation 2:

The confounder is "kommune" having 275 distinct values.

Morten Frydenberg

Linear and Logistic regression - Note 6

12

Conditional logistic regression What

The logistic regression model (outcome disease yes/no):

$$\ln(\text{odds}) = \alpha + \sum_{i=1}^k (\beta_i \cdot x_i)$$

$\ln(\text{odds})$ in reference $\ln(\text{odds ratios})$

Suppose the model above hold in each strata:

$$\ln(\text{odds}) = \alpha_s + \sum_{i=1}^k (\beta_i \cdot x_i)$$

$\ln(\text{odds})$ in reference $\ln(\text{odds ratios})$
different in each strata the same in each strata

Morten Frydenberg

Linear and Logistic regression - Note 6

13

Conditional logistic regression What

$$\ln(\text{odds}) = \alpha_s + \sum_{i=1}^k (\beta_i \cdot x_i)$$

$\ln(\text{odds})$ different in each strata

We are not interested in these!

In a matched study these are 'controlled'.

In a conditional logistic regression one 'condition on the odds in each strata', i.e. the case/control ratio.

In the conditional model the α 's disappear!

The β 's, the log OR's, are still in and can be estimated.

Morten Frydenberg

Linear and Logistic regression - Note 6

14

Conditional logistic regression How

A study of cancer in the oral cavity

Matched on gender and 10-year age groups

Ten strata (genage)

Here we focus on

textile-worker and

life time consumption of alcohol (three groups)

Morten Frydenberg

Linear and Logistic regression - Note 6

15

Conditional logistic regression How

logistic regression in Stata

`.logit cancer textile i.alkcon i.genage`

Part of the output:

cancer	Coef.	Std. Err.	z	P> z	CI
textile	.5022796	.4141317	1.21	0.225	-.3094036 1.313963
alkcon					
0 (base)					
1	.4628618	.2823836	1.64	0.101	-.0905998 1.016323
2	2.716577	.323265	8.40	0.000	2.082989 3.350165
genage					
1 (base)					
2	-.45086	1.251388	0.20	0.845	-2.20759 2.697762
3	-.4940138	.5503273	-0.90	0.369	-1.577635 -.5846079
4	1.79786	.6405449	0.28	0.779	-1.075816 1.435388
5	1.79786	.6405449	0.53	0.597	-1.364452 .7844818
6	-.2899853	.5482076	0.53	0.597	-1.280229 .8190532
7	-.2305881	.5355411	-0.43	0.667	-1.014703 1.440137
8	.5507988	.563922	1.05	0.295	-4.889109 1.582509
9	.0315165	.5884123	0.05	0.957	-1.12175 1.184783
10	.5572024	.5595749	1.00	0.319	-.5395442 1.653949
cone	-.1.469219	.476301	-3.08	0.002	-2.402752 -.5356865

Morten Frydenberg

Linear and Logistic regression - Note 6

16

Conditional logistic regression in Stata

The syntax:

`clogit cancer textile i.alkcon, group(genage)`

Part of the output:

cancer	Coef.	Std. Err.	z	P> z	[95% Conf. Interval]
textile	.4929143	.410305	1.20	0.230	-.3112687 1.297097
alkcon					
0 (base)					
1	.452672	.2792327	1.62	0.105	-.094614 .999958
2	2.660894	.3193692	8.33	0.000	2.034942 3.286846

`clogit cancer textile i.alkcon, group(genage) or`

cancer	Odds Ratio	Std. Err.	z	P> z	[95% Conf. Interval]
textile	1.63708	.6717022	1.20	0.230	.732517 3.658661
alkcon					
0 (base)					
1	1.572508	.4390957	1.62	0.105	.909724 2.718168
2	14.30908	4.569879	8.33	0.000	7.651811 26.75835

Morten Frydenberg

Linear and Logistic regression - Note 6

17

Other methods to analysis of binary response data Relative Risk models

Logistic regression model focus on the Odds Ratios

This is the correct thing to do in case-control studies.

In follow-up studies Relative Risk is often the appropriate measure of association, (personal risk).

I.e. a model like this might be more relevant:

$$\Pr(\text{event}) = p_0 \times RR_1 \times RR_2 \times RR_3$$

$$\ln\{\Pr(\text{event})\} = \ln(p_0) + \ln(RR_1) + \ln(RR_2) + \ln(RR_3)$$

$$\ln\{\Pr(\text{event given the covariates})\} = \alpha + \sum_{i=1}^k (\beta_i \cdot x_i)$$

That is linear on log-probability scale

Morten Frydenberg

Linear and Logistic regression - Note 6

18

Other methods to analysis of binary response data

Risk difference models

Logistic regression model focus on the Odds Ratios

This is the correct thing to do in **case-control** studies.

In **follow-up** studies **Risk Difference** is often the appropriate measure of association, (community effect).

I.e. a model like this might be more relevant:

$$\Pr(\text{event}) = p_0 + RD_1 + RD_2 + RD_3$$

$$\Pr(\text{event given the covariates}) = \alpha + \sum_{i=1}^p (\beta_i \cdot x_i)$$

That is linear on **probability scale**

Morten Frydenberg

Linear and Logistic regression - Note 6

19

Other methods to analysis of binary response data

Estimating RR or RD models

The Relative Risk models and the Risk Difference models can be estimated in many programs using what is called **Generalized** (not general) **Linear Models**.

In Stata this is most easily done by the **binreg** command with the option **rr** or **rd**.

But be careful - estimation procedure might not work/converges, as

the risk of the event in a RR-model is **not restricted** to be below one.

the risk of the event in a RD-model is **not restricted** to be positive or below one.

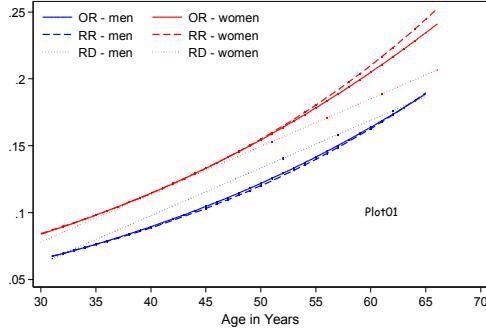
Morten Frydenberg

Linear and Logistic regression - Note 6

20

Other methods to analysis of binary response data

Three different models for **Obese** "=" **sex** "+" **age**



Morten Frydenberg

Linear and Logistic regression - Note 6

21

Missing data - example 1

Consider the Framingham study and imagine, that (due to a limited budget) only 500 measurements of SBP were allowed.

It was decided to take SBP measurements on **100** random participants in each of the age groups **40** and **60+** and **150** in each of the age groups **40-50** and **50-60**.

That is we have missing SBP on 4190 of the 4,690 participants!

A short description of the design and the data:

agegrp	Freq.	N(sbp)	mean(sbp)	sd(sbp)
0-	1,325	100	122.18	15.4327
40-	1,684	150	130.85	22.2366
50-	1,346	150	140.93	22.4819
60-	335	100	149.51	26.9251
Total	4,690	500	135.87	24.0783

Morten Frydenberg

Linear and Logistic regression - Note 6

22

Missing data - example 1

agegrp	Freq.	N(sbp)	mean(sbp)	sd(sbp)
0-	1,325	100	122.18	15.4327
40-	1,684	150	130.85	22.2366
50-	1,346	150	140.93	22.4819
60-	335	100	149.51	26.9251
Total	4,690	500	135.87	24.0783

We note:

This is not a **completely** random sample

- the chance of being sample depends on age group!

The overall (total) average SBP is a biased estimate of the mean SBP among participants in the Framingham study!

I.e. an analysis of the 500 participants (a complete data analysis) will be biased.

Morten Frydenberg

Linear and Logistic regression - Note 6

23

Missing data - example 1

agegrp	Freq.	N(sbp)	mean(sbp)	sd(sbp)
0-	1,325	100	122.18	15.4327
40-	1,684	150	130.85	22.2366
50-	1,346	150	140.93	22.4819
60-	335	100	149.51	26.9251
Total	4,690	500	135.87	24.0783

We also note:

Within each age group the sample is **completely** random.

Within each age group the average SBP is an **unbiased** estimate of the mean SBP in the age group.

We know the size of each age group.

We can **calculate an unbiased** estimate of the total mean by weighing the group averages.

Morten Frydenberg

Linear and Logistic regression - Note 6

24

Missing data - example 1

agegrp	Freq.	N(sbp)	mean(sbp)	sd(sbp)
0-	1,325	100	122.18	15.4327
40-	1,684	150	130.85	22.2366
50-	1,346	150	140.93	22.4819
60-	335	100	149.51	26.9251
Total	4,690	500	135.87	24.0783

An unbiased estimate can be found as the **weighted average** of the group averages using the group sizes as weights:

$$122.18 \cdot 1325 + 130.85 \cdot 1684 + 140.93 \cdot 1346 + 149.51 \cdot 335 = 132.62$$

4690

Conclusion: Although this is not a completely random sample, we have enough information in the data to find an unbiased estimate!!!!

(Assuming completely random sample **within** age group!)

Morten Frydenberg

Linear and Logistic regression - Note 6

25

Assuming that SBP is related to age:

Being missing is **not independent** of the **unobserved** SBP.

but

Being missing is **independent** of the unobserved SBP, **when we know the age group of the individual**.

The first statement means that the data is not **missing completely at random (MCAR)**.

The second statement corresponds to **missing at random (MAR)**, i.e. that given **all what we have observed** (including age group), then the missingness is (completely) random, i.e. independent of the unobserved data.

Mathematically Missing At Random implies that one (in theory) has enough information in the **observed data** to correct for the missing data - in principle.

Morten Frydenberg

Linear and Logistic regression - Note 6

26

Missing data: Standard terminology

Missing completely at random (MCAR).

The observed data is a (completely) random sample:
A **complete data analysis will be unbiased**

Missing at random (MAR)

Given **all what we have observed**, then the missingness is (completely) random (independent of the unobserved data):

The biased sampling **might be adjusted for**.

Missing not at random (MNAR)

None of the two above apply:

We will need further assumptions in order to analyse the data.

Morten Frydenberg

Linear and Logistic regression - Note 6

27

Missing at random

When the data is **missing at random**, then one can, in theory, make unbiased inference based on the observed data.

In the SBP example such an analysis could be to use the **weighted average** SBP instead of the biased unweighted average.

In general

If the sampled persons are not a completely random sample, but the i th person is sampled with a **known** probability, p_i , then we can obtain unbiased estimates by weighing the i th person with $1/p_i$.

The method is called **Inverse Probability Weighing**.

Morten Frydenberg

Linear and Logistic regression - Note 6

28

Inverse probability weighting

The SBP data:

Four different sampling probabilities and weights:

$$p_0 = 100/1325 = 0.0755 \quad w_0 = 1/p_0 = 13.25$$

$$p_1 = 150/1684 = 0.0891 \quad w_1 = 1/p_1 = 11.23$$

$$p_2 = 150/1346 = 0.1114 \quad w_2 = 1/p_2 = 8.97$$

$$p_3 = 100/335 = 0.2985 \quad w_3 = 1/p_3 = 3.35$$

That is information from each of the youngest should weight by 13.25 and information from the each of the oldest should weight by 3.35.

Sampling weights can be used in many Stata commands:

```
mean sbp [pw= sampw]
Mean estimation                               Number of obs = 500
                                                Mean   Std. Err. [95% Conf. Interval]
sbp | 132.6242 1.032943 130.5947 134.6536
```

Morten Frydenberg

Linear and Logistic regression - Note 6

29

Missing values - not by design

Most often the missing is **not per design** and both in the **outcome** and in the **covariates**:

id	y	x ₁	x ₂	x ₃
1	o	o	o	o
2	o	m	o	o
3	m	o	o	o
4	m	m	o	o
5	o	o	o	o
6	o	m	m	o

o observed
m observed

Here we have only **complete data** on 2 persons, but partial information on 4 additional persons.

Morten Frydenberg

Linear and Logistic regression - Note 6

30

Missing values - not by design

If the missing is **completely at random**, then the analysis of the complete cases will be unbiased.

If this is not the case, then complete data analysis can give biased estimates.

If the data is **missing at random**, then it is **in theory** possible to make an unbiased analysis of all the data.

<i>id</i>	<i>y</i>	<i>x₁</i>	<i>x₂</i>	<i>x₃</i>
1	o	o	o	o
2	o	m	o	o
3	m	o	o	o
4	m	m	o	o
5	o	o	o	o
6	o	m	m	o

Morten Frydenberg

Linear and Logistic regression - Note 6

31

Imputation

One way to try solve the problem with missing is to **fill in** the data for the missing values and then make the analysis on the whole data set with the **'imputed'** values.

The imputation can be done in many ways.

One way is to fill in an "average" value.

This could be the total average of the observed values for the specific variable or the average in a **relevant subgroup**.

This method will not in general solve the bias problem.

And of course the **standard error** stated in the output, when you analyse the imputed data set, is **wrong**.

<i>id</i>	<i>y</i>	<i>x₁</i>	<i>x₂</i>	<i>x₃</i>
1	o	o	o	o
2	o	a ₁	o	o
3	a ₂	o	o	o
4	a ₃	a ₁	o	o
5	o	o	o	o
6	o	a ₁	a ₂	o

Morten Frydenberg

Linear and Logistic regression - Note 6

32

The missing SBP example

Imputation by **observed mean** in age group:

```
bysort agegrp: egen msbp=mean(sbp)
generate isbp=sbp
replace isbp=msbp if missing(sbp)

mean isbp
Mean estimation                               Number of obs = 4690
-----+-----+-----+-----+-----+-----+
      |     Mean   Std. Err. [95% Conf. Interval]
-----+-----+-----+-----+-----+-----+
  isbp | 132.6242   .1627486   132.3051   132.9432
-----+-----+-----+-----+-----+-----+
```

Correct mean, but a much too small standard error - incorrectly **assuming 4690 independent observations**.

Correct analysis using sampling weights:

```
mean sbp [pw=sampw]
Mean estimation                               Number of obs = 500
-----+-----+-----+-----+-----+-----+
      |     Mean   Std. Err. [95% Conf. Interval]
-----+-----+-----+-----+-----+-----+
  sbp | 132.6242   1.032943   130.5947   134.6536
-----+-----+-----+-----+-----+-----+
```

Morten Frydenberg

Linear and Logistic regression - Note 6

33

Imputation - random multiple

A fixed imputation will not take into account the random variation of the unobserved observation or the uncertainty of the parameters.

Imputation methods should add some random variation to the imputed data.

For that we need a **statistical model** for the missing data.

In **multiple imputations** one generates **several imputed** data sets.

For each imputed data set one fit the model of interest.

The point estimate, then the average across the imputed data sets.

One tricky thing is **calculation of the standard errors**.

Morten Frydenberg

Linear and Logistic regression - Note 6

34

Multiple imputations

Questions:

How to find the **models** from which to generate the missing data?

How should you handle missing data in this process?

How to find the uncertainty (**standard errors**) of the estimates?

Bookkeeping:

Most important: **Missing at random is required!**

<i>id</i>	<i>y</i>	<i>x₁</i>	<i>x₂</i>	<i>x₃</i>
1	o	o	o	o
2	o	m	o	o
3	m	o	o	o
4	m	m	o	o
5	o	o	o	o
6	o	m	m	o

Morten Frydenberg

Linear and Logistic regression - Note 6

35

The missing SBP example

```
use sbpdata,clear
mi set mlong
mi register imputed sbp
(4190 m=0 obs. now marked as incomplete)
```

```
mi impute regress sbp i.agegrp, add(20)
```

```
Univariate imputation                               Imputations = 20
Linear regression                                     Imputed = 20
Imputed: m=1 through m=20                           updated = 0
                                                     | observations per m
                                                     |-----+-----+-----+
                                                     |   complete   incomplete   imputed   |   total
                                                     +-----+-----+-----+-----+
                                                     sbp |      500      4190      4190 |      4690
```

(complete + incomplete = total; imputed is the minimum across m of the number of filled in observations.)

Morten Frydenberg

Linear and Logistic regression - Note 6

36

The missing SBP example

```
codebook, comp
```

variable	Obs	Unique	Mean	Min	Max	Label
sbp	84200	83383	132.3204	44.52609	270	Systolic Blood Pressure
id	88490	4690	2352.429	1	4699	
agegrp	88490	4	1.107481	0	3	
_mi_id	88490	4690	2357.795	1	4690	
_mi_miss	4690	2	8933902	0	1	
_mi_m	88490	21	9.943496	0	20	


```
sum if _mi_m==1
```

variable	Obs	Mean	Std. Dev.	Min	Max
sbp	4190	131.2507	21.65931	59.92363	209.6556
id	4190	2352.611	1359.59	2	4699
agegrp	4190	1.105251	.8895275	0	3
_mi_id	4190	2358.483	1331.661	101	4690
_mi_miss	0				
_mi_m	4190	1	0	1	1

Morten Frydenberg

Linear and Logistic regression - Note 6

37

The missing SBP example

```
. table agegrp if _mi_m>0, c(count sbp mean sbp sd sbp)
```

agegrp	N(sbp)	mean(sbp)	sd(sbp)	
0-	24,500	121.5843	22.32535	20*1225=24500
40-	30,680	131.1271	22.37045	
50-	23,920	141.2539	22.4434	
60-	4,700	150.2313	22.19089	20*235=4700

```
. table agegrp if _mi_m==0,c(count sbp mean sbp sd sbp)
```

agegrp	N(sbp)	mean(sbp)	sd(sbp)
0-	100	122.18	15.4327
40-	150	130.85	22.2366
50-	150	140.93	22.4819
60-	100	149.51	26.9251

Morten Frydenberg

Linear and Logistic regression - Note 6

38

The missing SBP example

```
m1 estimate: mean sbp
```

Multiple-imputation estimates

Imputations		=	20
Number of obs	=	4690	
Average RVI	=	7.4275	
Complete DF	=	4689	
DF:	min	=	23.43
	avg	=	23.43
	max	=	23.43

DF adjustment: Small sample

within VCE type: ANALYTIC

Mean	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
sbp	132.6799	1.017506	130.40	0.000	130.5772 134.7826

Correct analysis using sampling weights:

```
mean sbp [pw=sampw]
```

Mean estimation		Number of obs	=	500
		Mean	Std. Err.	[95% Conf. Interval]
sbp	132.6242	1.032943	130.5947	134.6536

Morten Frydenberg

Linear and Logistic regression - Note 6

39

A more complicated example

```
use sbp2data,clear
codebook,comp
```

Variable	Obs	Unique	Mean	Min	Max	Label
----------	-----	--------	------	-----	-----	-------

sex	4188	2	1.566141	1	2	Sex
sbp	4216	112	132.6945	80	270	Systolic Blood Pressure
dbp	4281	67	82.62766	40	148	Diastolic Blood Pressure
scl	4192	244	228.2011	115	568	Serum Cholesterol
age	4245	37	46.0636	30	66	Age in Years
bmi	4218	245	25.63148	16.2	57.6	Body Mass Index
id	4690	4690	2349.172	1	4699	

```
x1:regress sbp age i.sex _Isex_1-2 (naturally coded; _Isex_1 omitted)
Source |   SS          df          MS
Model1 | 281261.425   2  140631.713
Residual | 1492627.36  3403  438.621029
Number of obs = 3406
F( 2, 3403) = 320.62
Prob > F = 0.0000
R-squared = 0.1586
Adj R-squared = 0.1581
Root MSE = 20.943
```

sbp	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
age	1.027026	.0423621	25.31	0.000	.9889686 1.155084
_Isex_2	.2701054	.7247534	0.37	.709	-1.150891 1.691101
_cons	83.39557	2.017962	41.33	0.000	79.43903 87.35211

Morten Frydenberg

Linear and Logistic regression - Note 6

40

A more complicated example

```
misstable pattern sbp age sex,freq
```

```
Missing-value patterns
(1 means complete)
```

```
Frequency |  Pattern
```

Frequency	Pattern
1	1 2 3

3,406	1 1 1
-------	-------

407	1 1 0
-----	-------

386	1 0 1
-----	-------

359	0 1 1
-----	-------

46	1 0 0
----	-------

44	0 1 0
----	-------

37	0 0 1
----	-------

5	0 0 0
---	-------

4,690	
-------	--

Variables are (1) age (2) sbp (3) sex

Morten Frydenberg

Linear and Logistic regression - Note 6

41

A more complicated example

```
mi set mlong
mi ice sbp age o.sex bmi dbp scl , add(20)
```

```
#missing
```

values	Freq.	Percent	Cum.
--------	-------	---------	------

0	2,489	53.07	53.07
1	1,670	35.61	88.68
2	467	9.96	98.64
3	60	1.28	99.91
4	4	0.09	100.00

Total	4,690	100.00
-------	-------	--------

Variable	Command	Prediction equation
----------	---------	---------------------

sbp	regress	age _Isex_2 bmi dbp scl
age	regress	sbp age bmi dbp scl
sex	ologit	sbp age bmi dbp scl
_Isex_2		[Passively imputed from (sex==2)]
bmi	regress	sbp age _Isex_2 dbp scl
dbp	regress	sbp age _Isex_2 bmi scl
scl	regress	sbp age _Isex_2 bmi scl

Morten Frydenberg

Linear and Logistic regression - Note 6

42

A more complicated example

Variable	obs	unique	Mean	Min	Max	Label
sex	48208	2	1.568682	1	2	Sex
sbp	48236	9585	132.3171	55.04445	270	Systolic Blood Pressure
dbp	48301	8239	82.44462	39.00607	148	Diastolic Blood Pressure
scl	48212	10200	227.2202	71.84563	568	Serum Cholesterol
age	48265	8932	45.94714	14.28921	83.50232	Age in Years
bmi	48238	9679	25.52701	10.58046	57.6	Body Mass Index
id	48710	4690	2348.166	1	4699	
_mi_id	48710	4690	2330.321	1	4690	
_mi_miss	4690	2	.4692964	0	1	
_mi_m	48710	21	9.489017	0	20	

Morten Frydenberg

Linear and Logistic regression - Note 6

43

A more complicated example

mi estimate: regress sbp age sex

Multiple-imputation estimates	Imputations	=	20
Linear regression	Number of obs	=	4690
	Average RVI	=	0.1115
	Complete DF	=	4687
DF adjustment: Small sample	DF:	min	= 784.98
		avg	= 982.49
		max	= 1366.36
Model F test:	Equal FMI	F(2, 1480.0)	= 397.31
Within VCE type:	OLS	Prob > F	= 0.0000

sbp	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
age	1.074694	.0376721	28.53	0.000	1.000792 1.148595
sex	.2725589	.6618376	0.41	0.681	-1.026622 1.57174
_cons	82.8989	2.061978	40.20	0.000	78.85135 86.94646

Morten Frydenberg

Linear and Logistic regression - Note 6

44

Clustered data / data with several random components
Dichotomous outcome

A different outcome:

$$H_{fpa} = \begin{cases} 1 & \text{if the person has hayfewer} \\ 0 & \text{else} \end{cases}$$

A statistical model:

Systematic part

$$\text{logit}(H_{fpa} = 1) = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G$$

Random partThis is not needed
due to the binomial
error

Morten Frydenberg

Linear and Logistic regression - Note 6

45

Clustered data / data with several random components
Dichotomous outcome

$$\text{logit}(H_{fpa} = 1) = \beta_0 + \beta_I \cdot I + \beta_U \cdot U + \beta_A \cdot A + \beta_S \cdot S + \beta_G \cdot G + F_f + P_{fp}$$

That is, an ordinary logistic regression + random components.

- A generalized linear mixed model
- A multilevel model for dichotomous outcome

Comments 1:

- It is important to include the relevant random components in the model.
- 'Multilevel models' is essential in medical/epidemiological research.

Morten Frydenberg

Linear and Logistic regression - Note 6

46

Clustered data / data with several random components
Dichotomous outcome

Comments 2:

- The theory and insight into the models for non-normal data are not yet fully developed.
- The main problem being that it is very difficult to find valid (unbiased) estimates.
- Several software programs falsely claim to estimate the models.
- Some programs like Stata and NLwin can give you valid estimates if you take care and have a lot of data.

Advice:

Do not try to estimate this kind of models without consulting a specialist.

Morten Frydenberg

Linear and Logistic regression - Note 6

47

Clustered data / data with one random component
Dichotomous outcome

If the models only involve one random component, e.g. variation between families or between GP's,

then methods exist which can adjust the standard errors.

Remember that if the data contains clusters, then the precision of the estimates are overestimated, that is, the reported standard errors are too small.

So-called robust methods or sandwich estimates of the standard errors will (try to) adjust for this problem.

Only a few programs have this option - Stata does!

Morten Frydenberg

Linear and Logistic regression - Note 6

48