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When one might use logistic regression.

Some examples:
One binary independent variable. (one odds ratio).
Probabilities, odds and the logit function
One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and one continuous
independent variable without interaction.

One binary independent variable and one continuous
independent variable with interaction.
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Watch out for ‘small’ reference groups
The likelihood ratio test: comparing two nested models.
The logistic regression model in general

The model and the assumptions.

The data and the assumption of independence.

Estimation and inference
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Logistic regression models: Introduction

A logistic regression is a possible model if the dependent
variable (the response) is dichotomous, i.e. dead/alive
obese/not obese etc.

Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

When working with binary response it is custom to code the
“positive” event (eg. dead) as 1 and a "negative” event (alive)
as 0.

A logistic regression models the probability of a "positive
event” via odds.

And the associations via odds ratios.
If the event is rare then odds ratios estimate the relative

risks.
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Logistic regression models: Introduction

A logistic regression can also be used to estimate the odds
ratios in an unmatched case-control study.

For such data the constant term have no meaning.

And the odds ratios are comparable to the odds ratios based
on a follow-up study.

Many other epidemiological design are analyzed by logistic
regression models.
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Estimating one odds ratio using logistic regression

We are nhow considering a larger part of the Frammingham
data set, consisting of 4690 persons with known BMI at the
start.

We will focus on the risk obesity (BMI>30 kg/m?) .

Out of the 4690 persons 601 = 12.8% were obese.
Divided into gender

Obese Not-Obese
Women |375 (14.2%) |2268
Men 226 (11.0%) |1821

We see a higher prevalence among women: OR: 1.33 (1.12;1.59).

That is the odds of being obese is between 12 and 59 percent
higher for women.(x2>=10.2 p-value=0.001)
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Finding an odds ratio using logistic regression

0ddsyy, e
odds

© Men

The odds ratio is defined as: OR =
So applying the logarithm we get:
odds,,
In(OR) = In| —Femen | —n(odds,, )—In(odds

( ) [ o d dSMM J ( vam) ( Men)

And rearranging terms :
In(oddsy,,., ) = In(odds,y,, ) +1n(OR)

That is the log-odds obesity for the women can be written as
the sum of two terms:

*The log-odds in reference group (men)

*The log of the odds ratio
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Finding an odds ratio using logistic regression Finding an odds ratio using logistic regression
ln(odds%mm) = ln(oddst ) + ln(OR) In(odds) = B, + j3, - woman
If we again let women be an indicator/dummy variable, then In(odds,,,, ) In(OR)
we can consider the model:
In(odds) = 3, + f3 - woman Or to be more precise: B =(OR, 0000 )
For men we get: ln(odds) -5 So, if we can fit the model above to the data, then we can

get an estimate of the log(OR) and hence the ORI
And for women: In(odds)= S, + f3

Comparing with the equation above we get:
B, =In(odds,,,, )

and /. =In(OR)
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Probabilities and odds s
Probabilities and odds
If p denotes the probability of an event (the risk, the i
prevalence proportion, or cumulated incidence proportion) o P
then the odds is given by : ’
.87
odds = _r_ -
1-p )
6
Note: odds=1 <> p=0.5 < In(odds)=0 54
44
In(odds) =1In L ]
1-p 24
. . . w e A4
In mathematics the last function of p is called the “logit .
function. T T T T T T T T T T T
-5 -4 -3 -2 -1 0 1 2 3 4 5
logit(p)=1In P logit=In(odds)
I-p
Morten Frydenberg Linear and Logistic regression - Note 4 9 Morten Frydenberg Linear and Logistic regression - Note 4 10
Probabilities and odds Finding an odds ratio using logistic regression
logit =1In(odds) = S, + p, - woman
‘ln(odds) =B, +p -woman‘ gl (p) ( V=5 + 5,
Back to finding the estimates.
So modelling the log-odds is the same as modelling logit(p) In Stata: 7Togit obese bl.sex,baselevel
. Iteration 0: Tlog Tikelihood = -1795.5437
and model from before could be written. Iteration 1:  log likelihood = -1790.3856
Iteration 2: log Tikelihood = -1790.3703
: — o Iteration 3: log likelihood = -1790.3703
‘IOglt(p)_ﬂO +ﬁl woman‘ Logistic regression [Number of obs = 4690 ]
TR chi2(D) = 10.35
odds prob > chi2 = 0.0013
. Tikelihood = -1790.37 do R2 = .002
Going from odds to probabilities: p = Trodds tog Tkelthood = 17 s P R T 9.002%.
1+0 S obese | coef. std. Err. z P>|z| [95% conf. Interval]
_______ el LoD T T I
The model on probability scale is : sex } (base)
ase
ex + B -woman 2 2868784  .0898972 3.19 0.001  .1106831  .4630738
__xolhtf ) = INVLOGIT (3, + 3, - woman) \
1+exp(,80 +4 -woman) _cons | -2.086606 .0705261 -29.59 0.000 -2.224835 -1.948378
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Finding an odds ratio using logistic regression Finding an odds ratio using logistic regression
logit(p) =In(odds) = f3, + f3, - woman logit(p) =In(odds) = f3, + f3, - woman
P An easier way to obtain the odds ratio.
_ 9
f = OR) 95% CI for In(OR) Jogit obese bl.sebase1eve1 cformat (%6.4f)
std. Err. z P>|z| _“Eégs;—c“;_;r_\;;;\—/;ﬁ Iteration 0: log Tikelihood = -1795.5437
______________________ Iteration 3: log Tikelihood = -1790.3703
.0898972 [ 3.19  o0.001 | Logit estimates Number of obs = 4690
.070526 -29.59t 0.000 -2.224835 -1.048378 LR chi2(1) = 10.35
______________________ prob > chi2 = 0.0013
Log likelihood = -1790.3703 pPseudo R2 = 0.0029
OR = exp(02868784) =1.33 95% CI: (112,159) obese [ 0dds Ratio \std. rr. z P>|z| [95% conf. Interval]
Test for the hypothesis : In(OR)=0 < OR=1 ey 1.0000 | (b
) 2 1.3323 0.398 3.19  0.00] __1.1170 1.5890
Odds in reference group (men) = exp(-2.086606)=0.1241
_cons | 0.1241  0.0088 -29.59 0.000  0.1081 0.1425

95% CT (0.1081;0.1425).| |- g e e e
Prevalence among men: 0.1104 (0.0975;0.1247). Odds not odds ratio
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The obesity and age: version 1 The obesity and age: version 1
In the previous section we saw that the prevalence of obesity logit(p) =1In(odds) = f5, + j - (age - 45)

was different for men and women. . .
The interpretation of the parameters:
Is it also associated with age?
S, i the log odds for a 45-year-old person.
The simplest model on the logit scale would be: . .
B, the log odds ratio, when comparing two persons who

logit(p) =In(odds) = S, + j3, - age differ 1 year in age.
That is, a linear relation on the log-odds scale. exp(,): the odds ratio comparing two persons who differ 1
As we have seen before using age implies that /3, references to year in age.
a newborn (age=0). Note, that this odds ratio is assumed to be the same no
matter what age the two persons have, as long as they differ
So we will choose age=45 reference instead: by one year!

The log odds ratio is tional to th di s
logit(p) = In(odds) = f, + - (age —45) e og.o ratio i pr'opor.' |onc. o the age ffference ,
e.g. OR increases exponentially with the age differences.
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =In(odds) = 3, + f3, - (age —45) logit(p) =In(odds) = 3, + f3, - (age —45)

Obtaining the estimates in Stata:

generate SoedSage 45 Estimate: /4, : —1.985 (—2.0767;~1.8951)

Jogit obese age45 The odds for obesity among 45-year-olds:

obese | Coef. std. Err. 2 Plzl  [95% conf. Interval] 0.1373 (0.1253;0.1503)

______ R

age45 | .0348023 .0051296 6.78 0.000 .0247484 .0448561 i - - .
_cons | -1.985922 .0463594 -42.84  0.00 -2.076785 -1.895059 The prevalence Of ObESITy among 45 year‘ OIdS-

0.1207 (0.1114;0.1307)

Jogit obese age45,0R i (1 dds) Prob odds
obese | odds Ratio std. Err. z odds = exp(log(odds ) 00 =—"7-—
N p(log( 1+ odds
age45 | 1.0354 6.78 0.000 1.0251 1.0459
_cons | 0.1373 -42.84  0.000 0.1253 0.1503
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The obesity and age: version 1 The obesity and age: version 1
logit(p) =In(odds) = j3, + f3, - (age —45)
Estimates: £, 0.0348 (0.0247:0.0449) Estimated relationship: In(odds)=—1.986+0.0348-(age —45)

1

The odds ratio for being obese is 1.0354 (1.0251;1.0459) Plot02
when comparing the old person to the young person, if they
differ with one year in age.

If they differ with 4.5 years then the odds ratio is

1.035443 (1.025143;1.0459%5)=1.17 (1.12;1.22)
In Stata:  Tincom age45%4.5,0R

(1) 4.5 age45 =0

obese | odds Ratio P>|z| [95% conf. Interval] -2'573‘0 - - pe A pa A pa A
T 1 11954 pzidses | 6.78 0.000  1.117806  1.223668 Agein vears
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The obesity and age: version 1 The obesity and age: version 2
Estimated relationship:
1 exp(~1.986 +0.0348 - (age —45)) In(odds) = /3, + /3, - (age —45)
prevalence =-— exp(—1.986 +0.0348 - (age —45)) This model assumes that one year of age difference is
. associated with the same odds ratio irrespectively of the age.
Plot03 An other way to model the prevalence could be to assume a
) step function that is, to categorize age.
We will here look at age divided into seven five-year groups:
154 egen agegrp7=cut(age), at(0,35,40,45,50,55,60,120) T7abel

With this command the youngest age group will be number O

A / the second youngest: 1 and the oldest: 6

05

T T u u T
30 35 40 45 50 55 60 65 70

Age in Years
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The obesity and age: version 2 The obesity and age: version 2
Eab'le agegrp7 ,c(min age m?)_(_??ff?lfr_]t obese sum obese) row 11’1(0ddS)=0!0 +Zal .age[»
agegrp? |  min(age) max (age) N(obese) sum(obese) . . i=l
R oD DI The interpretation of the parameters:
0- | 30 34 352 23 .
35- | 35 39 973 105 a, : the log odds in the reference group=the youngest.
40- | 40 44 885 93
45— | 45 49 799 95 : i i i
o | s ot e i o The.log odd's ratio, when comparing a person in age group
55- | 55 59 613 95 i with one in the reference group=the youngest.
60- | 60 66 335 75
| Togit obese i.agegrp7,baselevel Not all output
Total | 30 66 4,690 [ N R e
e obese | cCoef. std. Err. z P>|z| [95% conf. Interval]
A model that have different odds in each age group : agegrp? } (basey
6
_ . 1 | .5483322 .239152  2.29 0.022 .0796029  1.017061
ln(odds) =a, +Za, -agei 2 | .5186016 .2419361 2.14 0.032 .0444155 9927877
=] 3 | .6576621 .2417944 2.72  0.007 .1837537 1.13157
Wh .. indicator for being in the ith 4 | .9790072 .2383937 4.11  0.000 .5117642 1.44625
ere agei 1s an indicator Tor being in The iTh age group 5 | .9644652 .2428468 3.97  0.000 .4884941  1.440436
6 | 1.41737 .2523832 5.62 0.000 .9227081  1.912032
_cons |-2.660564 .2156798 -12.34 0.000  -3.083288  -2.237839
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The obesity and age: version 2 The obesity and age: version 2
0 6
In(odds) = a, + Zﬂ -agei In(odds) = o, + ZO‘, -agei
i=1 i=1
Togit obese i.agegrp7,or baselevel Not all output The output contains six tests of no difference in risk -
vhese lodds matio Nord. e [95% com. imtervall comparing each of the six groups with the reference (the
e e N youngest) group.

0 | 1.0000

1 1.7304 (4138 2.29  0.022 1.0829 2.7651 The command: testparm i.agegrp7

A 4 aoes 24 0.052 100 25087 will give a *Wald test” of no difference between the seven

4| 2.6618 / 0\6346 __ 4.11 0.000 _ 1.6682 4.2472 groups .

5| 2.6234 7 71 3.97__0.000 _1.6299 4.2225

6 7.126Y  L.0M14 5.62  0.000 2.5161 6.7668 1) [obese]l.agegrp7

2) [obese]2.agegrp7
3) [obese]3.agegrp7
4) [obesel4.agegrp7
5) [obese]5.agegrp7
6) [obese]6.agegrp7
Between a 63 and 322 percent increase in odds. chi2( 6)
Prob > chi2

2.62 (1.63;4.22)

~AAA~AAA
coococo

55.26 Highly significant
0.0000 | | differences

Small prevalence: 63 and 322 percent increase in prevalence.

A statistical significant difference inhPr'e;valence!
te

Morten Frydenberg Linear and Logistic regression - 25 Morten Frydenberg Linear and Logistic regression - Note 4 26
The obesity and age: version 2 The obesity and age: version 2
Using the age group 45-49 as reference . o
Togit obese b3.agegrp7,or baselevel Not all output Plot04
obese |odds Ratiu\ std. Er z P>|z]| [95% conf. Interval]
e N i 2ttt ettt 1.5 21
agegrp7 | ~ L
o | 0.5181 -2.72 0.007 0.3225 0.8321 o, +a,
1] 0.8964 -0.73  0.467 0.6676 1.2038 3
2 | 0.8702 -0.90 0.369 0.6425 1.1786 ) H ]
3 1.0000 :
4| 1.3790 ) 215 0.031  1.0293 1.8474 =
5| 135017 _ 0.223 1.96__0.050___1.0006 1.8459
6 | 2.1377  0.3648 7.45 0.000 1.5299 2.9868
777777777777777777777777777777777777 2.5+ 14
ay =
The OR between the second oldest and the 45-49-year-old:
1.36 (1.00;1.85) al o5
30 3 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70

Age in Years Age in Years

Between a no and 85 percent increase in (odds) prevalence.

stimated relationshi
A borderline significant different in prevalence! Estimated relationship
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The obesity and age: version 1 and 2 The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at
Plot05 11— modelt 257 modelt Gge.
== model2 == model2

Let us try to look at those two at the same time
The simplest model on the logit scale would be:

In(odds) = B, + f3, - woman + 3, - (age—45)
This model is based on three assumptions:

prevalence

Additivity on logit scale: The contributions from sex and age

25 1 are added.
Proportionality on logit scale: The contribution from age is
" o proportional to its value.
A B A o ] o
Agen Years Age n Years No effectmodification on logit scale: The contribution from
one independent variable is the same whatever the value of
the other.
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = f, + j3,- woman + 3, - (age —45) In(odds) = 3, + 5, - woman + 3, - (age - 45)
Obtaining the estimates in Stata:
The interpretation of the parameters: Togit obese bh1.sex age4s
Bt the |Og odds fora 45—year‘—o|d man. Iteration 0: Tog likelihood = -1795.5437
. . Iteration 3: log Tikelihood = -1767.7019
B« the |Og odds ratio, when comparing a woman to a man of Logistic regression | Number of obs = 4690]
LR ch1Z2(Z) = 55.68
the same age. prob > chiz2 =  0.0000
. . Tikelihood = -1767.7019 d 2 = 0.0155
5 : the log odds ratio, when comparing two persons of the Log fTkelthood z I . Preador T
same sex, where the first is one year older than the obese |  coef. std. Err. z Pzl [95% conf. Intervall
other. sex |
1 | (base)
/5, *Aage: the log odds ratio, when comparing fwo persons of 2 | .2743976 0903385 Ald_0002 -0973374 4514579
< . . age45 | .0344723 .005135 6.71 ___0.000 .0244072 .0445374
the same sex, where the first is Aage years older than _cons [-2.147056  .0721981 |-29.74 _ 0.000 | -2288561  -2.00555
e other. . 7 T U
the other Tests: |No association with sex | ] |No association with age
|Pr‘evalence is 50% among 45-year-old men |
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The obesity, sex and age : version 1 The obesity, sex and age : version 1
In(odds) = B, + j3, - woman + 3, - (age — 45) In(odds) = B, + j3, - woman + 3, - (age — 45)
Jogit obese bI.sex age45, or E 25
obese | odds Ratio  Std. Err. z P>zl [95% conf. Interval] T men T men

—— women . == women

******** Hoommmmoooooooooooooooo T Plot06 e
sex | e
1 1.0000 (base) .,
2 | 1.3157 0.1189 3.04  0.002 1.1022 1.5706 e 2
age4s | 1.0351 0.0053 6.71  0.000 1.0247 1.0455
_cons | 0.1168 0.0084 -29.74  0.000 0.1014 0.1346

OR for women compared o men "adjusted for age" :
1.32(1.10;1.57)

The unadjusted was 1.33 (1.12;1.59). s

OR for a one year age difference "adjusted for sex" :
1.04 (1.02;1.05)

prevalence

The unadjusfed was 1.04 (103,105) ) 30 35 40 45 50 5 60 65 70 3 35 40 45 50 55 60 65 70
AgeinYears . . Agein Years
Not much has changed! The estimated relationship
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The obesity, sex and age: version 2 The obesity, sex and age: version 2
) In(odds) = f, + j3, - woman + j, - (age—45) + f3, - woman - (age — 45)
A more complicated model on the logit scale would be: Estimates log odds:
men: ln(odds) =o,+o ‘(age—45) Togit obese bl.sex##c.aged5
women: In(odds) =y, +y,-(age—45) _ obese | coef. std. Err. z  P>z|  [95% Conf. Interval]
et - 2.sex | 116797 .0950345 1.23 0.219
This is based on one assumption: age45 | —.005684 .0083728 -0.68 0.497  -.0220953 0107255
Proportionality on the logit scale: The contribution age is 010743 6.13  0.000 .0447472 _ 0868588

.0706433 -29.49 -2.221499

proportional to its value.

It can be written in just one formula (with interaction): , Difference between women and men :
ln(odds) = S, + B, - woman + f3, ~(age—45) + By Waman~(age—45) Estimates odds ratios:
a, =IBO a, :lB1 obese | odds Ratio std. Err z P>|z]| [95% conf. Interval]
Where: T e o o i o are 1 aean
v =B + v =B + 2.sex_| _1.1239 _ 1.23  0.219 0,9329 _ _ 1.3540
Yo=hB+h h=prp age45 | 0.9943 0.68  0.497 09781 1.0108
sex#c.age4d5S |
fan ., ., 2| _1.0680 _ 6.13  0.000 1,0458  _ _ 1.0907
Thatis: fi=y,-a,  Si=r-a _cons |~ 0.1246 9.49  0.000  0.1084 0.1430
Morten Frydenberg Linear and Logistic regression - Note 4 1= 2 | e
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Morten Frydenberg

The obesity, sex and age: version 2

In(odds) = f3, + B, - woman + 3, - (age —45) + j3; - woman - (age — 45)

-5 4
Plot07 == men == men
— = women . == women
’
’
’
1 ’
/ 34
’
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/ g ’
’ 3 /
& ’
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A small case-control example

tabodds cancer age

controls odds [95% conf. Interval]
116 0.01724 0.00426  0.06976

190 0.04737 0.02427  0.09244

167 0.27545 0.19875 0.38175

6 0.45783 0.34899  0.60061

10 0.51887 0.37463  0.71864

31 \%BS 0.21944  0.80138

IFew events in reference group= wide CI's

tabodds cancer age,

oT

age || odds Ratio chi2 pP>chi2 [95% conf.|Interval]
______ + R R
25-34 | 1.000000
35-44 | 2.747368 1.76 0.1843 0.579474 13.025660
45-54 | 15.976048 24.18 0.0000 3.588609 71.123412
55-64 | 26.554217 41.14 0.0000 5.834718 120.850133
65-74 | 30.094340 43.99 0.0000 6.278745 144.243682
>=75 | 24.322581 29.40 0.0000 4.402342 134.380270
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logit cancer b0.smol

A small case-control example
ker bl.age,or

-3 0
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
Age in Years Age in Years
The estimated relationship
Morten Frydenberg Linear and Logistic regression - Note 4 37
A small case-control example
tabodds cancer age
cases controls odds [95% conf. Intervall
2 116 0.01724 0.00426  0.06976
9 190 0.04737 0.02427  0.09244
46. 167 0.27545 0.19875 0.38175
76 166 0.45783 0.34899  0.60061
55 0.51887 0.37463  0.71864
0. 0.

I'Mcmy’ events in reference group= narrow CI's

tabodds_cancer age, or| base(3)

age || odds Ratio chi2 pP>chi2 [95% conf.|Interval]

,,,,,, . I I [l B
25-34 | 0.062594 24.18 0.0000 0.014060 | 0.278660
35-44 | 0.171968 25.86 0.0000 0.079661 ¥ 0.371235
45-54 | 1.000000 . . T T
55-64 | 1.662127 5.54 0.0186 1.083844  2.548952
65-74 | 1.883716 7.32 0.0068 1.181689  3.002809
| 1.522440 1.30 0.2546 0.734799 3.154365
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Iteration 0: Tlog Tikelihood = -496.55682
Iteration 1: log Tikelihood = -437.36405
Iteration 2: Tlog Tikelihood -429.36499 Y " e N
Iteration 3: Tog Tikelihood = -428.94718 Many" iterations
Iteration 4: Tlog Tikelihood -428.94432
Iteration 5: Tlog Tikelihood = -428.94432
Logistic regression Number of obs = 977
LR chi2(6) = 135.23
Prob > chi2 = 0.0000
Log likelihood = -428.94432 Pseudo R2 = 0.1362
cancer | odds Ratio std. Err. z P>|z| [95% conf. Interval]
smoker |
0 | (base)
1 | 2.350498 .4513038  4.45  0.000 1.613342 3.424472
age |
1 | (base)
2 | 2.832192  2.243677 1.31 0.189 5995101 13.37978
3 | 16.58078 12.17376 3.82  0.000 3.932284 69.91412
4 | 27.89911 20.32372 4.57 0.000 6.691354 116.3233
5 | 34.79453  25.59025 4.83 0.000 8.231513 147.0761
6 | 27.713 21.89264 4.21  0.000 5.891876 130.3507
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A small case-control example

logit cancer b0.smoker b3.age,or baselev

Iteration O: Tog TikeTihood = -496.55682
Iteration 1: Jlog Tikelihood -437.36405
Iteration 2: log Tikelihood = -429.36499
Iteration 3: Jog Tikelihood = -428.94718
Iteration 4: Jlog Tikelihood -428.94432
Iteration 5: log likelihood = -428.94432
Logistic regression Number of obs = 977
LR chi2(6) = 135.23
Prob > chi2 = 0.0000
Log Tikelihood = -428.94432 pseudo R2 = 0.1362
cancer | odds Ratio  std. Err. z P>|z| [95% conf. Interval]
,,,,,,,,,, S B
smoker |
0 | (base)
1 | 2.350498 .4513038 4.45 0.000 1.613342 3.424472
age |
1 | .0603108 .0442807 -3.82 0.000 .014303  .254305
2 | .1708118 .0652397 -4.63 0.000 .080800 .361098
3 | (base)
4 | 1.682618 .3701188 2.37 0.018 1.093327 2.58953
5 | 2.098486 .5042862 3.08 0.002 1.31025 3.360918
6 | 1.671393 .6277714 1.37 0.171 .800514 3.489699
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Linear and Logistic Regression: Note 4

Things to look out for in the output

In general:

Wide CI's or large standard errors in a logistic regression
indicates that at least one group has few events!

Many iterations in a logistic regression indicates that some
of the parameters are hard to estimate.
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Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald test to test if
several coefficients could be zero .

An other way to "compare” two models is by a likelihood
ratio test.

In the logistic regression output from Stata we find a
likelihood ratio test comparing the fitted model with the
model with no dependent variables the constant odds model:

LR chi2(6) 135.23
Prob > chi2 0.0000

The conclusion: The model with smoker and age is statistical
significant better, than a model assuming the same odds, risk
for everybody.
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Comparing two models: the likelihood ratio test
One can compare two models with a likelihood ratio test if:
*The two models are fitted on exactly the same data set.

*The two models are nested, i.e. one can go from one model
to the other by setting some coefficients o zero.

In Stata the test is found in this way:
logit cancer 1i.smoker i.age
estimates store modell

logit cancer 1i.smoker

estimates store model2

Trtest modell model2

Output:
Tikelihood-ratio test LR chi2(5) = 120.82
(Assumption: model2 nested in modell) Prob > chi2 = 0.0000

i.age adds statistical significant information to the model
only containing smoking!
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Logistic regression model in general

n(odds) ﬂ0+z X,

This is based on three assumptions:

a. Additivity on log-odds scale: The contribution from each
of the independent variables are added.

b.Proportionality: The contribution from independent
variables is proportional to its value (with a factor )

c. No effectmodification: The contribution from one
independent variable is the same whatever the values of
the other.

Note a. can also be formulated as multiplicitivity on the odds
scale odds = odds, - OR" - OR} -
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Logistic regression model in general
In(odds) = S, + Z B,-x,
If one consider two persons who dlffer with
Ax, inx;, Ax, in x, ... and Ax; in x;
the difference in the log odds is :
k
20, A,
p=l1
Again we see that the contribution from each of the
explanatory variables:
are added,
are proportional to the difference

and does not depend on the difference in the other
explanatory variables

On the log odds scale!
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Logistic regression model in general
In(odds) = j, +Z B,-x,
If one consider two persons who dlffer with
Ax, inx;, Ax, in x, ... and Ax, in x;
then the odds ratio is:
OR = OR™ -OR}™---

Note, the model might also be formulated:

exp[ﬂ0 +zk:ﬂﬂ -xp}

p=Pr[Y =1]= -
1+exp| B, +Z/)’p "X,
p=1
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Logistic regression model in general

In(odds) = j, +Z B,-x,

p=1
The data:  Y=1/0 dichotomous dependent variable
X|, X, ... X, independent/explanatory variables

Like in the normal regression models it is assumed that the ¥'s
are independent given the explanatory variables.

This assumption can, in general, only be checked by
scrutinising the design.

Look out for data sampled in clusters:
Patients within the same GP
Children within the same family

Twins.
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Logistic regression model in general

Estimation:

the estimates.
The distribution of the estimates are not known.

Estimates are using iterative methods.

on asymptotics.
That is, all statistical inference are approximate.

The more data - the more events -the better the
approximations.
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Excepting the two by two tables, there are no closed form for

Estimates are found by the method of maximum likelihood.

Standard errors, confidence intervals and all tests are based
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