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When one might use logistic regression. 

Some examples: 

One binary independent variable. (one odds ratio). 

Probabilities, odds and the logit function 

One continuous independent variable. 

One categorical independent variable. 
(The Wald test) 

One binary independent variable and one continuous 
independent variable without interaction. 

One binary independent variable and one continuous 
independent variable with interaction. 
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Watch out for ‘small’ reference groups 

The likelihood ratio test: comparing two nested models. 

The logistic regression model in general 

The model and the assumptions. 

The data and the assumption of independence. 

Estimation and inference  

Morten Frydenberg Linear and Logistic regression - Note 4 3 

A logistic regression is a possible model if the dependent 
variable (the response) is dichotomous, i.e. dead/alive 
obese/not obese etc. 

Contrary to what many believe there are no assumptions about 
the independent variables.  
They can be categorical or continuous. 

When working with binary response it is custom to code the 
“positive” event (eg. dead) as 1 and a “negative” event (alive) 
as 0. 

A logistic regression models the probability of a “positive 
event” via odds. 

And the associations via odds ratios. 

If the event is rare then odds ratios estimate the relative 
risks. 

Logistic regression models: Introduction 
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A logistic regression can also be used to estimate the odds 
ratios in an unmatched case-control study. 

For such data the constant term have no meaning. 

And the odds ratios are comparable to the odds ratios based 
on a follow-up study. 

Many other epidemiological design are analyzed by logistic 
regression models. 

Logistic regression models: Introduction 
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Estimating one odds ratio using logistic regression 

We are now considering a larger part of the Frammingham 
data set, consisting of 4690 persons with known BMI at the 
start. 

We will focus on the risk obesity  (BMI≥30 kg/m2) . 

Out of the 4690 persons 601 = 12.8% were obese. 

Divided into gender 

Obese Not-Obese 

Women 375 (14.2%) 2268 

Men 226 (11.0%) 1821 

We see a higher prevalence among women: OR: 1.33 (1.12;1.59). 

That is the odds of being obese is between 12 and 59 percent 
higher for women.( c2=10.2   p-value=0.001) 
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Finding an odds ratio using logistic regression 

The odds ratio is defined as: 
Women

Men

odds
OR

odds


 )  )  )ln ln ln lnWomen
Women Men

Men

odds
OR odds odds

odds

 
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 )  )  )ln ln lnWomen Menodds odds OR 

So applying the logarithm  we get: 

And rearranging terms : 

That is the log-odds obesity for the women can be written as 
the sum of two terms: 

•The log-odds in reference group (men) 

•The log of the odds ratio 
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Finding an odds ratio using logistic regression 

 ) 0 1ln odds woman   

 )  )  )ln ln lnWomen Menodds odds OR 

For men we get:  

If we again let women be  an indicator/dummy variable, then 
we can consider the model: 

 ) 0ln odds 

And for women:   ) 0 1ln odds   

Comparing with the equation above we get: 

 )0 ln Menodds 

and 
 )1 ln OR 
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Finding an odds ratio using logistic regression 

 ) 0 1ln odds woman   

 )ln Menodds  )ln OR

Or to be more precise:   )1 ln Womenvs MenOR 

So, if we can fit the model above to the data, then we can 
get an estimate of the log(OR) and hence the OR! 
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Probabilities and odds 

If p denotes the probability of an event (the risk, the 
prevalence proportion, or cumulated incidence proportion) 
then the odds is given by : 

1

p
odds

p




In mathematics the last function of p is called the “logit“ 
function. 

 )ln ln
1

p
odds

p

 
  

 

 )logit ln
1

p
p

p

 
  

 

Note: odds=1  p=0.5  ln(odds)=0 
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Probabilities and odds 
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So modelling the log-odds is the same as modelling logit(p) 

and model from before could be written. 

 ) 0 1logit p woman   

 ) 0 1ln odds woman   

Probabilities and odds 

Going from odds to probabilities: 
1

odds
p

odds




The model on probability scale is : 
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Finding an odds ratio using logistic regression 

Back to finding the estimates. 

In Stata:  logit obese b1.sex,baselevel 

 )  ) 0 1logit lnp odds woman    

Iteration 0:   log likelihood = -1795.5437   
Iteration 1:   log likelihood = -1790.3856   
Iteration 2:   log likelihood = -1790.3703   
Iteration 3:   log likelihood = -1790.3703   
Logistic regression                       Number of obs   =       4690 
                                          LR chi2(1)      =      10.35 
                                          Prob > chi2     =     0.0013 
Log likelihood = -1790.3703               Pseudo R2       =     0.0029 
----------------------------------------------------------------------- 
 obese |      Coef.   Std. Err.     z    P>|z|     [95% Conf. Interval] 
-------+--------------------------------------------------------------- 
   sex | 
    1  |  (base)    
    2  |   .2868784   .0898972     3.19   0.001    .1106831    .4630738 
       | 
 _cons |  -2.086606   .0705261   -29.59   0.000   -2.224835   -1.948378 
----------------------------------------------------------------------- 
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Finding an odds ratio using logistic regression 

 )  ) 0 1logit lnp odds woman    

----------------------------------------------------------------------- 
  obese |    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------+------------------------------------------------------------- 
      2 |  .2868784   .0898972    3.19   0.001     .1106831    .4630738 
  _cons | -2.086606   .070526   -29.59   0.000   -2.224835   -1.948378 
----------------------------------------------------------------------- 

 )1
ˆ ln OR  95% CI for ln(OR) 

 )0.2868784e 1xp .33OR   95% CI: (1.12;1.59). 

Test for the hypothesis : ln(OR)=0  OR=1 

Prevalence among men: 0.1104 (0.0975;0.1247).  

Odds in reference group (men) = exp(-2.086606)=0.1241 

95% CI :(0.1081;0.1425). 
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Iteration 0:   log likelihood = -1795.5437 
Iteration 3:   log likelihood = -1790.3703 
Logit estimates                            Number of obs   =       4690 
                                           LR chi2(1)      =      10.35 
                                           Prob > chi2     =     0.0013 
Log likelihood = -1790.3703                Pseudo R2       =     0.0029 
---------------------------------------------------------------------- 
   obese | Odds Ratio   Std. Err.   z    P>|z|     [95% Conf. Interval] 
---------+------------------------------------------------------------- 
     sex | 
      1  |     1.0000  (base) 
      2  |     1.3323     0.1198     3.19   0.001    1.1170      1.5890 
         | 
   _cons |     0.1241     0.0088   -29.59   0.000    0.1081      0.1425 
----------------------------------------------------------------------- 

Finding an odds ratio using logistic regression 

An easier way to obtain the odds ratio. 
logit obese b1.sex ,or baselevel cformat(%6.4f) 

 )  ) 0 1logit lnp odds woman    

Odds not odds ratio 
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That is, a linear relation on the log-odds scale. 

As we have seen before using age implies that 0 references to 

a newborn (age=0).  

So we will choose age=45 reference instead: 

The obesity and age: version 1 

In the previous section we saw that the prevalence of obesity 
was different for men and women. 

Is it also associated with age? 

The simplest model on the logit scale would be: 

 )  ) 0 1logit lnp odds age    

 )  )  )0 1logit ln 45p odds age     
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Note, that this odds ratio is assumed to be the same no 
matter what age the two persons have, as long as they differ 
by one year!  

The log odds ratio is proportional to the age differences, 

e.g. OR increases exponentially with the age differences. 

The obesity and age: version 1 

The interpretation of the parameters: 

0 : the log odds for a 45-year-old person. 

1 : the log odds ratio, when comparing two persons who 
differ 1 year in age. 

exp(1): the odds ratio comparing two persons who differ 1 
year in age. 

 )  )  )0 1logit ln 45p odds age     
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The obesity and age: version 1 

Obtaining the estimates in Stata: 
generate age45=age-45  
logit obese age45 

 )  )  )0 1logit ln 45p odds age     

----------------------------------------------------------------------- 
obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
------+---------------------------------------------------------------- 
age45 |   .0348023   .0051296     6.78   0.000     .0247484    .0448561 
_cons |  -1.985922   .0463594   -42.84   0.000    -2.076785   -1.895059 
----------------------------------------------------------------------- 

 obese | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf.Interval] 
-------+--------------------------------------------------------------- 
 age45 |     1.0354     0.0053     6.78   0.000     1.0251      1.0459 
 _cons |     0.1373     0.0064   -42.84   0.000     0.1253      0.1503 
----------------------------------------------------------------------- 

logit obese age45,OR 

Test for no association with age  
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The obesity and age: version 1 

 )  )  )0 1logit ln 45p odds age     

Estimate: 0 : 1.985 (2.0767;1.8951)  

The odds for obesity among 45-year-olds:  

    0.1373 (0.1253;0.1503)  

The prevalence of obesity among 45-year-olds:  

    0.1207 (0.1114;0.1307) 

 )exp log( )odds odds Prob
1

odds

odds



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The obesity and age: version 1 

 )  )  )0 1logit ln 45p odds age     

Estimates:  1 : 0.0348 (0.0247;0.0449)  

The odds ratio for being  obese is 1.0354 (1.0251;1.0459) 
when comparing the old person to the young person, if they 
differ with one year in age. 

If they differ with 4.5 years then the odds ratio is  

1.03544.5 (1.02514.5;1.04594.5)= 1.17 (1.12;1.22) 

 ( 1)  4.5 age45 = 0 
----------------------------------------------------------------------- 
obese | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
------+---------------------------------------------------------------- 
  (1) |    1.16954   .0269968     6.78   0.000     1.117806    1.223668 
----------------------------------------------------------------------- 

In Stata: lincom age45*4.5,OR  
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 )  )1.98l 6 0.n 450348odds age   

The obesity and age: version 1 

Estimated relationship: 
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The obesity and age: version 1 

Estimated relationship: 

Plot03 
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The obesity and age: version 2 

This model assumes that one year of age difference is 
associated with the same odds ratio irrespectively of the age. 

An other way to model the prevalence could be to assume a 
step function that is, to categorize age. 

We will here look at age divided into seven five-year groups: 

egen agegrp7=cut(age), at(0,35,40,45,50,55,60,120) label 

With this command the youngest age group will be number 0 
the second youngest:  1 and the oldest: 6 

 )  )0 1ln 45odds age    
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The obesity and age: version 2 
table agegrp7 ,c(min age max age count obese sum obese) row 
---------------------------------------------------------- 
  agegrp7 |   min(age)    max(age)    N(obese)  sum(obese) 
----------+----------------------------------------------- 
       0- |         30          34         352          23 
      35- |         35          39         973         105 
      40- |         40          44         885          93 
      45- |         45          49         799          95 
      50- |         50          54         733         115 
      55- |         55          59         613          95 
      60- |         60          66         335          75 
          |  
    Total |         30          66       4,690         601 
---------------------------------------------------------- 

 ) 0

6

1

ln i

i

od a ids ge 


  

A model that have different odds in each age group : 

Where agei is an indicator for being in the ith age group 

Morten Frydenberg Linear and Logistic regression - Note 4 24 

The obesity and age: version 2 

The interpretation of the parameters: 

0 : the log odds in the reference group=the youngest. 

i : the log odds ratio, when comparing a person in age group 
i with one in the reference group=the youngest.  

logit obese i.agegrp7,baselevel  Not all output 
------------------------------------------------------------------------- 
       obese |  Coef.   Std. Err.     z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------- 
     agegrp7 | 
          0  |  (base)    
          1  | .5483322  .239152    2.29   0.022     .0796029    1.017061 
          2  | .5186016  .2419361   2.14   0.032     .0444155    .9927877 
          3  | .6576621  .2417944   2.72   0.007     .1837537     1.13157 
          4  | .9790072  .2383937   4.11   0.000     .5117642     1.44625 
          5  | .9644652  .2428468   3.97   0.000     .4884941    1.440436 
          6  | 1.41737   .2523832   5.62   0.000     .9227081    1.912032 
       _cons |-2.660564  .2156798  -12.34  0.000    -3.083288   -2.237839 
------------------------------------------------------------------------- 

 ) 0
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The obesity and age: version 2 

 ) 0

6

1

ln i

i

odds agei 


  
logit obese i.agegrp7,or baselevel  Not all output 
-------------------------------------------------------------------------     
      obese |Odds Ratio  Std. Err.   z    P>|z|     [95% Conf. Interval] 
------------+------------------------------------------------------------ 
         0  |     1.0000  (base) 
         1  |     1.7304     0.4138     2.29   0.022   1.0829      2.7651 
         2  |     1.6797     0.4064     2.14   0.032   1.0454      2.6987 
         3  |     1.9303     0.4667     2.72   0.007   1.2017      3.1005 
         4  |     2.6618     0.6346     4.11   0.000   1.6682      4.2472 
         5  |     2.6234     0.6371     3.97   0.000   1.6299      4.2225 
         6  |     4.1263     1.0414     5.62   0.000   2.5161      6.7668 
 ------------------------------------------------------------------------
- The OR between the second oldest and the youngest: 
  2.62 (1.63;4.22) 

Between a 63 and 322 percent increase in odds. 

Small prevalence: 63 and 322 percent increase in prevalence. 

A statistical significant difference in prevalence! 
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The obesity and age: version 2 

The output contains six tests of no difference in risk – 
comparing each of the six groups with the reference (the 
youngest) group. 

The command: testparm i.agegrp7 
will give a “Wald test” of no difference between the seven 
groups . 
 ( 1)  [obese]1.agegrp7 = 0 

 ( 2)  [obese]2.agegrp7 = 0 
 ( 3)  [obese]3.agegrp7 = 0 
 ( 4)  [obese]4.agegrp7 = 0 
 ( 5)  [obese]5.agegrp7 = 0 
 ( 6)  [obese]6.agegrp7 =  

           chi2(  6) =   55.26 
         Prob > chi2 =    0.0000 

Highly significant 
differences 
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The obesity and age: version 2 

 logit obese b3.agegrp7,or baselevel  Not all output 
-------------------------------------------------------------------------     
      obese |Odds Ratio   Std. Err.   z    P>|z|     [95% Conf. Interval] 
------------+----------------------------------------------------------- 
    agegrp7 | 
         0  |     0.5181     0.1253    -2.72   0.007   0.3225      0.8321 
         1  |     0.8964     0.1348    -0.73   0.467   0.6676      1.2038 
         2  |     0.8702     0.1347    -0.90   0.369   0.6425      1.1786 
         3  |     1.0000  (base) 
         4  |     1.3790     0.2057     2.15   0.031   1.0293      1.8474 
         5  |     1.3591     0.2123     1.96   0.050   1.0006      1.8459 
         6  |     2.1377     0.3648     4.45   0.000   1.5299      2.9868 
------------------------------------------------------------------------- 

The OR between the second oldest and the 45-49-year-old: 
  1.36 (1.00;1.85) 

Between a no and 85 percent increase in (odds) prevalence. 

A borderline significant different in prevalence! 

Using the age group 45-49 as reference 
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Estimated relationship 
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The obesity and age: version 1 and 2 
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This model is based on three assumptions: 

Additivity on logit scale: The contributions from sex and age 
are added. 

Proportionality on logit scale: The contribution from age is 
proportional to its value.  

No effectmodification on logit scale: The contribution from 
one independent variable is the same whatever the value of 
the other. 

The obesity, sex and age: version 1 
The first analysis only looked at sex and the second only at 
age. 

Let us try to look at those two at the same time 

The simplest model on the logit scale would be: 

 )  )0 1 2ln 45odds woman age       
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The obesity, sex and age : version 1 

 )  )0 1 2ln 45odds woman age       

The interpretation of the parameters: 

0 : the log odds for a 45-year-old man. 

1 : the log odds ratio, when comparing a woman to a man of 
the same age. 

2 : the log odds ratio, when comparing two persons of the 
same sex, where the first is one year older than the 
other. 

2 *Dage: the log odds ratio, when comparing two persons of 

the same sex, where the first is Dage years older than 
the other. 
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Obtaining the estimates in Stata: 

logit obese b1.sex age45 

Iteration 0:   log likelihood = -1795.5437   
Iteration 3:   log likelihood = -1767.7019  
Logistic regression                        Number of obs   =       4690 
                                           LR chi2(2)      =      55.68 
                                           Prob > chi2     =     0.0000 
Log likelihood = -1767.7019                Pseudo R2       =     0.0155 
---------------------------------------------------------------------- 
   obese |   Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
---------+------------------------------------------------------------- 
     sex | 
      1  |  (base)    
      2  | .2743976   .0903385    3.04   0.002     .0973374    .4514579 
   age45 | .0344723   .0051354    6.71   0.000     .0244072    .0445374 
   _cons |-2.147056   .0721981  -29.74   0.000    -2.288561    -2.00555 
----------------------------------------------------------------------- 

 )  )0 1 2ln 45odds woman age       

Tests: No association with sex  No association with age  

Prevalence is 50% among 45-year-old men 

The obesity, sex and age : version 1 
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logit obese b1.sex age45, or   
  obese | Odds Ratio   Std. Err.    z    P>|z|     [95% Conf. Interval] 
--------+-------------------------------------------------------------- 
    sex | 
     1  |     1.0000  (base) 
     2  |     1.3157     0.1189     3.04   0.002     1.1022      1.5706 
  age45 |     1.0351     0.0053     6.71   0.000     1.0247      1.0455 
  _cons |     0.1168     0.0084   -29.74   0.000     0.1014      0.1346 
----------------------------------------------------------------------- 

 )  )0 1 2ln 45odds woman age       

OR for women compared to men “adjusted for age” : 
     1.32 (1.10;1.57) 

The unadjusted was   1.33 (1.12;1.59). 

OR for a one year age difference “adjusted for sex” : 

     1.04 (1.02;1.05) 

The unadjusted was   1.04 (1.03;1.05)  

Not much has changed! 

The obesity, sex and age : version 1 
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This is based on one assumption: 

Proportionality on the logit scale: The contribution age is 
proportional to its value.  

It can be written in just one formula (with interaction): 

The obesity, sex and age: version 2 

A more complicated model on the logit scale would be: 
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Where: 

That is: 1 0 0 3 1 1        

The obesity, sex and age: version 2 

Estimates log odds: 
 )  )  )0 1 2 3ln 45 45odds woman age woman age            

 logit obese b1.sex##c.age45 
------------------------------------------------------------------------- 
       obese |   Coef.   Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+----------------------------------------------------------- 
       2.sex |  .116797  .0950345   1.23   0.219    -.0694672    .3030611 
       age45 | -.005684  .0083728  -0.68   0.497    -.0220953    .0107255 
 sex#c.age45 | 
          2  |  .065803  .010743    6.13   0.000     .0447472    .0868588 
       _cons |-2.083041  .0706433 -29.49   0.000    -2.221499   -1.944583 
----------------------------------------------------------------------- 

Men Difference between women and men 

Estimates odds ratios: 
      obese | Odds Ratio   Std. Err    z    P>|z|   [95% Conf. Interval] 

------------+----------------------------------------------------------- 
      2.sex |  1.1239     0.1068     1.23   0.219     0.9329      1.3540 
      age45 |  0.9943     0.0083    -0.68   0.497     0.9781      1.0108 
sex#c.age45 | 
          2 |  1.0680     0.0115     6.13   0.000     1.0458      1.0907 
      _cons |  0.1246     0.0088   -29.49   0.000     0.1084      0.1430 
------------------------------------------------------------------------- 
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A small case-control example 

tabodds cancer age, or 
------------------------------------------------------------------------ 
  age |  Odds Ratio       chi2       P>chi2     [95% Conf. Interval] 
------+------------------------------------------------------------- 
25-34 |    1.000000          .           .              .          . 
35-44 |    2.747368       1.76       0.1843      0.579474  13.025660 
45-54 |   15.976048      24.18       0.0000      3.588609  71.123412 
55-64 |   26.554217      41.14       0.0000      5.834718 120.850133 
65-74 |   30.094340      43.99       0.0000      6.278745 144.243682 
 >=75 |   24.322581      29.40       0.0000      4.402342 134.380270 
------------------------------------------------------------------------ 

tabodds cancer age 
------------------------------------------------------------------------ 
 age  |      cases     controls       odds      [95% Conf. Interval] 
------+------------------------------------------------------------- 
25-34 |          2          116    0.01724        0.00426   0.06976 
35-44 |          9          190    0.04737        0.02427   0.09244 
45-54 |         46          167    0.27545        0.19875   0.38175 
55-64 |         76          166    0.45783        0.34899   0.60061 
65-74 |         55          106    0.51887        0.37463   0.71864 
 >=75 |         13           31    0.41935        0.21944   0.80138 
---------------------------------------------------------------------- 

Few events in reference group= wide CI’s 

Morten Frydenberg Linear and Logistic regression - Note 4 39 

 tabodds cancer age, or base(3) 

------------------------------------------------------------------------- 
  age |  Odds Ratio       chi2       P>chi2     [95% Conf. Interval] 
------+--------------------------------------------------------------- 
25-34 |    0.062594      24.18       0.0000      0.014060   0.278660 
35-44 |    0.171968      25.86       0.0000      0.079661   0.371235 
45-54 |    1.000000          .           .              .          . 
55-64 |    1.662127       5.54       0.0186      1.083844   2.548952 
65-74 |    1.883716       7.32       0.0068      1.181689   3.002809 
 >=75 |    1.522440       1.30       0.2546      0.734799   3.154365 
------------------------------------------------------------------------- 

tabodds cancer age 
------------------------------------------------------------------------ 
 age  |      cases     controls       odds      [95% Conf. Interval] 
------+------------------------------------------------------------- 
25-34 |          2          116    0.01724        0.00426   0.06976 
35-44 |          9          190    0.04737        0.02427   0.09244 
45-54 |         46          167    0.27545        0.19875   0.38175 
55-64 |         76          166    0.45783        0.34899   0.60061 
65-74 |         55          106    0.51887        0.37463   0.71864 
 >=75 |         13           31    0.41935        0.21944   0.80138 
---------------------------------------------------------------------- 

‘Many’ events in reference group= narrow CI’s 

A small case-control example 

Morten Frydenberg Linear and Logistic regression - Note 4 40 

logit cancer b0.smoker b1.age,or 
Iteration 0:   log likelihood = -496.55682   
Iteration 1:   log likelihood = -437.36405   
Iteration 2:   log likelihood = -429.36499   
Iteration 3:   log likelihood = -428.94718   
Iteration 4:   log likelihood = -428.94432   
Iteration 5:   log likelihood = -428.94432   
Logistic regression                        Number of obs   =        977 
                                           LR chi2(6)      =     135.23 
                                           Prob > chi2     =     0.0000 
Log likelihood = -428.94432                Pseudo R2       =     0.1362 
------------------------------------------------------------------------- 
   cancer | Odds Ratio   Std. Err.   z    P>|z|     [95% Conf. Interval] 
----------+-------------------------------------------------------------- 
   smoker | 
       0  |  (base)    
       1  |  2.350498    .4513038   4.45   0.000     1.613342    3.424472 
      age | 
       1  |  (base)    
       2  |  2.832192   2.243677    1.31   0.189     .5995101    13.37978 
       3  | 16.58078   12.17376     3.82   0.000     3.932284    69.91412 
       4  | 27.89911   20.32372     4.57   0.000     6.691354    116.3233 
       5  | 34.79453   25.59025     4.83   0.000     8.231513    147.0761 
       6  | 27.713     21.89264     4.21   0.000     5.891876    130.3507 
------------------------------------------------------------------------- 

“Many” iterations 

A small case-control example 
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logit cancer b0.smoker b3.age,or baselev 
Iteration 0:   log likelihood = -496.55682   
Iteration 1:   log likelihood = -437.36405   
Iteration 2:   log likelihood = -429.36499   
Iteration 3:   log likelihood = -428.94718   
Iteration 4:   log likelihood = -428.94432   
Iteration 5:   log likelihood = -428.94432   
Logistic regression                          Number of obs   =        977 
                                             LR chi2(6)      =     135.23 
                                             Prob > chi2     =     0.0000 
Log likelihood = -428.94432                  Pseudo R2       =     0.1362 
------------------------------------------------------------------------ 
   cancer | Odds Ratio   Std. Err.    z    P>|z|     [95% Conf. Interval] 
----------+-------------------------------------------------------------- 
   smoker | 
       0  |  (base)    
       1  | 2.350498   .4513038     4.45   0.000    1.613342  3.424472 
      age | 
       1  |  .0603108   .0442807   -3.82   0.000     .014303   .254305 
       2  |  .1708118   .0652397   -4.63   0.000     .080800   .361098 
       3  |  (base)    
       4  | 1.682618   .3701188     2.37   0.018    1.093327  2.58953 
       5  | 2.098486   .5042862     3.08   0.002    1.31025   3.360918 
       6  | 1.671393   .6277714     1.37   0.171     .800514  3.489699 
------------------------------------------------------------------------- 

A small case-control example 

Morten Frydenberg Linear and Logistic regression - Note 4 42 

Things to look out for in the output 

In general: 

Wide CI’s or large standard errors in a logistic regression 
indicates that at least one group has few events! 

Many iterations in a logistic regression indicates that some 
of the parameters are hard to estimate. 
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Comparing two models: the likelihood ratio test 

Earlier we saw how one could use a Wald test to test if 
several coefficients could be zero . 

An other way to “compare” two models is by a likelihood 
ratio test. 

In the logistic regression output from Stata we find a 
likelihood ratio test comparing the fitted model with the 
model with no dependent variables the constant odds model: 

LR chi2(6)      =     135.23 
Prob > chi2     =     0.0000 

The conclusion: The model with smoker and age is statistical 
significant better, than a model assuming the same odds, risk 
for everybody. 

Morten Frydenberg Linear and Logistic regression - Note 4 44 

Comparing two models: the likelihood ratio test 

One can compare two models with a likelihood ratio test if: 

•The two models are fitted on exactly the same data set. 

•The two models are nested, i.e. one can go from one model 
 to the other by setting some coefficients to zero. 

In Stata the test is found in this way: 
logit cancer i.smoker i.age 
estimates store model1 
logit cancer i.smoker 
estimates store model2 
lrtest model1 model2 

Output: 
likelihood-ratio test                        LR chi2(5)  =    120.82 
(Assumption: model2 nested in model1)        Prob > chi2 =    0.0000 

i.age adds statistical significant information to the model 
only containing smoking! 

Morten Frydenberg Linear and Logistic regression - Note 4 45 

This is based on three assumptions: 

a.Additivity on log-odds scale: The contribution from each 
of the independent variables are added. 

b.Proportionality: The contribution from independent 

variables is proportional to its value (with a factor  ) 

c.No effectmodification: The contribution from one 
independent variable is the same whatever the values of 
the other. 

Note a. can also be formulated as multiplicitivity on the odds 
scale 

Logistic regression model in general  
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If one consider two persons who differ with 

   Dx1 in x1 , Dx2 in x2 … and Dxk in xk  

the difference in the log odds is : 
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Again we see that the contribution from each of the 
explanatory variables:  
 are added,  
 are proportional to the difference  
 and does not depend on the difference in the other 
 explanatory variables 

On the log odds scale! 

 ) 0

1

ln
k

p

p

podds x 


  

Logistic regression model in general  

Morten Frydenberg Linear and Logistic regression - Note 4 47 

If one consider two persons who differ with 

   Dx1 in x1 , Dx2 in x2 … and Dxk in xk  

then the odds ratio is: 
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Note, the model might also be formulated: 
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The data:  Y =1/0 dichotomous dependent variable 

   x1 , x2 … xk  independent/explanatory variables 

Like in the normal regression models it is assumed that the Y’s 
are independent given the explanatory variables. 

This assumption can, in general, only be checked by 
scrutinising the design. 

Look out for data sampled in clusters: 

 Patients within the same GP 

 Children within the same family 

 Twins. 

 ) 0

1

ln
k

p

p

podds x 


  

Logistic regression model in general  



Morten Frydenberg Version: Friday, 23 November 2012 

Linear and Logistic Regression: Note 4 9 

Morten Frydenberg Linear and Logistic regression - Note 4 49 

Estimation: 

Excepting the two by two tables, there are no closed form for 
the estimates. 

The distribution of the estimates are not known. 

Estimates are found by the method of maximum likelihood. 

Estimates are using iterative methods. 

Standard errors, confidence intervals and all tests are based 
on asymptotics. 

That is, all statistical inference are approximate. 

The more data – the more events -the better the 
approximations. 

Logistic regression model in general  


