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Multiple linear regression 1 Why do we need a multiple regression
Morten Frydenberg ©
Section of Biostatics, Aarhus Univ, Denmark The simple linear regression model only models how the

dependent variable, y, depend on one independent variable

Why do we need multiple linear regression. -
(covariate) , x;.

An example ) ) ] ]
Interpretation of the parameters We are often interested in how several independent variables,
The general model X, Xy ,.., X, influence the dependent variable , y.
The assumptions. Sometimes we want to adjust the influence of some of the
The parameters. information, such as age and sex, before we look at the
Estimation. ‘effect’ of other variables.

The distribution of the estimates
Confidence intervals
The F-test , R-squared

Checking the model
Fitted values, residuals and leverage
Extending the model
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A multiple linear regression model Interpretation of the coefficients O - the constant
We will here start by considering a random subsample In(sbp) B, -age+ 3, - woman + f3, - In(bmi) + E
consisting of 200 persons from the Frammingham data set The first coefficient (the constant term) is the expected
used in the book. In(sbp) for
A multiple linear regression model: a man (that is ok!)
In(sbp) = f3, + B, - age+ B, - woman + f3, - In(bmi )+ E age=0 222772
Where the errors, E, are assumed to be independent and bmi=1 kg/m? 222222 (In(1)=0).
normal with mean zero and standard deviation o. As in the simple linear regression this is not of any interest.
Note, that the variable woman is a dummy/indicator But again we can control the interpretation, by choosing
variable, that it is relevant reference values for age and bmi. E.g. i
one if the person is a woman and n(sbp)=a. + B -(ace—45)+ B. - woman+ 5. -1nl 2™+ E
zero if it is a man. (shp) =, + /i (ag )4, P 25
— -lnBMI2 5
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Interpretation of the coefficients 1 Interpretation of the coefficients 2

In(sbp) =3, age+ f3, - woman + 3, - In(bmi)+ E In(sbp) =B, + j3, - age ~ woman + f3, - In(bmi)+ E

The expected In(sbp) for a man with bmi=27 kg/m? is: The expected In(sbp) for a 50 year old man with bmi=27
B+ B, -age+ B, In(27) kg/m? is: B+ 50 +4, -In(27)
The expected In(sbp) for another man with the same bmi, but The expected In(sbp) for woman with the same age and bmi
1.7 year older: ; . 1 .(age+1.7)+ B, -In(27) B+ 50+ B, +p,-In(27)
The difference is: 1.7/, The difference is: /3,
We see that this difference We see that this difference
-does not depend on the age of the first man. +does not depend on the age as long as it is the same for the
two persons.
-does not depend on the bmi as long as it is the same for the
two men. +does not depend on the bmi as long as it is the same for the
. two persons.

would be the same if the two persons were women.
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Interpretation of the coefficients 3
In(sbp) =B, + j3, - age+ f3, - woman ﬂ In(bmi)+E

The expected In(sbp) for a woman who is 50 year old:

By+ B, -50+ B, + f3,-In(bmi)
The expected In(sbp) for another woman with the same age,
but with a bmi which is 10% higher:

Lo+ 550+ B, + f, -1n(1.1~hmi)
The difference /3, -[In(1.1-bmi)—In(bmi) = f3,-In(1.1)
We see that this difference

-does not depend on the bmi of the first woman.

+does not depend on the age as long as it is the same for the
Two women.

‘would be the same if the two persons were men.
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Interpretation of the coefficients 4

In(sbp) =B, + j3, - age+ f3, - woman ﬂ In(bmi)+E
;[ In(1.1-bmi)—In(bmi) | = ;- In(1.1)

As the bmi is introduced on the log-scale, then “differences *
of this variable is measured relatively.

So comparing a pair of persons who only differ in bmi .
One having bmi=25 kg/m? and the other bmi=27 kg/m? .

Then the expected difference in In(sbp) is:

;- In 27) f,-0.077
If the bmi's were 21 kg/m? and

23 kg/m? , then the expected

difference in In(sbp) would be: JA l( j L, -0.091
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Interpretation of the coefficients 5
In(sbp)|= B, + B, - age + B, - woman + f3, - In(bmi )+ E

Taking the exponential we get:
pr — }/U . y]uge . 72wmrmn . bmiﬂ; . eXp(E)
where 7, =exp(/3,), 7, =exp(/3,) and y, =exp(3,)

That is a non-linear model on the sbp scalel
The error is multiplicative.

As medians are preserved by the exponential transformation
then the estimates are measuring the effects on the median
sbp.

An example: The age and bmi adjusted median sbp is a factor
7, higher for men compared to women.
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The multiple linear regression in general

Y the dependent variable
(X1, X5, ..0) the independent variables.
k
Y=ﬂl>+zﬁ/f'xp+E £~ )

p=1
This model is based on the assumphons
1. The expected value of Yis /3, + Zﬂp x,
p=1
2. The unexplained random deviations are independent.

3. The unexplained random deviations have the same
distributions.

4, This distribution is normal.
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The multiple linear regression in general

k
Y=B+Y.B,x,+E E-~ )
p=1
We see that the assumptions fall in two parts:
The first concerning the systematic part

and the three other which focus on the error, the unexplained
random variation.

Before we turn to how one can check some of the assumptions,

we will take a closer look at the first assumption.

.
The expected value of Yis f, + Z[Jp "X,

=
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The assumption of linearity
k

The expected value of Yis /3, + Zﬂ,, X,
p=l

This is based on three (sub) assumptions:

a. Additivity: The contribution from each of the independent
variables are added.

b.Proportionality: The contribution from a independent
variable is proportional fo its value (with a factor f3)

c. No effectmodification: The contribution from one

independent variables is the same whatever the values are
for the other.
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The assumption of linearity
k

The expected value of Yis /3, + Z » X
p=l

If one consider two persons who differ with
Ax; inx;, Ax, inx, ... and Ax; in x,

then the difference in the expected value of Yis :
k
Zﬂu ' Axp
p=l1

Again we see that the contribution for each of the
explanatory variables:

are added,

are proportional to the difference

and does not dependent of the differences in the other
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Estimation

It is almost impossible to find the estimates by hand, but easy
if you use a computer.

In Stata: regress 1nSBP age45 woman 1nBMI25

(Note first we have to generate 1nSBP, age45, woman and
TnBMI25)

Source | SS df MS Number of obs = 200
-~ + = FC 3, 196) = 16.46
Model | 1.05572698 3 .351908994 Prob > F = 0.0000
Residual | 4.18969066 196 .021375973 R-squared = 0.2013
- + -—— Adj R-squared = 0.1890
Total | 5.24541764 199 .026358883 Root MSE = .14621
InsBpP | coef. std. Err. t P>|t] [95% conf. Interval]
woman | .0036329 .0208905 0.17 0.862 -.0375662 .0448319
age45 | .0065384 .0012844 5.09 0.000 .0040053 .0090715
TnBMI25 | .2583399 .0758295 3.41 0.001 .1087934 .4078864

_cons | 4.856592 .0154266 314:82 0.000 4.826169 4.887016
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Estimation

The last part of the output: |No CI for o

It should be calculated "by hand”

| Root mse = .14621
TnsBP Coef std. Err t P>|t] [95% conf. Interval]
-.0375662 .0448319

|
+
woman | .0036329 ||.0208905
|
|
|

age45 .0065384 ||.0012844 .0040053 .0090715
TnBMI2S .2583399 |[|.0758295 . .1087934 .4078864
_cons 4.856592 .0154266 | 314.82 \0.000 4.826169 4.887016

the se's

The(CI's

Test for 5, =0

The hypothesis: “no difference in In(sbp) between men and
women adjusted for age and bmi"
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Estimated systematic part

In(sbp) = 4.8566+0.0065 - (age —45)+0.0036 - woman +o.2583-1n[b2—”5”j

519 51
Plot01
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gg 7 3T
4871 50 / : 48 30
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| 35
1 30 “71 20
15
464 46
15 20 25 30 35 40 25 30 35 40 45 50 55 60
BMI ) Age
age=45 bmi=25 age=50 bmi=35
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Stata special - plotting response curves
regress 1nSBP age45 woman 1nBMI25

InsBpP | coef std. Err t P>t [95% conf. Interval]
,,,,,,, S, e
woman | .0036329  .0208905 0.17 0.862 -.0375662 .0448319
age45 | .0065384  .0012844 5.09  0.000 .0040053 .0090715
nBMI25 | .2583399  .0758295 3.41  0.001 .1087934 .4078864
_cons |  4.856592  .0154266 314.82  0.000 4.826169 4.887016

After a regression commando, Stata leaves several
information in the memory of the computer for later use.

You can get a list by writing "ereturn 1ist".
We have already used this feature in the calculation of the

confidence interval for o.
Another example:

display %12.7f _b[woman] %12.7f _se[woman]
0.0036329  0.0208905
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Stata special - plotting “response” curves

I have made a Stata command that extracts the estimated
equations and the coefficients for later use.
The command file
regeq.ado
and the small help file
regeq.sthlp
should be place in your ado folder typically
c:\ado\personal.

You can run the regeq command after any linear or logistic
regression estimation.
Here you get the output :

estimated equation

4.85659 +0.003632 * woman +0.006538 * age45 +0.25834* TnBMI2S
equation

b0 + bl * woman + b2 * age45 + b3 * TnBMI2S5

That is, the estimated equation and the formula.
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Stata special - plotting “response” curves

Furthermore the estimated coefficients are stored as *
global macros":

. macro Tlist

bo: 4.856592269392944
b3: .2583398993331004
b2: .0065383788673611
bl: .0036328605876014

The global macros b0 to b3 contains the coefficients
and can be used in calculations.

If you want to use the estimated coefficient to age45,
then you just write $b2.
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Remember: v = bo+ bl * woman + b2 * age45 + b3 * TnBMI2S
The expected log(SBP) for a 30 year old man as a function
of the BMI is given as:

Y = b0 + bl %0 +b2 * (30-45) + b3 * Tn(BMI/25)
We can plot this by using the plot function in Stata:

twoway a
( function Y=$b0 + $bl * 0 +$b2 * (30-45) + $b3 * 1n(x/25), range(bmi) ) ///
, legend(off) ytit("expected In(SBP)") xtit("BMI") xlab( 15(5)40)

49
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Stata special - plotting “response” curves
The expected log(SBP) for a 30 year old man with BMI=27
remember: v= b0 + bl * woman + b2 * age45 + b3 * 1nBMI2S

display $b0+$b1*0+$b2*(30-45) +$b3*1n(27/25)
4.7783987

You could also get this (with CT) using the lincom command:

display 1n(27/25)
.07696104

. Tincom -15*age45 + .07696104*1nBMI25+_cons

(1) - 15 age45 + .076961 1nBMI25 + _cons = O

1nsBP | coef. std. Err. t P>|t| [95% conf. Interval]
@ | 4.778399 .0266891  179.04  0.000 4.725764 4.831033
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Stata special - plotting response curves
The expected log(SBP) for a 30 year old man and a 50 year
old woman as a function of the BMI is given as:

twoway /17
( function Y=$b0 + $b1 * 0 + $b2 * (30-45) + $b3 * In(x/25) 1/
range(bmi) 1co(blue) ) ///

( function y=$b0 + $bl * 1 + $b2 * (50-45) + $b3 * In(x/25)

, range(bmi) lco(red) ) ///

ytit("expected Tn(sBP)") xtit("BMI") xlab( 15(5)40) /17
Tlegend(label(1 "30 year old man") label(2 "50 year old woman"))

5]

494

—— 30year old man

471 -~ 50 year old woman
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The distribution of the estimates
It can be shown that the estimates of the coefficients have
normal distributions, with means equal to the true values.

The formulas for the standard deviation of the estimates
are complicated, but they are estimated by the standard
errors given in the output.

The estimated standard deviation of the errors is given by:

2

2 2 The number of
7 2 (n @) parameters are k+1

Which gives the confidence inTeM

n—k—-1

95% CIforo:6- | 5———=
7i(0975)

<o<o-

You can use the Stata command cisd
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Confidence intervals
Just like in the simple regression we get :
(except we have n-k-1 degrees of freedom).

Exact 95% confidence intervals , CT's, for /3, is found from
the estimates and standard errors

95% CI for f3, :ﬂAF 7 ~se(,@/,)
Where ¢)°7, is the upper 97.5 percentile in the t-
distribution n-k-1 degrees of freedom.

These confidence intervals are found in the output.

Note that if n-k-1 is large then this percentile is close to
1.96 and one can use the approximate confidence intervals:

Approx. 95% CI for 3, 3, +1.96-se(3,)

Linear and Logistic Regression: Note 2.1
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The ANOVA table and the F-test The F-test and R-squared

. 0.35519
The first part of the output: The F- test calculatedas:  F="""""2-16.46
: - - T 0.02138
An analysis of variance table dividing the variation in y in
two components: explained by the model (i.e. the 3 _ Source | ss df ms o ST O e T 16e
variables) and the residual (the rest) Model | 1.05572698 35190899 Prob > F = 0.0000
f Residual | 4.18969066 196 | |.021375973
1 -- £ - Ad] R-squared = 0.1890
source | s prs s Number of obs = 200 Total | 5.24541764/199 .026358883 ROOT MSE = 14621
--------- e FC 3, 196 16.46 — —
Model | 1.05572698 3 .351908994 Prob > F - 0.0000 And under the hypoTheS|s it follows an F-distribution
Residual | 4.18969066 196 .021375973 R-squared = 0.2013 ;
_________ A Adi R-cquared - 0.1890 with 3 and 196 degrees of freedom.
Total | 5.24541764 199 .026358883 Root MSE = .1l4621

The R-squared is the amount of the total variation explained
by the model(=1.0557/5.2454).

As this will increase, if we include more variables in the model,
one can look at the adjusted R-squared.

A F-test testing the hypothesis: "all (except £, ) is zero."l

Here the test is highly significant: The model explains a
statistically significant part of the variation in y!
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Predicted valuei, residuals and leverages Leverage

Y=p+Y.B,x,+E E~ )
p=l

Although the formula for the leverage is complicated, the
interpretation of leverage is the same:

A high leverage indicates that the data point has extreme
values of the explanatory variables and hence a high influence
on the estimates.

As in the simple linear regression one can find predicted
values, residuals, leverages and standardized residuals:
k

=5 +Zﬂ,, *Xpi

Predicted value :

p=1
~ k ~
Residual: n=y= b=y Bt 2B, %,
p=1
Leverage: h, = a complicated formula
. . T
Standardized-Residual:  z,=—+
Gl=h,
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Checking the model 1: rvfplot ,name(pl,replace)

As the model is much more complicated than the simple linear
regression checking the model is also complicated

Again assumption no. 2: the errors should be independent, is
mainly checked by considering how the data was collected.

The distribution of the error is checked by the same type of
plot as for the simple linear regression.

+Plots of residuals versus fitted
*Plots of residuals versus each of the explanatory variables.

+Histogram and QQ-plot of the residuals.
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rvpplot age45
rvpplot 1nBMI2S
rvpplot woman
graph combine p:

,name(p2,replace)

,name(p3, replace)

,name(p4, replace)
1 p2 p3 p4

Linear and Logistic Regression: Note 2.1

residual versus fitted
residual versus predictor

Plot02
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Diaghostic plots for categorical variables - here woman Diagnostic plots for continuous variables - dividing into groups
predict res if e(sample),res xtile age6=age,nq(6)
gnorm res if woman==0, title(woman==0) name(pl,replace) graph box res,over(age6) name(pl,replace) nodraw
gnorm res if woman==1, title(woman==1) name(p2,replace) dotplot res,over(age6) yline(0) name(p2,replace) nodraw
graph combine pl p2 , row(1) name(p3, replace) graph combine pl p2 ,col(1)
graph box res , over(woman) name (p4, replace) graph export Reg2_1_plot04.wmf, replace
graph combine p3 p4,col(1)
by woman: sum res
pr— = : :
. . - ?2??
: /rg : / :
Plot03 . . 4 . T - . Plot04 “
.
6 ° 4
8 2
— o
I — — | 2
e — e — "
) —— ' : P oquniesctas ’
sd=0.131 sd=0.157
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Identifying special points Checking the model 2: Independent errors ?
i leverage vs. normed . . . .
leverage vs. residuals °rag i Assumption no. 2: the errors should be independent, is mainly
residuals squared S
, , checked by considering how the data was collected.
Is tter lev resh I The assumption is violated if
* " some of the persons are relatives (and some are not) and the
. dependent variable have some genetic component.
s s
s +some of the persons were measured using one instrument and
Plot05 others with another.
+in general if the persons were sampled in clusters.
 possnililalitage. s, oo B —
Sandardasd resicns Normaizd escul sared
1017, 2337, 2187 have relative large residuals
2
# R
T
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Checking the model 3: Extending the model

One should also try to check the validity of the linearity
assumption that is the assumption of additivity,
proportionality and no effect modification (no interaction).

It can be done by:
1. Introducing the explanatory variable in a different scale,
e.g. adding age? or log(age) ...

2. Introducing the explanatory variable as a categorical

variable instead e.g. use age divided into agegroups instead
as age in years.

3. Introducing interactions between some of the eplanatory
variables.

4. ..

Morten Frydenberg Linear and Logistic regression - Note 2.1 35

Linear and Logistic Regression: Note 2.1 6



