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( )( ) ( )0 1 2logit 45Pr obese woman ageβ β β= + ⋅ + ⋅ −

Consider the model:

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

sex |
1  |  (base)   
2  |   .2743976   .0903385     3.04   0.002     .0973374    .4514579

|
age45 |   .0344723   .0051354     6.71   0.000     .0244072    .0445374
_cons |  -2.147056   .0721981   -29.74   0.000    -2.288561    -2.00555

------------------------------------------------------------------------------

Here men are reference. 

If we want to find the log odds for a 45 year old women 
we can calculate by hand −2.147+0.274=−1.873

But what about confidence interval?

We could change the reference to women and fit the 
model once more. 
But…….

The lincom command after logit or regress
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( )( ) ( )0 1 2logit 45Pr obese woman ageβ β β= + ⋅ + ⋅ −

Stata has a command that can be used for this: “lincom”

lincom _cons+2.sex

( 1)  [obese]2.sex + [obese]_cons = 0

------------------------------------------------------------------------------
obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) |  -1.872658    .058136   -32.21   0.000    -1.986602   -1.758714

------------------------------------------------------------------------------

To get to the risk/probability with confidence interval:
disp invlogit(r(estimate))
.13323448

disp invlogit(r(estimate)-1.96*r(se)) ";“ ///
invlogit(r(estimate)+1.96*r(se))

.12061656 ;  .1469518

The lincom command after logit or regress
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Some examples:

Log Odds for a 42 year old woman: 
lincom _cons+2.sex-age45*3

( 1)  [obese]2.sex - 3*[obese]age45 + [obese]_cons = 0

------------------------------------------------------------------------------
obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) |  -1.976075   .0639755   -30.89   0.000    -2.101465   -1.850685

------------------------------------------------------------------------------

Odds ratio for 4.5 age difference:

lincom age45*4.5,or
( 1)  4.5*[obese]age45 = 0

------------------------------------------------------------------------------
obese | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) |   1.167804   .0269869     6.71   0.000     1.116091    1.221914

------------------------------------------------------------------------------

( )( ) ( )0 1 2logit 45Pr obese woman ageβ β β= + ⋅ + ⋅ −

The lincom command after logit or regress
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All inference in logistic regression models are based on 
asymptotics, i.e. assuming that you have a lot of data !

Rule of thumb:
You should have at least 15 events per variable 
(parameter) in the model.

A large standard error typical indicates that you have too 
little information concerning the variable and that the 
estimate and standard error are not valid.

Lower your ambitions or get more data !

An exact method exists.

But it will also give wide confidence intervals.

Logistic regression models: Do you have enough data?
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In the linear regression we saw some example of statistics:

residuals, standardized residuals and leverage

which can be used in the model checking and search for 
strange or influential data points.

Such statistics can also be defined for the logistic regression 
model.

But they are much more difficult to interpret and cannot in 
general be recommended.

Checking the validity of a logistic regression model will mainly
be based on comparing it with other more complicated models.

Logistic regression models: Diagnostics
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Logit estimates                              Number of obs =       4690
LR chi2(2)      =  55.68
Prob > chi2     =     0.0000

Log likelihood = -1767.7019                  Pseudo R2       =     0.0155
-------------------------------------------------------------------------

obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------+----------------------------------------------------------------

sex |
1  |  (base)   
2  |   .2743976   .0903385     3.04   0.002     .0973374   .4514579

|
age45 |   .0344723   .0051354     6.71   0.000     .0244072   .0445374
_cons |  -2.147056   .0721981   -29.74   0.000    -2.288561    -2.00555

-------------------------------------------------------------------------

A common, and to some extend informative, test of fit is the 
Hosmer-Lemeshow test.

Consider the model for obesity from Day 4

Logistic regression models: Test of fit

Significantly better than nothing – but is it good?

( )( ) ( )0 1 2logit 45Pr obese woman ageβ β β= + ⋅ + ⋅ −
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What about comparing the estimated prevalence with the 
observed prevalence?

In the Hosmer-Lemeshow test the data is divided into groups 
(traditionally 10) according to the estimated probabilities

and the observed and expected counts are compared in these 
groups by a chi-square test.

Most programs, that can fit a logistic regression model, can 
calculate this test.

In Stata it is done by (after fitting the model):

estat gof, group(10) table

The data is divided into deciles after the estimated 
probabilities.

Logistic regression models: Test of fit
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OUTPUT
Logistic model for obese, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)
+--------------------------------------------------------+
| Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------+--------+-------+-------+-------+-------+-------|
|     1 | 0.0841 |    64 |  40.9 |   462 | 485.1 |   526 |
|     2 | 0.0953 |    43 |  45.5 |   453 | 450.5 |   496 |
|     3 | 0.1045 |    44 |  44.6 |   398 | 397.4 |   442 |
|     4 | 0.1112 |    42 |  50.3 |   422 | 413.7 |   464 |
|     5 | 0.1217 |    44 |  51.4 |   394 | 386.6 |   438 |
|     6 | 0.1332 |    52 |  63.0 |   441 | 430.0 |   493 |
|     7 | 0.1456 |    53 |  61.7 |   389 | 380.3 |   442 |
|     8 | 0.1592 |    62 |  69.8 |   392 | 384.2 |   454 |
|     9 | 0.1834 |    98 |  89.9 |   424 | 432.1 |   522 |
|    10 | 0.2407 |    99 |  83.8 |   314 | 329.2 |   413 |
+--------------------------------------------------------+

number of observations =      4690
number of groups =        10

Hosmer-Lemeshow chi2(8) =        26.01
Prob > chi2 =         0.0010

One problem: 
Too many in 
the tails

Logistic regression models: Test of fit

Significant difference between observed and expected!
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logitlogitlogitlogit obese i.sex##age45obese i.sex##age45obese i.sex##age45obese i.sex##age45
estat gof, group(10) table

Logistic model for obese, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)
+--------------------------------------------------------+
| Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------+--------+-------+-------+-------+-------+-------|
|     1 | 0.0796 |    36 |  35.9 |   466 | 466.1 |   502 |
|     2 | 0.1011 |    42 |  41.1 |   406 | 406.9 |   448 |
|     3 | 0.1053 |    49 |  49.6 |   429 | 428.4 |   478 |
|     4 | 0.1096 |    50 |  54.8 |   458 | 453.2 |   508 |
|     5 | 0.1124 |    52 |  54.2 |   436 | 433.8 |   488 |
|     6 | 0.1153 |    51 |  46.4 |   355 | 359.6 |   406 |
|     7 | 0.1182 |    52 |  53.9 |   410 | 408.1 |   462 |
|     8 | 0.1590 |    76 |  70.3 |   428 | 433.7 |   504 |
|     9 | 0.2133 |    96 |  91.8 |   391 | 395.2 |   487 |
|    10 | 0.3310 |    97 | 103.0 |   310 | 304.0 |   407 |
+--------------------------------------------------------+

number of observations =      4690
number of groups =        10

Hosmer-Lemeshow chi2(8) =         2.43
Prob > chi2 =         0.9650

The model ‘fits’ – when we look at it this way !!!!!!!

Logistic regression models: Test of fit
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Used in two situations:

1.Matched studies (binary response).

2.Unmatched studies with a confounder with many 
distinct values.

In 1. the models correspond to the way data was collected.

In 2. the method adjust for a ‘mathematical’ flaw in the 
unconditional method.

An example of situation 2:
The confounder is “kommune” having 275 distinct values. 

Conditional logistic regression
When
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The logistic regression model (outcome disease yes/no):

ln(odds) in reference ln(odds ratios)

Conditional logistic regression
What

Suppose the model above hold in each strata:

( ) ( )
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k

s i
i

iodds xα β
=

= + ⋅∑

ln(odds) in reference
different in each strata

ln(odds ratios)
the same in each strata
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ln(odds) different in each strata

We are not interested in these !

In a matched study these are ‘controlled’.

In a conditional logistic regression one ‘condition on the
odds in each strata’ , i.e. the case/control ratio.

In the conditional model the α ’s disappear !

The β ’s , the log OR’s, are still in and can be estimated.

( ) ( )
1

ln
k

s i
i

iodds xα β
=

= + ⋅∑

Conditional logistic regression
What
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A study of cancer in the oral cavity

Matched on gender and 10-year age groups

Ten strata (genage)

Here we focus on 

textile-worker and 

life time consumption of alcohol (three groups)

Conditional logistic regression
How
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-----------------------------------------------------------------------------
cancer |     Coef.   Std. Err.      z     P>|z|            CI

-------------+----------------------------------------------------------------
textile |   .5022796   .4141317     1.21   0.225    -.3094036    1.313963
alkcon |

0  |  (base)   
1  |   .4628618   .2823836     1.64   0.101    -.0905998    1.016323
2  |   2.716577    .323265     8.40   0.000     2.082989    3.350165

´ genage |
1  |  (base)   
2  |    .245086   1.251388     0.20   0.845     -2.20759    2.697762
3  |  -.4940138   .5503273    -0.90   0.369    -1.572635    .5846079
4  |    .179786   .6406249     0.28   0.779    -1.075816    1.435388
5  |  -.2899853   .5482076    -0.53   0.597    -1.364452    .7844818
6  |   .2127169   .6262462     0.34   0.734    -1.014703    1.440137
7  |  -.2305881   .5355411    -0.43   0.667    -1.280229    .8190532
8  |   .5507988   .5263922     1.05   0.295    -.4809109    1.582509
9  |   .0315165   .5884123     0.05   0.957     -1.12175    1.184783
10  |   .5572024   .5595749     1.00   0.319    -.5395442    1.653949

_cons |  -1.469219    .476301    -3.08   0.002    -2.402752   -.5356865
------------------------------------------------------------------------------

logistic regression in Stata
logit cancer textile i.alkcon i.genagegenagegenagegenage

Part of the output:

Conditional logistic regression
How
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------------------------------------------------------------------------------
cancer |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
textile |   .4929143    .410305     1.20   0.230    -.3112687    1.297097
alkcon |

0  |  (base)   
1  |    .452672   .2792327     1.62   0.105     -.094614     .999958
2  |   2.660894   .3193692     8.33   0.000     2.034942    3.286846

------------------------------------------------------------------------------

logit cancer textile i.alkcon, group(group(group(group(genagegenagegenagegenage) ) ) ) or
------------------------------------------------------------------------------

cancer | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------

textile |    1.63708   .6717022     1.20   0.230      .732517    3.658661
alkcon |

0  |  (base)   
1  |   1.572508   .4390957     1.62   0.105      .909724    2.718168
2  |   14.30908   4.569879     8.33   0.000     7.651811    26.75835

------------------------------------------------------------------------------

The syntax:

cccclogit cancer textile i.alkcon,groupgroupgroupgroup(genage(genage(genage(genage))))

Part of the output: 

Conditional logistic regression in Stata
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Other methods to analysis of binary response data
Relative Risk models

Logistic regression model focus on the Odds Ratios

This is the correct thing to do in case-control
studies.

In follow-up studies Relative Risk is often the 
appropriate measure of association, (personal risk).

I.e. a model like this might be more relevant:

( ) 0 1 2 3Pr event p RR RR RR= × × ×

( ){ } ( )
1

ln Pr event given the covariates
p

i

ii
xα β

=

= + ⋅∑

( ){ } ( ) ( ) ( ) ( )0 1 2 3
ln Pr ln ln ln lnevent p RR RR RR= + + +

That is linear on log-probability scale
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Other methods to analysis of binary response data
Risk difference models

Logistic regression model focus on the Odds Ratios

This is the correct thing to do in case-control
studies.

In follow-up studies Risk Difference is often the 
appropriate measure of association, (community 
effect).

I.e. a model like this might be more relevant: 

( ) 0 1 2 3Pr event p RD RD RD= + + +

That is linear on probability scale

( ) ( )
1

Pr event given the covariates
p

i

ii xα β
=

= + ⋅∑
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Other methods to analysis of binary response data
Estimatong RR or RD models

The Relative Risk models and the Risk Difference models 
can be estimated in many programs using what is called 
Generalized (not general) Linear Models. 

In Stata this is most easily done by the binregbinregbinregbinreg command 
with the option rrrrrrrr og rdrdrdrd.

But be careful – estimation procedure might not 
work/converges, as 

the risk of the event in a RR-model is not  
restricted to be below one.
the risk of the event in a RD-model is not  
restricted to be positive or below one.
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Other methods to analysis of binary response data

Three different models for Obese “=“ sex “+” age

Plot01
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Missing data – example 1

Consider the Frammingham study and imagine, that (due to a 
limited budget) only 500 measurements of SBP were allowed.

It was decided to take SBP measurements on 100 random 
participants in each of the age groups -40 and 60+ and 150 in 
each of the age groups 40-50 and 50-60.

That is we have missing SBP on 4190 of the 4,690 participants!

A short description of the design and the data:
----------------------------------------------------------

agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp)
----------+-----------------------------------------------

0- |      1,325         100      122.18    15.4327
40- |      1,684         150      130.85    22.2366
50- |      1,346         150      140.93    22.4819
60- |        335         100      149.51    26.9251

| 
Total |      4,690         500      135.87    24.0783

----------------------------------------------------------
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Missing data – example 1

We note:
This is not a completely random sample 
– the chance of being sample depends on age group!

The overall (total) average SBP is a biased estimate of the 
mean SBP among participants in the Frammingham study!

I.e. an analysis of the 500 participants (a complete data 
analysis) will be biased.

----------------------------------------------------------
agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------------------
0- |      1,325         100      122.18    15.4327

40- |      1,684         150      130.85    22.2366
50- |      1,346         150      140.93    22.4819
60- |        335         100      149.51    26.9251

| 
Total |      4,690         500      135.87    24.0783

----------------------------------------------------------
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Missing data – example 1

We also note:
Within each age group the sample is completely random.

Within each age group the average SBP is an unbiased
estimate of the mean SBP in the age group. 

We know the size of each age group. 

We can calculate an unbiased estimate of the total mean 
by weighing the group averages.

----------------------------------------------------------
agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------------------
0- |      1,325         100      122.18    15.4327

40- |      1,684         150      130.85    22.2366
50- |      1,346         150      140.93    22.4819
60- |        335         100      149.51    26.9251

| 
Total |      4,690         500      135.87    24.0783

----------------------------------------------------------
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Missing data – example 1

122.18 130.85 140.93 149.1325 1684 1346 335

469

51
132.62

0

⋅ + ⋅ + ⋅ + ⋅
=

An unbiased estimate can be found as the weighted average
of the group averages using the group sizes as weights:

Conclusion: Although this is not a completely random sample, 
we have enough information in the data to find an unbiased 
estimate!!!!
(Assuming completely random sample within age group!)

----------------------------------------------------------
agegrp |      Freq.      N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------------------
0- |      1,325         100      122.18    15.4327

40- |      1,684         150      130.85    22.2366
50- |      1,346         150      140.93    22.4819
60- |        335         100      149.51    26.9251

| 
Total |      4,690         500      135.87    24.0783

----------------------------------------------------------
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Assuming that SBP is related to age:

Being missing is not independent of the unobserved SBP.

but

Being missing is independent of the unobserved SBP, 
when we know the age group of the individual.

The first statement means that the data is not missing 
completely at random (MCAR).

The second statement corresponds to missing at random 
(MAR), i.e. that given all what we have observed (including 
age group), then the missingness is (completely) random, i.e. 
independent of the unobserved data.

Mathematically Missing At Random implies that one (in 
theory) has enough information in the observed data to 
correct for the missing data – in principle.
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Missing completely at random (MCAR). 
The observed data is a (completely) random sample:
A complete data analysis will be unbiased

Missing at random (MAR)
Given all what we have observed, then the missingness
is (completely) random (independent of the unobserved 
data):
The biased sampling might be adjusted for.

Missing not at random (MNAR)
Non of the two above apply:
We will need further assumptions in order to analyse 
the data.

Missing data: Standard terminology
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When the data is missing at random, then one can, in 
theory, make unbiased inference based on the observed 
data.

In the SBP example such an analysis could be to use the 
weighted average SBP instead of the biased unweighted
average.

In general

If the sampled persons are not a completely random sample, 
but the ith person is sampled with a known probability, pi , 

then we can obtain unbiased estimates by weighing the ith
person with 1/pi .

The method is called Inverse Probability Weighing.

Missing at random
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The SBP data: 
Four different sampling probabilities and weights:

Inverse probability weighting

0 0 0

1 1 1

2 2 2

3 3 3

100 1325 0.0755 1 13.25

150 1684 0.0891 1 11.23

150 1346 0.1114 1 8.97

100 335 0.2985 1 3.35

p w p

p w p

p w p

p w p

= = = =

= = = =

= = = =

= = = =

That is information from each of the youngest should 
weight by 13.25 and information from the each of the 
oldest should weight by 3.35. 
Sampling weights can be used in many Stata commands:
mean sbp [pw= sampw]

Mean estimation                     Number of obs =     500
--------------------------------------------------------------

|       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------

sbp |   132.6242   1.032943      130.5947    134.6536
--------------------------------------------------------------
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Missing values – not by design
Most often the missing is not per design
and both in the outcome and in the covariates:

oomo2

oooo1

ooom3

ommo6

oooo5

oomm4

x3x2x1yid

Here we have only complete data on 2 persons, but partial 
information on 4 additoinal persons.

o observed

m observed
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Missing values – not by design

If the missing is completely at random,
then the analysis of the complete cases 
will be unbiased.

If this is not the case, then complete 
data analysis can give biased estimates.

If the data is missing at random, then 
it is in theory possible to make an 
unbiased analysis of all the data.

oomo2

oooo1

ooom3

ommo6

oooo5

oomm4

x3x2x1yid
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Imputation

One way to try solve the problem with 
missing is to fill in the data for the missing
values and then make the analysis on the 
whole data set with the ‘imputed’ values.

The imputation can be done in many ways.

One way is to fill in an “average” value.

oomo2

oooo1

ooom3

ommo6

oooo5

oomm4

x3x2x1yid

ooa1o2

oooo1

oooay3

oa2a1o6

oooo5

ooa1ay4

x3x2x1yid

This could be the total average of the 
observed values for the specific variable or 
the average in a relevant subgroup.

This method will not in general solve the bias problem.

And of course the standard error stated in the output, 
when you analyse the imputed data set, is wrong.
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Imputation by observed mean in age group:
bysort agegrp: egen msbp=mean(sbp)
generate isbp=sbp
replace isbp=msbp if missing(sbp)

mean isbp
Mean estimation                     Number of obs =    4690469046904690
--------------------------------------------------------------

|       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------

isbp |   132.6242  132.6242  132.6242  132.6242  .1627486.1627486.1627486.1627486 132.3051    132.9432
--------------------------------------------------------------

Correct analysis using sampling weights:
mean sbp [pw=sampw]
Mean estimation                     Number of obs =     500500500500
--------------------------------------------------------------

|       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------

sbp |   132.6242   1.032943132.6242   1.032943132.6242   1.032943132.6242   1.032943 130.5947    134.6536
--------------------------------------------------------------

The missing SBP example

Correct mean,  but a much too small standard error –
incorrectly assuming 4690 independent observations.
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Imputation – random multiple

A fixed imputation will not take into account
the random variation of the unobserved
observation or the uncertainty of the 
parameters.

Imputation methods should add some random
variation to the imputed data.

For that we need a statistical model for the missing data. 

In multiple imputations one generates several imputed data 
sets.

For each imputed data set one fit the model of interest.

The point estimate, then the average across the imputed data 
sets.

One tricky thing is calculation of the standard errors.

oomo2

oooo1

ooom3

ommo6

oooo5

oomm4

x3x2x1yid
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Multiple imputations

Questions:

How to find the models from which to 
generate the missing data?

How should you handle missing data in this
process?

How to find the uncertainty (standard errors) of the 
estimates?

Bookkeeping. 

Most important: Missing at random is required!

oomo2

oooo1

ooom3

ommo6

oooo5

oomm4

x3x2x1yid
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use sbpdata,clear
mi set mlong
mi register imputed sbp
(4190 m=0 obs. now marked as incomplete)(4190 m=0 obs. now marked as incomplete)(4190 m=0 obs. now marked as incomplete)(4190 m=0 obs. now marked as incomplete)

mi impute regress mi impute regress mi impute regress mi impute regress sbpsbpsbpsbp i.agegrpi.agegrpi.agegrpi.agegrp, add(20), add(20), add(20), add(20)

Univariate imputation                   Imputations =       20
Linear regression                             added =       20
Imputed: m=1 through m=20                   updated =        0

|              Observations per m              
|----------------------------------------------

Variable |   complete   incomplete   imputed |     total
---------------+-----------------------------------+----------

sbp |       500 500 500 500 4190      4190419041904190 |      4690
--------------------------------------------------------------
(complete + incomplete = total; imputed is the minimum across m
of the number of filled in observations.)

The missing SBP example
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codebook, comp

Variable     Obs Unique      Mean       Min   Max  Label
--------------------------------------------------------------------------------
sbp 84300843008430084300 83383  132.3204  44.52609   270  Systolic Blood Pressure
id         88490   4690  2352.429         1  4699  
agegrp 88490      4  1.107481         0     3  
_mi_id 88490   4690  2357.795         1  4690  
_mi_miss 4690      2  .8933902         0     1  
____mi_mmi_mmi_mmi_m 88490     21  9.943496         0    200    200    200    20
--------------------------------------------------------------------------------

sum if _mi_m==1

Variable |       Obs Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------

sbp |      4190    131.2507    21.65931   59.92363   209.6556
id |      4190    2352.611     1359.59          2     4699

agegrp |      4190    1.105251    .8895275          0          3
_mi_id |      4190    2358.483    1331.661        101       4690

_mi_miss |         0
_mi_m |      4190           1           0          1          1

The missing SBP example
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. table agegrp if _mi_m>0, c(count sbp mean sbp sd sbp)

----------------------------------------------
agegrp |     N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------
0- |     24,500    121.5843    22.32535    20*1225=2450020*1225=2450020*1225=2450020*1225=24500

40- |     30,680    131.1271    22.37045
50- |     23,920    141.2539    22.4434
60- |      4,700    150.2313    22.19089    20*235=470020*235=470020*235=470020*235=4700

----------------------------------------------

. table agegrp if _mi_m==0,c(count sbp mean sbp sd sbp)

----------------------------------------------
agegrp |     N(sbp)   mean(sbp)     sd(sbp)

----------+-----------------------------------
0- |        100      122.18    15.4327

40- |        150      130.85    22.2366
50- |        150      140.93    22.4819
60- |        100      149.51    26.9251

----------------------------------------------

The missing SBP example
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mi estimate: mean mi estimate: mean mi estimate: mean mi estimate: mean sbpsbpsbpsbp

Multiple-imputation estimates                     Imputations     =      20
Mean estimation                                   Number of obs =       4690

Average RVI   =     7.4275
Complete DF   =       4689

DF adjustment:   Small sample                     DF:     min   =      23.43
avg =      23.43

Within VCE type:     ANALYTIC                             max   =      23.43

------------------------------------------------------------------------------
Mean |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
sbp |   132.6799   1.017506132.6799   1.017506132.6799   1.017506132.6799   1.017506 130.40   0.000     130.5772    134.7826

------------------------------------------------------------------------------

The missing SBP example

Correct analysis using sampling weights:
mean sbp [pw=sampw]
Mean estimation                     Number of obs =     500
--------------------------------------------------------------

|       Mean   Std. Err.     [95% Conf. Interval]
-------------+------------------------------------------------

sbp |   132.6242   1.032943132.6242   1.032943132.6242   1.032943132.6242   1.032943 130.5947    134.6536
--------------------------------------------------------------
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use sbp2data,clear
codebook,comp

Variable    Obs Unique      Mean   Min   Max  Label
--------------------------------------------------------------------------------
sexsexsexsex 4188      2  1.566141     1     2  Sex
sbpsbpsbpsbp 4216    112  132.6945    80   270  Systolic Blood Pressure
dbp 4281     67  82.62766    40   148  Diastolic Blood Pressure
scl 4192    244  228.2011   115   568  Serum Cholesterol
ageageageage 4245     37   46.0636    30    66  Age in Years
bmi 4218    245  25.63148  16.2  57.6  Body Mass Index
id         4690 4690 4690 4690 4690 2349.172     1  4699  
--------------------------------------------------------------------------------
xi:regress sbp age i.sex
i.sex _Isex_1-2           (naturally coded; _Isex_1 omitted)

Source |       SS       df MS              Number of obs =    3406340634063406
-------------+------------------------------ F(  2,  3403) =  320.62

Model |  281261.425     2  140630.713           Prob > F      =  0.0000
Residual |  1492627.36  3403  438.621029           R-squared     =  0.1586

-------------+------------------------------ Adj R-squared =  0.1581
Total |  1773888.79  3405   520.96587           Root MSE =  20.943

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |   1.072026   .0423621    25.31   0.000     .9889686    1.155084

_Isex_2 |   .2701054   .7247534     0.37   0.709    -1.150891    1.691101
_cons |   83.39557   2.017962    41.33   0.000     79.43903    87.35211

------------------------------------------------------------------------------

A more complicated example
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misstable pattern sbp age sex,freq

Missing-value patterns
(1 means complete)

|   Pattern
Frequency |  1  2  3

------------+-------------
3,406 |  1  1  13,406 |  1  1  13,406 |  1  1  13,406 |  1  1  1

|
407 |  1  1  0
386 |  1  0  1
359 |  0  1  1
46 |  1  0  0
44 |  0  1  0
37 |  0  0  1
5 |  0  0  0

------------+-------------
4,690 |

Variables are  (1) age  (2) sbp (3) sex

A more complicated example
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mi set mlong
mi ice sbpsbpsbpsbp age age age age o.sexo.sexo.sexo.sex bmibmibmibmi dbpdbpdbpdbp sclsclsclscl , add(20) 

#missing |
values |      Freq.     Percent        Cum.

------------+-----------------------------------
0 |      2,489       53.07       53.07
1 |      1,670       35.61       88.68
2 |        467        9.96       98.64
3 |         60        1.28       99.91
4 |          4        0.09      100.00

------------+-----------------------------------
Total |      4,690      100.00

Variable | Command | Prediction equation
------------+---------+-------------------------------------------------------

sbp | regress | age _Isex_2 bmi dbp scl
age | regress | sbp _Isex_2 bmi dbp scl
sex | ologit | sbp age bmi dbp scl

_Isex_2 |         | [Passively imputed from (sex==2)]
bmi | regress | sbp age _Isex_2 dbp scl
dbp | regress | sbp age _Isex_2 bmi scl
scl | regress | sbp age _Isex_2 bmi dbp

------------------------------------------------------------------------------

A more complicated example
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codebook,comp

Variable     Obs Unique      Mean       Min       Max  Label
--------------------------------------------------------------------------------
sex        48208      2  1.568682         1         2  Sex
sbp 48236   9585  132.3171  55.04445       270  Systolic Blood Pressure
dbp 48301   8239  82.44462  39.00607       148  Diastolic Blood Pressure
scl 48212  10200  227.2202  71.84563       568  Serum Cholesterol
age        48265   8932  45.94714  14.28921  83.50232  Age in Years
bmi 48238   9679  25.52701  10.58046      57.6  Body Mass Index
id         48710   4690  2348.166         1      4699  
_mi_id 48710   4690  2330.321         1      4690  
_mi_miss 4690      2  .4692964         0         1  
_mi_m 48710487104871048710 21  9.489017         0        20  
--------------------------------------------------------------------------------

A more complicated example
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A more complicated example

mi estimate: regress sbp age sex

Multiple-imputation estimates                     Imputations     =      20
Linear regression                                 Number of obs =       4690

Average RVI   =     0.1115
Complete DF   =       4687

DF adjustment:   Small sample                     DF:     min   =     784.98
avg =     982.49
max   =    1366.36

Model F test:       Equal FMI                     F(   2, 1480.0) =     397.31
Within VCE type:          OLS                     Prob > F        =     0.0000

------------------------------------------------------------------------------
sbp |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
age |   1.074694   .0376721    28.53   0.000     1.000792    1.1age |   1.074694   .0376721    28.53   0.000     1.000792    1.1age |   1.074694   .0376721    28.53   0.000     1.000792    1.1age |   1.074694   .0376721    28.53   0.000     1.000792    1.148595485954859548595
sex |   .2725589   .6618376     0.41   0.681    sex |   .2725589   .6618376     0.41   0.681    sex |   .2725589   .6618376     0.41   0.681    sex |   .2725589   .6618376     0.41   0.681    ----1.026622     1.571741.026622     1.571741.026622     1.571741.026622     1.57174

_cons |    82.8989   2.061978    40.20   0.000     78.851_cons |    82.8989   2.061978    40.20   0.000     78.851_cons |    82.8989   2.061978    40.20   0.000     78.851_cons |    82.8989   2.061978    40.20   0.000     78.85135    86.9464635    86.9464635    86.9464635    86.94646
------------------------------------------------------------------------------
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A statistical model:

Systematic part

Random part
X This is not needed 

due to the binomial 
error

Clustered data / data with several random components
Dichotomous outcome
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That is, an ordinary logistic regression + random components.

•A generalized linear mixed model

•A multilevel model for dichotomous outcome

Comments 1:

•It is important to include the relevant random
components in the model.

•‘Multilevel models’ is essential in medical/epidemiological 
research.

Clustered data / data with several random components
Dichotomous outcome
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Comments 2:

•The theory and insight into the models for non-normal 
data are not yet fully developed.

•The main problem being that it is very difficult to find 
valid (unbiased) estimates.

•Several software programs falsely claim to estimate the 
models. 

•Some programs like Stata and NLwin can give you valid 
estimates if you take care and have a lot of data. 

Advice:
Do not try to estimate this kind of models without consulting 
a specialist.

Clustered data / data with several random components
Dichotomous outcome
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If the models only involve one random component, e.g. 
variation between families or between GP’s,

then methods exist which can adjust the standard errors.

Remember that if the data contains clusters, then the 
precision of the estimates are overestimated, that is, the 
reported standard errors are too small.

So-called robust methods or sandwich estimates of the 
standard errors will (try to) adjust for this problem.

Only a few programs have this option – Stata does!

Clustered data / data with one random components
Dichotomous outcome


