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When one might use logistic regression.

Some examples:

One binary independent variable. (one odds ratio).

Probabilities, odds and the logit function

One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and continuous
independent variable no interaction.

One binary independent variable and continuous
independent variable with interaction.
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Watch out for ‘small’ reference groups

The likelihood ratio test: comparing two nested models.

The logistic regression model in general

The model and the assumptions.

The data and the assumption of independence.

Estimation and inference
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A logistic regression is a possible model if the dependent
variable (the response) is dichotomous dead/alive obese/not 
obese etc.

Contrary to what many believe there are no assumptions about 
the independent variables. 
They can be categorical or continuous.

When working with binary response it is custom to code the 
“positive” event (eg. dead) as 1 and a “negative” event (alive) 
as 0.

A logistic regression models the probability of a “positive 
event” via odds.

And the associations via odds ratio.

If the event is rare then odds ratios estimate the relative 
risk.

Logistic regression models: Introduction
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A logistic regression can also be used to estimate the odds 
ratios in an unmatched case-control study.

For such data the constant terms have no meaning.

And the odds ratios is comparable to the odds ratio from a 
follow-up study.

Many other epidemiological design are analyzed by logistic 
regression models.

Logistic regression models: Introduction
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Estimating one odds ratio using logistic regression

We are now considering a larger part of the Frammingham
data set, consisting of 4690 persons with known BMI at the 
start.

We will focus on the risk obesity  (BMI≥30 kg/m2) .

Out of the 4690 persons 601 = 12.8% were obese.

Divided into gender

1821226 (11.0%)Men

2268375 (14.2%)Women

Not-ObeseObese

We see a higher prevalence among women: OR: 1.33 (1.12;1.59).

That is the odds of being obese is between 12 and 59 percent 
higher for women.( χ2=10.2 p-value=0.001)
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Finding an odds ratio using logistic regression

The odds ratio is defined as:
Women

Men

odds
OR

odds
=

( ) ( ) ( )ln ln ln lnWomen
Women Men

Men

odds
OR odds odds

odds

 
= = − 

 

( ) ( ) ( )ln ln lnWomen Menodds odds OR= +

So applying the logarithm  we get:

And rearranging terms :

That is the log-odds obesity for the women can be written as 
the sum of two terms:

•The log-odds in reference group (men)

•The log of the odds ratio
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Finding an odds ratio using logistic regression

( ) 0 1
ln odds womanβ β= + ⋅

( ) ( ) ( )ln ln lnWomen Menodds odds OR= +

For men we get: 

If we again let women be  an indicator/dummy variable, then 
we can consider the model:

( ) 0
ln odds β=

And for women: ( ) 0 1
ln odds β β= +

Comparing with the equation on top we get:

( )0
ln

Men
oddsβ =

and
( )1

ln ORβ =
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Finding an odds ratio using logistic regression

( ) 0 1
ln odds womanβ β= + ⋅

( )ln
Men

odds ( )ln OR

Or to be more precise: ( )1
ln

Womenvs Men
ORβ =

So, if we can fit the model above to the data, then we can 
get an estimate of the log(OR) and hence of OR!
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Probabilities and odds

If p denotes the probability of an event (the risk, the 
prevalence proportion, or cumulated incidence proportion) 
then the odds is given by :

1

p
odds

p
=

−

In mathematics the last function of p is called the “logit“
function.

( )ln ln
1

p
odds

p

 
=  − 

( )logit ln
1

p
p

p

 
=  − 

Note: odds=1 ⇔ p=0.5 ⇔ ln(odds)=0
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Probabilities and odds
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So modelling the log-odds is the same as modelling logit(p)

and model from before could be written.

( ) 0 1
logit p womanβ β= + ⋅

( ) 0 1
ln odds womanβ β= + ⋅

Probabilities and odds

Going from odds to probabilities:
1

odds
p

odds
=

+

The model on probability scale is :

( )
( )

( )0 1

0 1

0 1

exp

1 exp

woman
p woman

wo
INVLOGI

man
T

β β
β β

β β

+ ⋅
= = + ⋅

+ + ⋅
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Finding an odds ratio using logistic regression

Back to finding the estimates.

In Stata:  logit obese b1.sex,baselevel

( ) ( ) 0 1logit lnp odds womanβ β= = + ⋅

Iteration 0:   log likelihood = -1795.5437  
Iteration 1:   log likelihood = -1790.3856  
Iteration 2:   log likelihood = -1790.3703  
Iteration 3:   log likelihood = -1790.3703  
Logistic regression                       Number of obs =       4690

LR chi2(1)      =     10.35
Prob > chi2     =     0.0013

Log likelihood = -1790.3703               Pseudo R2       =     0.0029
-----------------------------------------------------------------------
obese |      Coef.   Std. Err.     z    P>|z|     [95% Conf. Interval]

-------+---------------------------------------------------------------
sex |
1  |  (base)   
2  |   .2868784   .0898972     3.19   0.001    .1106831    .4630738

|
_cons |  -2.086606   .0705261   -29.59   0.000   -2.224835   -1.948378

-----------------------------------------------------------------------
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Finding an odds ratio using logistic regression

( ) ( ) 0 1logit lnp odds womanβ β= = + ⋅

-----------------------------------------------------------------------
obese |    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

--------+-------------------------------------------------------------
2 |  .2868784   .0898972    3.19   0.001     .1106831    .4630738

_cons | -2.086606   .070526   -29.59   0.000   -2.224835   -1.948378
-----------------------------------------------------------------------

�( )1
ˆ ln ORβ = 95% CI for ln(OR)

� ( )0.2868784e 1xp .33OR = = 95% CI: (1.12;1.59).

Test for the hypothesis : ln(OR)=0 ⇔ OR=1

Prevalence among men: 0.1104 (0.0975;0.1247).

Odds in reference group (men) = exp(-2.086606)=0.1241

95% CI :(0.1081;0.1425).
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Iteration 0:   log likelihood = -1795.5437
Iteration 3:   log likelihood = -1790.3703
Logit estimates                            Number of obs =       4690

LR chi2(1)      =    10.35
Prob > chi2     =     0.0013

Log likelihood = -1790.3703                Pseudo R2       =     0.0029
-----------------------------------------------------------------------

obese | Odds Ratio  Std. Err.     z    P>|z|     [95% Conf. Interval]
--------+--------------------------------------------------------------

sex |
1  |  (base)   
2  |   1.332262   .1197667   3.19   0.001     1.117041    1.588951

-----------------------------------------------------------------------

Finding an odds ratio using logistic regression

An easier way to obtain the odds ratio.
logit obese b1.sex ,or ,or ,or ,or baselevel

( ) ( ) 0 1logit lnp odds womanβ β= = + ⋅

Note, we cannot find any information about the risk in the 
reference group , i.e. the odds and prevalence among men!
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That is a linear relation on the log-odds scale.

As we have seen before using age implies that β0 references to 

a newborn (age=0). 

So we will choose age=45 reference instead:

The obesity and age: version 1

In the previous section we saw that the prevalence of obesity 
was different between men and women.

Is it also associated with age?

The simplest model on the logit scale would be:

( ) ( ) 0 1
logit lnp odds ageβ β= = + ⋅

( ) ( ) ( )0 1
logit ln 45p odds ageβ β= = + ⋅ −
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Note, that this odds ratio is assumed to be the same no 
matter what age the two persons have, as long as they differ 
by one year! 

The log odds ratio is proportional to the age differences,

e.g. OR increases exponentially with the age differences.

The obesity and age: version 1

The interpretation of the parameters:

β0 : the log odds for a 45 year old person.

β1 : the log odds ratio, when comparing two persons who 
differ 1 year in age.

exp(β1 ): the odds ratio, when comparing two persons who 
differ 1 year in age.

( ) ( ) ( )0 1
logit ln 45p odds ageβ β= = + ⋅ −
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The obesity and age: version 1

Obtaining the estimates in Stata:

generate age45=age-45 
logit obese age45

( ) ( ) ( )0 1
logit ln 45p odds ageβ β= = + ⋅ −

-----------------------------------------------------------------------
obese |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
------+----------------------------------------------------------------
age45 |   .0348023   .0051296     6.78   0.000     .0247484    .0448561
_cons |  -1.985922   .0463594   -42.84   0.000    -2.076785   -1.895059
-----------------------------------------------------------------------

Test for no association with age

-----------------------------------------------------------------------
obese | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
------+----------------------------------------------------------------
age45 |   1.035415   .0053113     6.78   0.000     1.025057    1.045877
-----------------------------------------------------------------------

logit obese age45,OR
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The obesity and age: version 1

( ) ( ) ( )0 1
logit ln 45p odds ageβ β= = + ⋅ −

Estimate: β0 : −1.985 (−2.0767;−1.8951)

The odds for obesity among 45 year old: 

0.1373 (0.1253;0.1503)

The prevalence of obesity among 45 year old: 

0.1207 (0.1114;0.1307)

( )exp log( )odds odds= Prob
1

odds

odds
=

+
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( 1)  4.5 age45 = 0
-----------------------------------------------------------------------
obese | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
------+----------------------------------------------------------------

(1) |    1.16954   .0269968     6.78   0.000     1.117806    1.223668
-----------------------------------------------------------------------

The obesity and age: version 1

( ) ( ) ( )0 1
logit ln 45p odds ageβ β= = + ⋅ −

Estimates: β1 : 0.0348 (0.0247;0.0449)

The odds ratio for being  obese is 1.0354 (1.0251;1.0459)
when comparing the old person to the young person, if they 
differ with one year in age.

If they differ with 4.5 years then the odds ratio is 

1.03544.5 (1.02514.5;1.04594.5)= 1.17 (1.12;1.22)

In Stata: lincom age45*4.5,OR
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( ) ( )1.98l 6 0.n 450348odds age= + ⋅ −−

The obesity and age: version 1

Estimated relationship:
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The obesity and age: version 1
Estimated relationship:
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The obesity and age: version 2

This model assumes that one year of age difference is 
associated with the same odds ratio irrespectively of the age.

An other way to model the prevalence could be to assume a 
step function that is to categorize age.

We will here look at age divided in seven five-years groups:

egen agegrp7=cut(age), at(0,35,40,45,50,55,60,120) label

With this command the youngest age group will be number 0
the second youngest: 1 and the oldest: 6

( ) ( )0 1
ln 45odds ageβ β= + ⋅ −
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The obesity and age: version 2
table agegrp7 ,c(min age max age count obese sum obese) row
----------------------------------------------------------

agegrp7 |   min(age)    max(age)    N(obese)  sum(obese)
----------+-----------------------------------------------

0- |         30          34         352          23
35- |         35          39         973         105
40- |         40          44         885          93
45- |         45          49         799          95
50- |         50          54         733         115
55- |         55          59         613          95
60- |         60          66         335          75

| 
Total |         30          66       4,690         601

----------------------------------------------------------

( ) 0

6

1

ln i

i

od a ids geα α
=

= + ⋅∑

A model that have different odds in each age group :

Where agei is an indicator for being in the ith age group
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The obesity and age: version 2

The interpretation of the parameters:

α0 : the log odds in reference group=the youngest.

αi : the log odds ratio, when comparing one person in age 
group i with one in the reference group=the youngest. 

logit obese i.agegrp7,baselevel Not all outputNot all outputNot all outputNot all output
-------------------------------------------------------------------------

obese |  Coef.   Std. Err.     z    P>|z|     [95% Conf. Interval]
-------------+-----------------------------------------------------------

agegrp7 |
0  |  (base)   
1  | .5483322  .239152    2.29   0.022     .0796029   1.017061
2  | .5186016  .2419361   2.14   0.032     .0444155   .9927877
3  | .6576621  .2417944   2.72   0.007     .1837537   1.13157
4  | .9790072  .2383937   4.11   0.000     .5117642   1.44625
5  | .9644652  .2428468   3.97   0.000     .4884941   1.440436
6  | 1.41737   .2523832   5.62   0.000     .9227081   1.912032

_cons |-2.660564  .2156798  -12.34  0.000    -3.083288   -2.237839
-------------------------------------------------------------------------

( ) 0

6

1

ln i

i

od a ids geα α
=

= + ⋅∑
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The obesity and age: version 2

( ) 0

6

1

ln i

i

odds ageiα β
=

= + ⋅∑
logit obese i.agegrp7,or baselevel Not all outputNot all outputNot all outputNot all output
-------------------------------------------------------------------------

obese |Odds Ratio  Std. Err.   z    P>|z|     [95% Conf. Interval]
------------+------------------------------------------------------------

1  | 1.730365   .4138201   2.29   0.022     1.082857   2.765057
2  | 1.679677   .4063746   2.14   0.032     1.045417   2.698747
3  | 1.930274   .4667295   2.72   0.007      1.20172   3.100522
4  | 2.661812   .6345592   4.11   0.000     1.668232   4.247159
5  | 2.623384   .6370806   3.97   0.000      1.62986   4.222538
6  | 4.126254   1.041397   5.62   0.000     2.516095   6.766825

-------------------------------------------------------------------------

The OR between the second oldest and the youngest:
2.62 (1.63;4.22)

Between a 63 and 322 percent increase in odds.

Small prevalence: 63 and 322 percent increase in prevalence.

A statistical significant difference in prevalence!
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The obesity and age: version 2

The output contains six tests of no difference in risk –
comparing each of the six groups with the reference (the 
youngest) group.

The command: testparm i.agegrp7
will give a “Wald test” of no difference between the seven
groups .
( 1)  [obese]1.agegrp7 = 0

( 2)  [obese]2.agegrp7 = 0
( 3)  [obese]3.agegrp7 = 0
( 4)  [obese]4.agegrp7 = 0
( 5)  [obese]5.agegrp7 = 0
( 6)  [obese]6.agegrp7 = 

chi2(  6) =   55.26
Prob > chi2 =    0.0000

Highly significant 
differences

( ) 0

6

1

ln i

i

od a ids geα α
=

= + ⋅∑
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The obesity and age: version 2

logit obese b3.agegrp7,or baselevel Not all outputNot all outputNot all outputNot all output
-------------------------------------------------------------------------

obese |Odds Ratio   Std. Err.   z    P>|z|     [95% Conf. Interval]
------------+-----------------------------------------------------------

agegrp7 |
0  | .5180611   .1252643  -2.72   0.007     .3225264    .8321407
1  | .8964346   .1348312  -0.73   0.467     .6675609    1.203778
2  | .8701754   .1347005  -0.90   0.369     .6424561     1.17861
3  |  (base)   
4  | 1.378981   .2057436   2.15   0.031     1.029341   1.847385
5  | 1.359073   .2123097   1.96   0.050     1.000625   1.845927
6  | 2.137652   .3648206   4.45   0.000     1.529915   2.986803

-------------------------------------------------------------------------

The OR between the second oldest and the 45-49 old:
1.36 (1.00;1.85)

Between a no and 85 percent increase in (odds) prevalence.

A borderline significant different in prevalence!

Using the age group 45-49 as reference
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Estimated relationship
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The obesity and age: version 1 and 2
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This is based on three assumptions:

Additivity on logit scale: The contribution from sex and age 
are added.

Proportionality on logit scale: The contribution from age is 
proportional to its value. 

No effectmodification on logit scale: The contribution from 
one independent variable is the same whatever the value is 
for the other.

The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at 
age.

Let us try to look at  those two at the same time

The simplest model on the logit scale would be:

( ) ( )0 1 2
ln 45odds woman ageβ β β= + ⋅ + ⋅ −
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The obesity, sex and age : version 1

( ) ( )0 1 2
ln 45odds woman ageβ β β= + ⋅ + ⋅ −

The interpretation of the parameters:

β0 : the log odds for a 45 year old man.

β1 : the log odds ratio, when comparing a woman to a man of 
the same age.

β2 : the log odds ratio, when comparing two persons of the 
same sex, where the first is one year older than the 
other.

β2 *∆age: the log odds ratio, when comparing two persons of 

the same sex, where the first is ∆age years older than 
the other.
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Obtaining the estimates in Stata:

logit obese b1.sex age45

Iteration 0:   log likelihood = -1795.5437  
Iteration 3:   log likelihood = -1767.7019 
Logistic regression                        Number of obs =       4690

LR chi2(2)      =    55.68
Prob > chi2     =     0.0000

Log likelihood = -1767.7019                Pseudo R2       =     0.0155
----------------------------------------------------------------------

obese |   Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
---------+-------------------------------------------------------------

sex |
1  |  (base)   
2  | .2743976   .0903385    3.04   0.002     .0973374    .4514579

age45 | .0344723   .0051354    6.71   0.000     .0244072    .0445374
_cons |-2.147056   .0721981  -29.74   0.000    -2.288561    -2.00555

-----------------------------------------------------------------------

( ) ( )0 1 2
ln 45odds woman ageβ β β= + ⋅ + ⋅ −

Tests: No association with sex No association with age

Prevalence is 50% among 45 year old men

The obesity, sex and age : version 1
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logit obese b1.sex age45, or, or, or, or
obese | Odds Ratio   Std. Err.    z    P>|z|     [95% Conf. Interval]

--------+--------------------------------------------------------------
2.sex  | 1.315738   .1188618     3.04   0.002     1.102232     1.5706
age45 | 1.035073   .0053155     6.71   0.000     1.024707    1.045544

-----------------------------------------------------------------------

( ) ( )0 1 2
ln 45odds woman ageβ β β= + ⋅ + ⋅ −

OR for women compared to men “adjusted for age” :
1.32 (1.10;1.57)

The unadjusted was 1.33 (1.12;1.59).

OR for one year age difference “adjusted for sex” :
1.04 (1.02;1.05)

The unadjusted was 1.04 (1.03;1.05)

Not much has changed!

The obesity, sex and age : version 1
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The obesity, sex and age : version 1

( ) ( )0 1 2
ln 45odds woman ageβ β β= + ⋅ + ⋅ −

Plot06
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This is based on one assumption:

Proportionality on the logit scale: The contribution age is 
proportional to its value. 

It can be written in just one formula (with interaction):

The obesity, sex and age: version 2

A more complicated model on the logit scale would be:

( ) ( )

( ) ( )
0 1

0 1

ln 45

ln 45

men:  

women:  

odds age

odds age

α α

γ γ

= + ⋅ −

= + ⋅ −

( ) ( ) ( )0 1 2 3
ln 45 45odds woman age woman ageβ β β β= + ⋅ + ⋅ − + ⋅ ⋅ −

0 0 1 2

0 0 1 1 2 3

α β α β

γ β β γ β β

= =

= + = +
Where:

That is: 1 0 0 3 1 1β γ α β γ α= − = −
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The obesity, sex and age: version 2

Estimates log odds:
( ) ( ) ( )0 1 2 3

ln 45 45odds woman age woman ageβ β β β= + ⋅ + ⋅ − + ⋅ ⋅ −

logit obese b1.sex##c.age45
-------------------------------------------------------------------------

obese |   Coef.   Std. Err.    z    P>|z|     [95% Conf. Interval]
-------------+-----------------------------------------------------------

2.sex |  .116797  .0950345   1.23   0.219    -.0694672    .3030611
age45 | -.005684  .0083728  -0.68   0.497    -.0220953    .0107255

sex#c.age45 |
2  |  .065803  .010743    6.13   0.000     .0447472   .0868588

_cons |-2.083041  .0706433 -29.49   0.000    -2.221499   -1.944583
-----------------------------------------------------------------------

Men Difference between women and men

Estimates odds ratios:
obese | Odds Ratio   Std. Err    z    P>|z|   [95% Conf. Interval]

-------------+-----------------------------------------------------------
2.sex | 1.123891   .1068084    1.23   0.219   .9328907    1.353997
age45 |  .9943312  .0083254   -0.68   0.497   .978147    1.010783

sex#c.age45 |
2    1.068016   .0114737    6.13   0.000   1.045763   1.090743

-------------------------------------------------------------------------
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A small case-control example

tabodds cancer age, or
------------------------------------------------------------------------

age |  Odds Ratio       chi2       P>chi2     [95% Conf. Interval]
------+-------------------------------------------------------------
25-34 |    1.000000          .           .              .          .
35-44 |    2.747368       1.76       0.1843      0.579474  13.025660
45-54 |   15.976048      24.18       0.0000      3.588609  71.123412
55-64 |   26.554217      41.14       0.0000      5.834718 120.850133
65-74 |   30.094340      43.99       0.0000      6.278745 144.243682
>=75 |   24.322581      29.40       0.0000      4.402342 134.380270

------------------------------------------------------------------------

tabodds cancer age
------------------------------------------------------------------------
age  |      cases     controls       odds      [95% Conf. Interval]

------+-------------------------------------------------------------
25-34 |          2          116    0.01724        0.00426   0.06976
35-44 |          9          190    0.04737        0.02427   0.09244
45-54 |         46          167    0.27545        0.19875   0.38175
55-64 |         76          166    0.45783        0.34899   0.60061
65-74 |         55          106    0.51887        0.37463   0.71864
>=75 |         13           31    0.41935        0.21944   0.80138

----------------------------------------------------------------------

Few events in reference group= wide CI’s
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tabodds cancer age, or base(3)base(3)base(3)base(3)

-------------------------------------------------------------------------
age |  Odds Ratio       chi2       P>chi2     [95% Conf. Interval]

------+---------------------------------------------------------------
25-34 |    0.062594      24.18       0.0000      0.014060   0.278660
35-44 |    0.171968      25.86       0.0000      0.079661   0.371235
45-54 |    1.000000          .           .              .          .
55-64 |    1.662127       5.54       0.0186      1.083844   2.548952
65-74 |    1.883716       7.32       0.0068      1.181689   3.002809
>=75 |    1.522440       1.30       0.2546      0.734799   3.154365

-------------------------------------------------------------------------

tabodds cancer age
------------------------------------------------------------------------
age  |      cases     controls       odds      [95% Conf. Interval]

------+-------------------------------------------------------------
25-34 |          2          116    0.01724        0.00426   0.06976
35-44 |          9          190    0.04737        0.02427   0.09244
45-54 |         46          167    0.27545        0.19875   0.38175
55-64 |         76          166    0.45783        0.34899   0.60061
65-74 |         55          106    0.51887        0.37463   0.71864
>=75 |         13           31    0.41935        0.21944   0.80138

----------------------------------------------------------------------

‘Many’ events in reference group= narrow CI’s

A small case-control example
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logit cancer b0.smoker b1.age,or
Iteration 0:   log likelihood = -496.55682  
Iteration 1:   log likelihood = -437.36405  
Iteration 2:   log likelihood = -429.36499  
Iteration 3:   log likelihood = -428.94718  
Iteration 4:   log likelihood = -428.94432  
Iteration 5:   log likelihood = -428.94432  
Logistic regression                        Number of obs =        977

LR chi2(6)      =    135.23
Prob > chi2     =     0.0000

Log likelihood = -428.94432                Pseudo R2       =     0.1362
-------------------------------------------------------------------------

cancer | Odds Ratio   Std. Err.   z    P>|z|     [95% Conf. Interval]
----------+--------------------------------------------------------------

smoker |
0  |  (base)   
1  |  2.350498    .4513038   4.45   0.000     1.613342   3.424472

age |
1  |  (base)   
2  |  2.832192   2.243677    1.31   0.189     .5995101   13.37978
3  | 16.58078   12.17376     3.82   0.000     3.932284   69.91412
4  | 27.89911   20.32372     4.57   0.000     6.691354   116.3233
5  | 34.79453   25.59025     4.83   0.000     8.231513   147.0761
6  | 27.713     21.89264     4.21   0.000     5.891876   130.3507

-------------------------------------------------------------------------

“Many” iterations

A small case-control example
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logit cancer b0.smoker b3.ageb3.ageb3.ageb3.age,or baselev
Iteration 0:   log likelihood = -496.55682  
Iteration 1:   log likelihood = -437.36405  
Iteration 2:   log likelihood = -429.36499  
Iteration 3:   log likelihood = -428.94718  
Iteration 4:   log likelihood = -428.94432  
Iteration 5:   log likelihood = -428.94432  
Logistic regression                          Number of obs =        977

LR chi2(6)      =  135.23
Prob > chi2     =     0.0000

Log likelihood = -428.94432                  Pseudo R2       =     0.1362
------------------------------------------------------------------------

cancer | Odds Ratio   Std. Err.    z    P>|z|     [95% Conf. Interval]
----------+--------------------------------------------------------------

smoker |
0  |  (base)   
1  | 2.350498   .4513038     4.45   0.000    1.613342  3.424472

age |
1  |  .0603108   .0442807   -3.82   0.000     .014303   .254305
2  |  .1708118   .0652397   -4.63   0.000     .080800   .361098
3  |  (base)   
4  | 1.682618   .3701188     2.37   0.018    1.093327  2.58953
5  | 2.098486   .5042862     3.08   0.002    1.31025   3.360918
6  | 1.671393   .6277714     1.37   0.171     .800514  3.489699

-------------------------------------------------------------------------

A small case-control example
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Things to look out for in the output

In general:

Wide CI’s or large standard errors in a logistic regression 
indicates that at least one group has few events!

Many iterations in a logistic regression indicates that some 
of the parameters are hard to estimate.
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Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald test to test if 
several coefficients could be zero .

An other way to “compare” two models is by a likelihood 
ratio test.

In the logistic regression output from Stata we find a 
likelihood ratio test comparing the fitted model with the 
model with no dependent variables the constant odds model:

LR chi2(6)      =     135.23
Prob > chi2     =     0.0000

The conclusion: The model with smoker and age is statistical 
significant better, than a model assuming the same odds, risk 
for everybody.
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Comparing two models: the likelihood ratio test

One can compare two models with a likelihood ratio test if:

•The two models are fitted on exactly the same data set.

•The two models are nested, i.e. one can go from one model 
to the other by setting some coefficients to zero.

In Stata the test is found in this way:
logit cancer i.smoker i.age
estimates store model1estimates store model1estimates store model1estimates store model1
logit cancer i.smoker
estimates store model2estimates store model2estimates store model2estimates store model2
lrtestlrtestlrtestlrtest model1 model2model1 model2model1 model2model1 model2

Output:
likelihood-ratio test                        LR chi2(5)  =    120.82
(Assumption: model2 nested in model1)        Prob > chi2 =    0.0000

i.age adds statistical significant information to the model 
only containing smoking!
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This is based on three assumptions:

a.Additivity on log-odds scale: The contribution from each 
of the independent variables are added.

b.Proportionality: The contribution from independent 
variables is proportional to its value (with a factor β )

c.No effectmodification: The contribution from one 
independent variable is the same whatever the values are 
for the other.

Note a. can also be formulate as multiplicativity on odds scale

Logistic regression model in general 
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If one consider two persons who differ with

∆x1 in x1 , ∆x2 in x2 … and ∆xk in xk

the difference in the log odds is :
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p

k

p

p
xβ

=
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Again we see that the contribution from each of the 
explanatory variables: 

are added, 
are proportional to the difference 
and does not depend on the difference in the other

on the log odds scale.
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Logistic regression model in general 
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If one consider two persons who differ with

∆x1 in x1 , ∆x2 in x2 … and ∆xk in xk

the odds ratio :
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Note the model might also be formulated:
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Logistic regression model in general 
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The data: Y =1/0 dichotomous dependent variable

x1 , x2 … xk independent/explanatory variables

Like in the normal regression models it is assumed that the Y’s 
are independent given the explanatory variables.

This assumption can, in general, only be checked by 
scrutinising the design.

Look out for data sampled in clusters:

Patients within the same GP

Children within the same family

Twins.
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Estimation:

Excepting the two by two tables, there are no closed form for 
the estimates.

The distribution of the estimates are not known.

Estimates are found by the method of maximum likelihood.

Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based 
on asymptotics.

That is, all statistical inference are approximate.

The more data – the more events -the better the 
approximations.

Logistic regression model in general 


