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When one might use logistic regression.

Some examples:
One binary independent variable. (one odds ratio).
Probabilities, odds and the logit function
One continuous independent variable.

One categorical independent variable.
(The Wald test)

One binary independent variable and continuous
independent variable no interaction.

One binary independent variable and continuous
independent variable with interaction.
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Watch out for 'small’ reference groups
The likelihood ratio test: comparing two nested models.
The logistic regression model in general

The model and the assumptions.

The data and the assumption of independence.

Estimation and inference
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Logistic regression models: Introduction

A logistic regression is a possible model if the dependent
variable (the response) is dichotomous dead/alive obese/not
obese etc.

Contrary to what many believe there are no assumptions about
the independent variables.
They can be categorical or continuous.

When working with binary response it is custom to code the
“positive” event (eg. dead) as 1 and a "negative” event (alive)
as 0.

A logistic regression models the probability of a “positive
event” via odds.

And the associations via odds ratio.
If the event is rare then odds ratios estimate the relative

risk.
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Logistic regression models: Introduction

A logistic regression can also be used to estimate the odds
ratios in an unmatched case-control study.

For such data the constant terms have no meaning.

And the odds ratios is comparable to the odds ratio from a
follow-up study.

Many other epidemiological design are analyzed by logistic
regression models.
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Estimating one odds ratio using logistic regression

We are now considering a larger part of the Frammingham
data set, consisting of 4690 persons with known BMI at the
start.

We will focus on the risk obesity (BMI>30 kg/m?) .
Out of the 4690 persons 601 = 12.8% were obese.
Divided into gender

Obese Not-Obese
Women |375 (14.2%) |2268
Men 226 (11.0%) [1821

We see a higher prevalence among women: OR: 1.33 (1.12;1.59).

That is the odds of being obese is between 12 and 59 percent
higher for women.( x?>=10.2 p-value=0.001)
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Finding an odds ratio using logistic regression

odds,
The odds ratio is defined as: OR =—tomer
odds,,,,
So applying the logarithm we geft:
In(OR) = In| 9% wimes | 11 (odds,,, )~ 1In(odds,,, )
odds,,,,

And rearranging terms :
In(odds,,,,, ) = In(odds,,,, ) +1n(OR)
That is the log-odds obesity for the women can be written as
the sum of fwo terms:
*The log-odds in reference group (men)
*The log of the odds ratio
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Finding an odds ratio using logistic regression Finding an odds ratio using logistic regression
In(odds,,,, ) = In(odds,,,, )+ 1n(OR) In(odds) = S, + f3, - woman
If we again let women be an indicator/dummy variable, then In(odds,,, ) In(OR)
we can consider the model:
In(odds) = f, + B, - woman Or to be more precise: B, =10(OR, 1)
For men we get: In(odds) = f, So, if we can fit the model above to the data, then we can

get an estimate of the log(OR) and hence of ORI
And for women: In(odds)= S, + 5,

Comparing with the equation on top we get:
B, =1n(odds,,,)

and 5 =In(OR)
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Probabilities and odds .
Probabilities and odds
If p denotes the probability of an event (the risk, the o
prevalence proportion, or cumulated incidence proportion) o Petor
then the odds is given by : :
8
odds = P -
1-p :
EG
Note: odds=1 < p=0.5 < In(odds)=0 3 5
[<]
o 4
In(odds) = In| —£— o
I-p 21
. . . W] gn 17
In mathematics the last function of p is called the “logit
function. 017 . T . . T . T T . T
-5 -4 -3 -2 -1 0 2 3 4 5
10git( p) —In )4 logit=In(odds)
I-p
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Probabilities and odds Finding an odds ratio using logistic regression
‘ln(odds) —B+f <wamun‘ logit(p)=1In(odds)= B, + B, - woman
- Fo 1
Back to finding the estimates.
So modelling the log-odds is the same as modelling logit(p) In Stata: Jogit obese bI.sex,baselevel
. Iteration 0: Tlog Tikelihood = -1795.5437
and model from before could be written. Iteration 1: Tog Tikelihood = -1790.3856
Iteration 2: Tlog Tikelihood = -1790.3703
- _ o Iteration 3: log Tikelihood = -1790.3703
‘IOglt(p) - /B() +ﬁl Woman‘ Logistic regression [Number of obs = 4690 ]
R chiZ(D) = 10.35
prob > chi2 = 0.0013
Going from odds to pr‘obabiliﬂes: p= odds Log Tlikelihood = -1790.3703 pseudo R2 = 0.0029
1+ odds P>|z| [95% conf. Interval]
The model on probability scale is :
exp( 3, + B, - woman) 7 2868784  .0898972 3.19  0.001  .1106831  .4630738
= = INVLOGIT + [, - woman |
1+exp(/, + B, - woman) (By+5 ) _cons | -2.086606 .0705261 -29.59 0.000 -2.224835 -1.948378
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Finding an odds ratio using logistic regression
logit(p) =In(odds) = j3, + j3, - woman

B, =n(OR) 95% CT for In(OR)

2 | |_.2868784 .0898972 3.19 0.001 .1106831 .4630738
- .070526  -29.594 0.000 -2.224835 -1.9483/8

OR = exp(0.2868784) =1.33 95% CT: (1.12;1.59).

Test for the hypothesis : In(OR)=0 < OR=1
Odds in reference group (men) = exp(-2.086606)=0.1241
95% CI :(0.1081;0.1425).
Prevalence among men: 0.1104 (0.0975;0.1247).
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Finding an odds ratio using logistic regression
logit(p) =In(odds) = S, + B, - woman

An easier way to obtain the odds ratio.
logit obese bI.se base] evel

Iteration 0: Tlog Tikelihood = -1795.5437
Iteration 3: Tlog Tikelihood = -1790.3703
Logit estimates Number of obs = 4690
LR chi2(1) = 10.35
Prob > chi2 = 0.0013
Log likelihood = -1790.3703 Pseudo R2 = 0.0029
obese 0dds Ratio P>|z| [95% conf. Interval]
sex
1 (base)
2 1.332262 0.001 1.117041 1.588951

Note, we cannot find any information about the risk in the
reference group , i.e. the odds and prevalence among menl!
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The obesity and age: version 1

In the previous section we saw that the prevalence of obesity
was different between men and women.

Is it also associated with age?

The simplest model on the logit scale would be:
logit(p) =In(odds)= j3,+ j, - age

That is a linear relation on the log-odds scale.

As we have seen before using age implies that /3 references to
a newborn (age=0).

So we will choose age=45 reference instead:

logit(p)=In(odds) = f, + f5, - (age —45)
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The obesity and age: version 1
logit(p) =In(odds)= S, + f5, - (age —45)
The interpretation of the parameters:
S, + the log odds for a 45 year old person.

B, + the log odds ratio, when comparing tfwo persons who
differ 1 year in age.

exp(f, ): the odds ratio, when comparing two persons who
differ 1 year in age.

Note, that this odds ratio is assumed to be the same no
matter what age the two persons have, as long as they differ
by one year!

The log odds ratio is proportional to the age differences,

e.g. OR increases exponentially with the age differences.
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The obesity and age: version 1
logit(p) =1In(odds) = S, + /3, - (age — 45)
Obtaining the estimates in Stata:

generate age4s5=age-45
logit obese age45

obese | Ccoef. std. Err. z P>|z| [95% conf. Interval]
______ o o o oo
age45 | .0348023 .0051296 6.78 0.000 .0247484 .0448561
_cons | -1.985922 .0463594 -42.84 0.00 -2.076785 -1.895059

obese | odds Ratio . r. z

,,,,,, S,

age45 | 1.035415 5;3}3\ 6.78 0.000 1.025057 1.045877
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The obesity and age: version 1
logit(p) =1In(odds) = 3, + f3, - (age — 45)
Estimate: £ : —1.985 (-2.0767;-1.8951)
The odds for obesity among 45 year old:
0.1373 (0.1253;0.1503)

The prevalence of obesity among 45 year old:

0.1207 (0.1114;0.1307)

odds
odds = exp(log(odds)) Prob = 1-:-odds
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The obesity and age: version 1 The obesity and age: version 1
logit(p)=1In(odds)= S, + B, - (age —45) . . .
Estimates: £, 0.0348 (0.0247:0.0449) Estimated relationship: In(odds)=—-1.986+0.0348-(age —45)
The odds ratio for being obese is 1.0354 (1.0251;1.0459) N Plot02

when comparing the old person to the young person, if they
differ with one year in age.

If they differ with 4.5 years then the odds ratio is 2
1.035443 (1.025143;1.04594)=1.17 (1.12;1.22) g
2
In Stata:  lincom age45%*4.5,0R
(1) 4.5 age45 =0
""""""""""""""""""""""""""""""""""""""""""" -2.54
obese | odds ratio N gt 2 pelel [55% conf. ancenval) N W I
@ | 1.16954 m 6.78 0.000 1.117806 1.223668
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The obesity and age: version 1 The obesity and age: version 2
Estimated relationship:
exp(—1.986+0.0348 - (age —45)) In(odds) = f, + 5, - (age - 45)
prevalence = exp(~1.986+0.0348 - (age —45)) This model assumes that one year of age difference is
o associated with the same odds ratio irrespectively of the age.
Ploto3 An other way to model the prevalence could be to assume a

step function that is to categorize age.

We will here look at age divided in seven five-years groups:
egen agegrp7=cut(age), at(0,35,40,45,50,55,60,120) Jabel

prevalence
B
f

With this command the youngest age group will be number O

B / the second youngest: 1and the oldest: 6

T T T T T
30 35 40 45 50 55 60 65 70

Agein Years
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The obesity and age: version 2 The obesity and age: version 2
table agegrp7 ,c(min age max age count obese sum obese) row In(odds) =, + Y. &, - agei
agegrp? | min(age) max(age) N(obese) sum(obese) . . i=
,,,,,,,,,, O The interpretation of the parameters:
0- | 30 34 352 23 )
35- | 35 39 973 105 o, : the log odds in reference group=the youngest.
40- | 40 44 885 93
o I o pA L5 o o; : the log odds ratio, when comparing one person in age
55- | 55 59 613 95 group i with one in the reference group=the youngest.
60- | 60 66 335 75
| Togit obese i.agegrp7,baselevel Not all output
Total | 30 66 4,690 601 | s
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, obese | Coef. std. Err. z P>|z| [95% conf. Interval]
,,,,,,,,,,,,, e
A model that have different odds in each age group : agegrp? I (base)
6
_ . 1 | .5483322 .239152  2.29  0.022 0796029  1.017061
mbﬂﬂ—%+2%ﬂ%1 2 | .5186016 .2419361 2.14  0.032 0444155 .9927877
i=1 3 | .6576621 .2417944 2.72  0.007 .1837537 1.13157
.. - - . 4 | .9790072 .2383937 4.11  0.000 .5117642 1.44625
Where agei is an indicator for being in the ith age group S | .9644652 .2428468 3.97  0.000 .4884941  1.440436
6 | 1.41737 .2523832 5.62 0.000 9227081 1.912032
_cons |-2.660564 .2156798 -12.34 0.000  -3.083288 -2.237839
Morten Frydenberg Linear and Logistic regression - Note 4 23 ;Aioir'tie;iFir;c;ein;;;g 777777777 I:l v:e;;;;;Ecigiisif;cir‘ieig;;sisiic;iil\lio;;; 777777777777777777777 2 74777
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The obesity and age: version 2 The obesity and age: version 2
. 6
ln(()dds):a'(,+2ﬁ,magez ln(odds)=04,+2a,-agei
= =1 . P
Togit obese i.agegrp7,or baselevel Not all output The output contains six tests of no difference in risk -
chese lodés ratio \std. £/ 2 polz| To5% conf. tnterval] comparing each of the six groups with the reference (the
RS e youngest) group.
1 | 1.730365 2.29 0.022 1.082857 2.765057
2 | 1.679677 2.14  0.032 1.045417  2.698747 The command: testparm i.agegrp7
RN A L alaavce will give a "Wald test” of no difference between the seven
5 2.623384 06 3.97 0.000 1.62986 4.222538 gr‘oups .
6 | 4.126254 3 5.62 0.000 2.516095 6.766825
e N (1) [obesell.agegrp7 =0
( 2) [obese]2.agegrp7 = 0
The OR between the second oldest and the youngest (3) [obese]3.agegrp7 = 0
: ( 4) [obesel4.agegrp? = 0
2.62 (1.63;4.22) (') [obesels.agegrp? = 0
( 6) [obesel6.agegrp7 =
Between a 63 and 322 percent increase in odds. chizC 6) = 55.26 Highly significant

Prob > chi2 0.0000 diff
. . ifferences
Small prevalence: 63 and 322 percent increase in prevalence.
A statistical significant difference in prevalence!
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The obesity and age: version 2 The obesity and age: version 2
Using the age group 45-49 as reference
-1 .25
Togit obese b3.agegrp7,or baselevel Not all output Plot04
obese |odds Ratio std. Err, z P>|z| [95% conf. Interval]
———————————— e e - 2
agegrp7 |
0 | .5180611 .N252643 -2.72  0.007 .3225264 8321407
1 | .8964346 .13¢§312 -0.73  0.467 .6675609  1.203778 3
2 | .8701754 .13%005 -0.90 0.369 .6424561  1.17861 5
3 | (base) A ®
4 | 1.378081 4057386 2.15 0.031  1.029341  1.847385 =
5 | 1.350073 7212309 1.96 _0.050 ___1.000625 __1.845927
6 | 2.137652 7.3648206  4.45 0.000  1.529915  2.986803 ‘
The OR between the second oldest and the 45-49 old:
1.36 (1.00;1.85) 3 05
3 35 40 45 50 55 60 65 70 3 35 40 45 50 55 60 65 70
. . in Ye Age in Ye
Between a no and 85 percent increase in (odds) prevalence. haein vears s e
L . . Estimated relationshi
A borderline significant different in prevalence! P
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The obesity and age: version 1 and 2 The obesity, sex and age: version 1
The first analysis only looked at sex and the second only at
Plot05 %] moser age.

—— modei2

Let us try to look at those two at the same time
The simplest model on the logit scale would be:

In(odds) = B, + /3, - woman + j3, - (age — 45)
This is based on three assumptions:

log odds
prevalence
5

Additivity on logit scale: The contribution from sex and age
are added.

Proportionality on logit scale: The contribution from age is
3 o5 proportional to its value.

F S P o . o

Age in Years Agen Years No effectmodification on logit scale: The contribution from
one independent variable is the same whatever the value is
for the other.
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The obesity, sex and age : version 1
In(odds) = B, + B, - woman+ 3, - (age —45)

The interpretation of the parameters:
/3, + the log odds for a 45 year old man.

B, : the log odds ratio, when comparing a woman to a man of
the same age.

5, : the log odds ratio, when comparing two persons of the
same sex, where the first is one year older than the
other.

B, *Aage: the log odds ratio, when comparing fwo persons of

the same sex, where the first is Aage years older than
the other.
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The obesity, sex and age : version 1
In(odds) = B, + /3, - woman + j3, - (age — 45)
Obtaining the estimates in Stata:
Jogit obese bl.sex age45

The obesity, sex and age : version 1
In(odds) = S, + B, - woman+ 3, - (age — 45)

Togit obese bl.sex age45, or

obese | odds Ratio std. Err. z P>|z| [95% conf. Interval]
,,,,,,,, bmmmmmmmm e e R
2.sex | 1.315738 .1188618 3.04 0.002 1.102232 1.5706
age45 | 1.035073 .0053155 6.71 0.000 1.024707 1.045544

OR for women compared to men “adjusted for age" :
1.32 (1.10;1.57)
1.33 (1.12;1.59).

OR for one year age difference "adjusted for sex”:

1.04 (1.02;1.05)
1.04 (1.03;1.05)

The unadjusted was

The unadjusted was
Not much has changed!
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Iteration 0: Tlog Tikelihood = -1795.5437
Iteration 3: log Tikelihood = -1767.7019
Logistic regression | Number of obs = 4690
LR ch1Z(2) = 55.68
Prob > chi2 = 0.0000
Log Tikelihood = -1767.7019 Pseudo R2 = 0.0155
obese | Ccoef. std. Err. z P>|z| [95% conf. Interval]
_________ S [N
sex |

1 | (base)

2 | .2743976 .0903385 3=04 0002 .0973374 .4514579
age45 | .0344723 .0051354/ | .0244072 .0445374
_cons |-2.147056 .0721981 |-29.74  0.000 Wl -2.00555

7 L
Tests: | No association with sex | No association with age
| Prevalence is 50% among 45 year old men|
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The obesity, sex and age : version 1
In(odds) = B, + /3, - woman + j3, - (age — 45)
-1 .25°
men men
——- women ., ——- women
Plot06
15 2
©
g g
g -2 g 15
5
4
/
/
-25 1 //
- /
//
3 .05
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
AgeinYears . . Agein Yeas
The estimated relationship
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The obesity, sex and age: version 2

A more complicated model on the logit scale would be:
men:  In(odds) =, + e, - (age—45)
women: In(odds) =y, +7,-(age—45)

This is based on one assumption:

Proportionality on the logit scale: The contribution age is
proportional to its value.

Tt can be written in just one formula (with interaction):
In(odds) = B, + f3,- woman + j3, - (age — 45) + 3, - woman - (age — 45)
o, =p, o =p,

Where:  _ 545 n=p+5

Thatis: f=7-¢, Bi=r-o
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The obesity, sex and age: version 2
In(odds) = S, + f3,- woman + j3, - (age — 45) + 3, - woman - (age — 45)
Estimates log odds:
Tlogit obese bl.sex##c.age45

.0950345  1.23  0.219  -.0694672 _ _.3030611
.0083728 -0.68 0.497  -.0220953 — —.0107255

.010743 6.13  0.000 .0447472
.0706433 -29.49

.0868588
944583

Estimates odds ratios:

obese | odds Ratio z P>|z| [95% conf. Interval]

_____________ S, S

2.sex [ 1.123891 1.23  0.219  .9328907 _ _1.353997

age4s .9943312 -0.68  0.497 .978147 1.010783
sex#c.age45 |

_2_ _1.068016 6.13  0.000 1.045763 _ _1.090743
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The obesity, sex and age: version 2 A small case-control example
y ) = . . pe — . . 0P —
In(odds) = B, + f3, - woman + j3, - (age — 45) + B3, - woman - (age — 45) tabodds cancer age
Ploto7 ° ] — men N | e ———
——- women ; —— women age | cases controls odds [95% conf. Interval]
7225 L N e et ettt
1 S 25-34 | 2 116 0.01724 0.00426  0.06976
,/ 35-44 | 9 190 0.04737 0.02427  0.09244
// 45-54 | 46 167 0.27545 0.19875 0.38175
s 55-64 | 76 6 0.45783 0.34899  0.60061
” 5 /’ 3 65-74 | 55 106 0.51887 0.37463 0.71864
£ ya 5 >=75 | 13 31 \s\ 0. 0.
= / [ N N G Y N (SOUPUS -
2 / @
5 .
2] —~——— /] I Few events in
ST tabodds cancer age, o
s | e e
V
25 ’/ age || odds Ratio chi2 pP>chi2 [95% conf.| Interval]
;s 0 e A N N 4=
/ 25-34 | 1.000000 . .
/ 35-44 | 2.747368 1.76 0.1843 0.579474 13.025660
-3 0 45-54 | 15.976048 24.18 0.0000 3.588609 71.123412
3 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70 55-64 | 26.554217 41.14 0.0000 5.834718 120.850133
Age in Years Age in Years 65-74 | 30.094340 43.99 0.0000 6.278745 144.243682
The esﬂma‘l‘ed r‘elc‘!’ionship >=75 | 24.322581 29.40 0.0000 4.402342 134.380270
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A small case-control example A small case-control example

Jlogit cancer b0.smoker bl.age,or
Iteration O: Tlog Tikelihood = -496.55682

tabodds cancer age

Iteration 1 Tlog Tikelihood = -437.36405
”””””””””” Iteration 2: log Tikelihood = -429.36499 . .

age | cases controls odds [95% conf. Interval] Tteration 3 Tog Tikelihood = -428.94718 “Many" iterations
777777 + TTmTTTTmT oo Iteration 4 Tlog 1ikelihood = -428.94432
25-34 | 2 116 0.01724 0.00426  0.06976 Iteration 5: Tog Tikelihood = -428.94432
35-44 | 9 190 | 0.04737 0.02427  0.09244 Logistic reqression Nlimber of obs 977
45-54 | 46. 167 0.27545 0.19875 0.38175 LR chi2(6) 135.23
55-64 | 76 166 0.45783 0.34899 0.60061 Prob > chi2 0.0000
65-74 | 55 0.51887 0.37463  0.71864 Log Tikelihood = -428.94432 pseudo R2 0.1362
>=75 | 13 31 41935 0.21944 0.80138 I I I - -
,,,,, e 5 z P>|z| [95% conf. Interval]

‘Many' events in reference group= narrow CI's T mmmmiemninnsn s
T smoker

|
tabodds_cancer age, or|base(3) 0 | (base)
1 | 2.350498 .4513038  4.45 0.000 1.613342 3.424472
age || odds Ratio chi2 p>chi2 [95% conf.| Interval] age |
S I ettt Hi it 1 | (base)
25-34 || 0.062594 24.18 0.0000 0.014060 | 0.278660 2 | 2.832192 2.243677  1.31 0.189 .5995101  13.37978
35-44 | 0.171968 25.86 0.0000 0.079661 v 0.371235 3 | 16.58078 12.17376 3.82 0.000 3.932284 69.91412
45-54 | 1.000000 . . T T 4 | 27.89911 20.32372 4.57 0.000 6.691354 116.3233
55-64 | 1.662127 5.54 0.0186 1.083844 2.548952 5 | 34.79453 25.59025 4.83 0.000 8.231513 147.0761
65-74 | 1.883716 7.32 0.0068 1.181689 3.002809 6 | 21.89264 0.000 5.891876 130.3507
>=75 | 1.522440 1.30 0.2546 0.734799 3.154365 - - — - — —
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A small case-control example Things to look out for in the output
Togit cancer b0.smoker b3.age,or baselev
Tteration 0:  Tog T1kel1hood = -496.55682 In gener‘ak
Iteration 1: log Tikelihood = -437.36405
Iteration 2: Tlog Tikelihood = -429.36499 A d R et H
Tteration 3. oo Tikelihood - _428.94718 W@ie CTI's or large standard errors in a logistic regression
Iteration 4:  Tog likelihood = -428.94432 indicates that at least one group has few events!
Iteration 5: log Tikelihood = -428.94432
Logistic regression Number of obs = 977 Many iterations in a logistic regression indicates that some
LR chi2(6) = 135.23 o
prob > chiz = 0.0000 of the parameters are hard to estimate.
Log likelihood = -428.94432 Pseudo R2 = 0.1362
cancer | odds Ratio std. Err z P>|z| [95% conf. Interval]
__________ S
smoker
0 | (base)
1 | 2.350498 .4513038 4.45 0.000 1.613342 3.424472
age |
1 | .0603108 .0442807 -3.82 0.000 .014303 .254305
2 | .1708118 .0652397 -4.63 0.000 .080800 .361098
3 | (base)
4 | 1.682618 .3701188 2.37 0.018 1.093327 2.58953
5 | 2.098486 .5042862 3.08 0.002 1.31025 3.360918
6 | 1.671393 .6277714 1.37 0.171 .800514 3.489699
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Comparing two models: the likelihood ratio test

Earlier we saw how one could use a Wald test to test if
several coefficients could be zero .

An other way to "compare” two models is by a likelihood
ratio test.

In the logistic regression output from Stata we find a
likelihood ratio test comparing the fitted model with the
model with no dependent variables the constant odds model:

LR chi2(6) 135.23
Prob > chi2 0.0000

The conclusion: The model with smoker and age is statistical
significant better, than a model assuming the same odds, risk
for everybody.
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Comparing two models: the likelihood ratio test
One can compare two models with a likelihood ratio test if:
*The two models are fitted on exactly the same data set.

*The two models are nested, i.e. one can go from one model
to the other by setting some coefficients to zero.

In Stata the test is found in this way:
Togit cancer i.smoker i.age
estimates store modell

Togit cancer i.smoker

estimates store model2

Trtest modell model2

Output:
Tlikelihood-ratio test LR chi2(5) = 120.82
(Assumption: model2 nested in modell) Prob > chi2 = 0.0000

i.age adds statistical significant information to the model
only containing smoking!
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Logistic regression model in general

k
In(odds) = S, + Z,b’ﬂ ‘X,
p=1

This is based on three assumptions:

a. Additivity on log-odds scale: The contribution from each
of the independent variables are added.

b.Proportionality: The contribution from independent
variables is proportional to its value (with a factor )

c. No effectmodification: The contribution from one
independent variable is the same whatever the values are
for the other.

Note a. can also be formulate as multiplicativity on odds scale
odds = odds, - OR" - OR;* ---- OR*
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Logistic regression modkel in general
ln(odds) =4+ Zﬂﬂ ‘X,
If one consider two persons whpo:]differ with
Ax;inx;, Ax, inx, .. and Axy in x;

the difference in the log odds is :
k

Z]ﬁ/; : AX[)
P=
Again we see that the contribution from each of the
explanatory variables:
are added,
are proportional to the difference
and does not depend on the difference in the other

on the log odds scale.
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Logistic regression model in general
k
In(odds)=f,+ ., x,
If one consider two persons who differ with
Ax;inx;, Ax, inx, .. and Ax, in x;
the odds ratio :
OR =OR™ -OR---- OR™

Note the model might also be formulated:

exp(ﬁ” + iﬂﬂ ~xp]

=Pr|Y =1|=
p="Pr[y =1] -
1+exp| £, +Zﬂﬂ ‘X,
p=1
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Logistic regression model in general

k
In(odds) = S, + Zﬁ, "X,

p=1
The data:  Y=1/0 dichotomous dependent variable
X|, X, .. X independent/explanatory variables

Like in the normal regression models it is assumed that the Y's
are independent given the explanatory variables.

This assumption can, in general, only be checked by
scrutinising the design.

Look out for data sampled in clusters:
Patients within the same GP
Children within the same family

Twins.
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Logistic regression model in general
Estimation:

Excepting the two by fwo tables, there are no closed form for
the estimates.

The distribution of the estimates are not known.
Estimates are found by the method of maximum likelihood.
Estimates are using iterative methods.

Standard errors, confidence intervals and all tests are based
on asymptotics.

That is, all statistical inference are approximate.

The more data - the more events -the better the
approximations.
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