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Why do we need a multiple regression

The simple linear regression model only models how the
dependent variable, y, depend on one independent variable
(covariate) , x;.

We are often interested in how several independent variables,
Xy, X, ,.., X, influence the dependent variable , y.

Sometimes we want to adjust the influence of some of the
information, such as age and sex, before we look at the
‘effect’ of other variables.
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A multiple linear regression model

We will here start by considering a random subsample
consisting of 200 persons from the Frammingham data set
used in the book.

A multiple linear regression model:

In(sbp) = S, + f, -age + B, - woman + f3, - In(bmi) + E

Where the errors, E, are assumed to be independent and
normal with mean zero and standard deviation o.

Note, that variable woman is a dummy/indicator variable,
that it is

one if the person is a woman and

zero if it is a man.
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Interpretation of the coefficients O - the constant

In(sbp) ,B] -age+ f3, -woman + 3, -In(bmi) + E
The first coefficient (the constant term) is the expected
In(sbp) for

aman (that is okl)
age=0 222??
bmi=1 kg/m? 222222 (In(1)=0).

As in the simple linear regression this not of any interest.

But again we can control the interpretation, by choosing
relevant reference values for age and bmi. E.g.
bmi

In(sbp) =, + f3, - (age—45) + 3, - woman + [3, ~ln(2—5j+E
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Interpretation of the coefficients 1
In(sbp)=f3, age+ f3, - woman+ f3, -In(bmi)+ E
The expected In(sbp) for a man with bmi=27 kg/m? is:
B+ B, -age+ 5, -1In(27)
The expected In(sbp) for another man with the same bmi, but
1.7year older: 5 | 5 (age+1.7)+ B, -In(27)
The difference is: 1.7/
We see that this difference

-does not depend on the age of the first man.

-does not depend on the bmi as long as it is the same for the
two men.

would be the same if the two persons were women.
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Interpretation of the coefficients 2
In(sbp) =, + f3, - age woman+ 3, -1n(bmi)+ E
The expected In(sbp) for a 50 year old man with bmi=27
kg/mé is: B+ B,-50 +4, -In(27)
The expected In(sbp) for woman with the same age and bmi
B+ 5,50+ 5, +5,-1In(27)
The difference is: /3,
We see that this difference

+does not depend on the age as long as it is the same for the
two persons.

+does not depend on the bmi as long as it is the same for the
two persons.
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Interpretation of the coefficients 3 Interpretation of the coefficients 4
In(sbp) = S, + f, - age + B, - woman ﬂln(bmi) +E In(sbp) =3, + f, -age+ B, - woman-tm In(bmi)+E
T d In(sb is 50 Id:
he expected In(sbp) for a woman who is 50 year o B -[ln(l.l-bmi) I (bmi)} — B (L)
B+ B 50+ B, + 5, ~1n(bmz.) As the bmi is introduced onh the log-scale, then "differences *
The expected In(sbp) for another woman with the same age, of this variable is measured relatively.
but with a bmi which is 10% higher: ) ) ) . )
B, + 5, -50 + 3, + 3, - In(1.1-bmi) So comparing a pair of persons how only differ in bmi .

One having bmi=25 kg/m? and the other bmi=27 kg/m? .
The difference /3, -[In(1.1-bmi)—In(bmi) ] = B, -In(1.1) he having bmi=25 kg/m? and the other bmi=27 kg/m

We see that this difference Then the expected difference in In(sbp) is:
27
ﬁ-ﬁ -In E = ﬁ-ﬁ -0.077

+does not depend on the bmi of the first woman. If the bmi's were 21 kg/m? and

-does not depend on the age as long as it is the same for the 23 kg/m? , then the expected
two women. difference in In(sbp) would be: £,-1 ( ) £,-0.091
‘would be the same if the two persons were men. ) . )
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Interpretation of the coefficients 5 The multiple linear regression in general

In(sbp)l= B, + 3, - age+ B, - woman + f3,-In(bmi)+ E v the dependent variable

Taking the exponential we get: (xp, X3 ,..0%) the independent variables.

pr — 7/0 . %age . 7/ﬁwnman . bmlﬁl . eXp(E)

- k
where 7, =exp(/,), 7, =exp(,)and 7, =exp(/3,) Y=B,+>.8,x,+E E~ N(O,az)
p=l1

That is a non-linear model on the sbp scale! This model is based on the assumptions:

. e . k
The error is multiplicative. 1. The expected value of Yis /5 +Y S - x
As medians are preserved by the exponential fransformation =l
then the estimates telling of effect on the median sbp. 2. The unexplained random deviations are independent.
An example: The age and bmi adjusted median is a factor % 3. T}\e Lfnexplained random deviations have the same
higher for man than for women. distributions.

4. This distribution is normal.
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The multiple linear regression in general The assumption of linearity
k
k
_ 2 The expected val Yis + X,
Y—/30+Zﬂ,,-xp+E E~N(O,0) e expected value of Yis /3, ;ﬂp .

We see that the assumptions fall is two parts: This is based on three (sub) assumptions:
a. Additivity: The contribution from each of the independent
and the three other which focus on the error, the unexplained variables are added.

random variation.

The first concerning the systematic part

b.Proportionalty: The contribution from independent variables
Before we turn to how one can check some of the assumptions is proportional to it is value (with a factor /)

we will take a closer look at the first assumption. L o
c. No effectmodification: The contribution from one

x independent variables is the same whatever the values are
The expected value of Yis £, +> f3 - x, for the other.

p=l
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The assumption of linearity
k

The expected value of Yis  f,+ /3, x,
p=1

If one consider two persons who differ with

Ax;inx;, Ax, inx, .. and Ax; in x;

Estimation

It is almost impossible to find the estimates by hand, but easy
if you use a computer.

In Stata: regress 1nSBP age45 woman 1nBMI25

(Note first we have to generate 1nSBP, age45, woman and
TnBMI25)

then difference in the expected value of Yis : source | ss df ms Number of obs = 200
--------- oo FC 3, 196) = 16.46
k Model | 1.05572698 3 .351908994 Prob > F = 0.0000
Zﬂ) -Ax Residual | 4.18969066 196 .021375973 R-squared = 0.2013
- ’ L R (e e Adj R-squared = 0.1890
p= Total | 5.24541764 199 .026358883 Root MSE - .14621
Again we see Thg'r the contribution for each of the B JSUPEE— TR (5% cont Imeereay
explanatory variables: | T ool
woman |  .0036329  .0208905  0.17 0.862  -.0375662  .0448319
are added, . . aged5 |  .0065384  .0012844  5.09  0.000 .0040053  .0090715
are proportional to the difference TngMI25 |  .2583399  .0758295  3.41 0.001  .1087934  .4078864
and does not dependent of the differences in the other _ceons | 4856592 -01%266 1482 9-000 4820189 4.887016
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Estimation

The last part of the output: | No CI for o!
It can be calculated "by hand”

O

| Root MSE = .14621

woman | .0036329 .0208905 -.0375662 .0448319
age45 | .0065384 .0012844 .0040053 .0090715
TnBMI25 | .2583399 .0758295 .1087934 .4078864
_cons | 4.856592 .0154266 0.000 4.826169 4.887016

Test for S, =0

The hypothesis: "no difference in In(sbp) between men and
women adjusted for age and bmi"
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Estimated systematic part

In(sbp) =4.8566+0.0065 - (age —45)+0.0036 - woman +0.2583In [%j
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Stata special - plotting response curves
regress 1nSBP age45 woman 1nBMI25

TnsBP | Coef std. Err t P>t [95% conf. Interval]
_______ o o o e e
woman | .0036329 .0208905 0.17 0.862 -.0375662 .0448319
age45 | .0065384 .0012844 5.09 0.000 .0040053 .0090715
nBMI2S | .2583399 .0758295 3.41 0.001 .1087934 .4078864
_cons | 4.856592 .0154266 314.82 0.000 4.826169 4.887016

After a regression commando, Stata leave will several
information in the memory for later use.

You can get a list by writing "ereturn 1ist " and we have
already used this feature in the calculation of the confidence

interval for o.
Another example:

. display %12.7f _b[woman] %12.7f _se[woman]
0.0036329 0.0208905
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Stata special - plotting response curves

The Stata code below will generate a “global macro” with
the estimated equation and four other global macros with
the estimated coefficients.

If our are going to use it, then copy-paste from today's
do-file (Stataplots.do).

macro drop c* regvar eq feq
matrix zzzmat=e(b)
global regvar :colnames e(b)
global eq "O"
global feq "O"
local zzzn 0
foreach zzz in $regvar {
Tocal zzzn="zzzn'+1l
Tocal coef=zzzmat[1, zzzn']
if abs( coef')>0.00000001 {
global c zzz'="coef'
global feq="$feq" + " + #c" + " zzz'"+"* zzz
global eg="%eq"+" + "+string( coef',"%9.4f")+"* zzz

" " (Rl

(Rt}

}
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Stata special - plotting response curves
After this you can see the estimated equation by:

display "$eq"

0 + 0.0065*age45 + 0.0036*woman + 0.2583*1nBMI25 + 4.8566*_cons
display "$feq"

0 + #cage45*aged45 + #cwoman*woman + #cI1nBMI25*1nBMI2S5 +
#c_cons*_cons

If you write "macro 1ist" you will get a list the "macros”

. macro list
eq: 0 + 0.0065*age45 + 0.0036*woman + 0.2583*1nBMI25 + 4.8566*_cons

feq: 0 + #cage45*aged5 + #cwoman*woman + #C1nBMI25*1nBMI25 + #C_cons*_cons
c_cons: 4.856592269392944

c1nBMI25: .2583398993331005

cwoman: .0036328605876014

cage45: .0065383788673611

regvar: age45 woman 1nBMI25 _cons

S_E_depv: TnsspP

s_E_cmd: regress

The macros c_cons, c1nBMI25, cwoman and cage45
contains the coefficients and can used in calculation.
if you want use them you just write $cTnBMI25.
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Stata special - plotting response curves
The expected log(SBP) for a 30 year old man with BMI=27

display $c_cons+$cwoman*0+$caged5*(30-45)+$cTnBMI25%1n(27/25)
4.7783987

You could also get this (with CI) using the lincom command:

display 1n(27/25)
.07696104

. Tincom _cons-15%*age45+ .07696104*1nBMI25

(1) - 15 age45 + .076961 1nBMI2S5 + _cons = 0

1nsepP | coef. std. Err. t P>t [95% conf. Interval]

+
@ | 4.778399  .0266891 179.04  0.000 4.725764 4.831033
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Stata special - plotting response curves
The expected log(SBP) for a 30 year old man as a function
of the BMI is given as:

$c_cons+$cwoman*0+$cage45*(30-45)+$cTnBMI25*Tn(BMI/25)
We can plot this by using the plot function in Stata:

Stata special - plotting response curves
The expected log(SBP) for a 30 year old man and a 50 year
old woman as a function of the BMI is given as:

‘twoway Yz
( function y=$c_cons+$cwoman*0+$cage45*(30-45)+$cTnBMI25*Tn(x/25), range(bmi) ) ///
, legend(off) ytit("expected Tn(SBP)") xtit("BMI") xlab( 15(5)40)

49

4.85

expected In(SBP)

475

15 20 25 30 35 40
BMI
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twoway ///
( function y=$c_cons+$cwoman*0+$caged5*(30-45)+$c1nBMI25*1n(x/25) ///
, range(bmi) T1co(blue) ) ///
( function y=$c_cons+$cwoman*1+$caged5*(50-45)+$cInBMI25*1n(x/25) ///
, range(bmi) lco(red) ) ///
, ytit("expected Tn(SBP)") xtit("BMI") xlab( 15(5)40) ///
legend(1abe1(1 "30 year old man™) label(2 "50 year old woman"))

5

IS
hd

expected In(SBP)

IS
%

—— 30 year old man
—== 50 year old woman

479
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The distribution of the estimates

It can be shown that the estimates of the coefficients have
normal distributions, with means equal to the true values.

The formulas for the standard deviation of the estimates
are complicated, but they are estimated by the standard
errors given in the output.

The estimated standard deviation of the errors is given by:

A2 o 2 The number of
7 n—k —1;( (n Q parameters are k+1

Which gives the confidence interval:

n—k-1 n—k—1
Zr1(0.975) 22,1(0.025)
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95% CI for o:6- <o<6-

Morten Frydenberg

Confidence intervals
Just like in the simple regression we get :
(except we have n-k-1 degrees of freedom).

Exact 95% confidence intervals , CI's, for ,Bp is found from
the estimates and standard errors

95% CI for 3,: B, 1,57, ~se(ﬁ|)
Where t)°7, is the upper 97.5 percentile in the t-
distribution n-k-1 degrees of freedom.

These confidence intervals are found in the output.

Note that if n-k-1 is large then this percentile is close to
1.96 and one can use the approximate confidence intervals:

Approx. 95% CI for 3,: B, +1.96-se( )
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The ANOVA table and the F-test The F-test and R-squared
The first part of the output: The F- test calculated as: F= m =16.16
0.02138
An analysis of variance table dividing the variation iny

in two components: explained by the model (i.e. the 3 sowree * af "s P
variables) and the residual (the rest) Model | 1.05572698 Prob > F = 0.0000

j Residual | 4.18969066 LR-squared = 0.2013]|

_________ N =

[ =

_________ "1890 with 3 and 196 degrees of freedom.

————————————————————————————— re
source | s aF s Total 5.24541764/199 .026358883 RoOt MSE
————————— e |F( 3, 196) 16.46 — —
Model | 1.05572698 3 .351908994 Prob > F .0000 And under the hypothesis it follows an F-distribution
|
+
|

0
Residual 4.18969066 196 .021375973 R-squared 0.2013
—————————————————————————————— Adj R-squared 0
5.24541764 199 .026358883 Root MSE

Total .14621
The R-squared is the amount of the total variation explained
A F-test testing the hypothesis: "all (except f3,) is zero." | by the model(=1.0557/5.2454).

Here the test is highly significant: The model explains a As this will increase if we include more variables in the model

statistically significant part of the variation in y! one can look at the adjusted R-squared.
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Predicted valuei, residuals and leverages Leverage
Y=0,+>. 5, x,+E E-~ N(O,O'Z) Although the formula the leverage is complicated, the
p=l interpretation of leverage is the same:

A high leverage indicates that the data point has extreme
values of the explanatory variables and hence a high influence
on the estimates.

As in the simple linear regression on can find predicted values,
residuals, leverages and standardized residuals:

k
Predicted value : S=p+D.p,x,
p=l1
k ~
Residual: =y =9=y-2.08,x,
p=l1
Leverage: h, = a complicated formula
. . T,
Standardized-Residual: 7, =—+
G\1-h,
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Checking the model 1: F
plot ,name(pl,replace) . .
. . . . rvpplot age45 ,name(p2,replace) residual versus fitted
As model is much more complicated than the simple linear :x:g}g: Inawr2s ':32&2':251228 residual versus predictor
regression checking the model is also complicated Srah combine pl'p2 p3 ph
Again assumption no. 2: the errors should be independent, is boroe ¢ g o :
mainly checked by considering how the data was collected. .o ° . o
éz ng ié:"“ aaﬂ"ﬂ"s
The distribution of the error is checked by the same type of & o & o gﬁ gg%éﬁg.g%cﬁgjf"ﬂ",s
plot as for the simple linear regression. 2 ] °
4 -44
*Plots of residuals versus fitted T edvaes T R 39245 v
*Plots of residuals versus each of the explanatory variables. \ s N s
° ° 8
. . o 4 o 4
*Histogram and QQ-plot of the residuals. g g ]
& o & o
2 -2
-4 . . . . . -4" . . . ?
-4 -2 0 2 4 0 2 I4 6 8 1
InBMI25 \oman,
| Not informative se next pcgel
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Diagnostic plots for categorical variables - here woman Diagnostic plots for continuous variables - dividing into groups
predict res if e(sample),res xtile age6=age,nq(6)
gnorm res if woman==0, title(woman==0) name(pl,replace) graph box res,over(age6) name(pl,replace) nodraw
gnorm res if woman==1, title(woman==1) name(p2,replace) dotplot res,over(age6) name(p2,replace) nodraw
graph combine pl p2 , row(1l) name(p3, replace) graph combine pl p2 ,col(1)
graph box res , over(woman) name(p4,replace) graph export Reg2_1_plot04.wmf, replace
graph combine p3 p4,col(1)
by woman: sum res °
‘woman==0 woman==1 4 ° °
o o . 277 :;v o I I T
i i : e e e ¥
g, / L / ; 1 N
Plot03 - . " i . T T " Plot04 ! ? ¢ ¢ ° ¢
. 5
: P : .
. : i .. égg v oo Es e £82000
g — —— €07 e EREEN. fise  fasesee o
E ob— ’—‘—|7 4 ° 8
\—!—‘ \—!—‘ 1 2 3 4 5 6
6 quantiles of age
sd=0.131 sd=0.157
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Identifying special points Checking the model 2: Independent errors ?
i leverage vs. normed . i . .
leverage vs. residuals 2rag o Assumption no. 2: the errors should be independent, is mainly
residuals squared S
‘ ‘ checked by considering how the data was collected.
| otter Tev rech | The assumption is violated if
" " some of the persons are relatives (and some are not) and the
. ) dependent variable have some genetic component.
£ s £
s L :some of the persons were measured using one instrument and
Plot05 others with another.
2 2
+in general if the persons were sampled in clusters.
o usl% g 267 amr’m'
S 5 o
Standardized residuals Normalized residual squared
1017, 2337, 2187 have relative large residuals
2
#o L R
T
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Checking the model 3: Extending the model

One should also try to checked the validity of the linearity
assumption that is the assumption of additivity,
proportionality and no effect modification (no interaction).

Tt can be done by:

1. Introducing an the explanatory variable in a different
scale, e.g. adding age? or log(age) ....

2. Introducing the explanatory variable as a categorical
variable instead e.g. use age in divided into agegroups
instead as age in years.

3. Introducing interaction between some of the eplanatory
variables.

4. ..
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