

Missing data patterns and a first introduction to imputation

Henrik Støvring
(stovring@biostat.au.dk)

Department of Biostatistics
SCHOOL OF PUBLIC HEALTH
FACULTY OF HEALTH SCIENCES
AARHUS UNIVERSITY

November 28, 2013

Outline

Imputing missing values

Missing data patterns: theory

Missing data pattern: Birthweight example

An example analysis based on Multiple Imputation

Overview

- ▶ Imputing missing values
 - ▶ Single value imputation – variants and shortcomings
 - ▶ Multiple imputations – a first example
 - ▶ Rubin's rule/formula
- ▶ Missing data patterns
 - ▶ One variable only
 - ▶ Monotone
 - ▶ General patterns

Similar value imputation

- ▶ Consider subject i and i'
- ▶ i and i' are equal, except...
- ▶ ... i has a missing value, i' has not
- ▶ If MAR, we might as well have observed i as i'
- ▶ **Idea:** Substitute i 's value for the missing value of i
- ▶ An example of (single) imputation

Mean value imputation

- ▶ Consider two groups (for each variable)
 - ▶ Subjects with an observed value
 - ▶ Subjects with a missing value
- ▶ If MAR, the missing values are similar to observed values
- ▶ **Idea:** Substitute average observed value for missing values
- ▶ Often done stratified on other covariates (think MAR and similar value imputation)

Missing as separate category

- ▶ **Warning:** Popular, but has no real rational motivation
- ▶ Only relevant when variable with missing values is
 - ▶ categorical
 - ▶ covariate
- ▶ Idea: Add a new category corresponding to the missing values
- ▶ Estimate as usual with the categorical variable

Example: Missing smoking status (m3_bw.dta)

- ▶ Of 10,000 sampled, smoking status is missing for 529
- ▶ Three approaches for replacing missing values:
 - ▶ Find birth weight closest to child with missing smoking status, impute this smoking status for the missing value
 - ▶ Compute “mean” smoking status, i.e. probability of smoking, and impute this
 - ▶ Replace missing smoking status with a new value, indicating a “new” category

Example: Stata code, similar value

```
. use m3_bw.dta
. sort bweight
. generate tmpgrp = sum(!missing(cigs[_n]) & missing(cigs[_n+1]))
. bysort tmpgrp (bweight): replace cigs = cigs[1] ///
   if missing(cigs)

. regress bweight cigs
```


Example: Stata code, mean value

```
. use m3_bw.dta
. summarize cigs, mean
. replace cigs = r(mean) if missing(cigs)
.
. regress bweight cigs
```


Example: Stata code, missing as category

```
. use m3_bw.dta
. recode cigs (. = 10), gen(cigscat)
. local cigslab : value label cigs
. label define 'cigslab' 10 "Missing", add
. label values cigscat 'cigslab'

. regress bweight i.cigscat
```


Single value imputations: Pro's and Con's

- ▶ Pro's:
 - ▶ Simple to implement
 - ▶ Makes use of all observed data
- ▶ Con's:
 - ▶ Uses data more than once
 - ▶ Overconfident in imputation step
 - ▶ Underestimates uncertainty due to missing observations
- ▶ Should **never** be used as general solution

The fundamental idea

- ▶ What does MAR mean?
- ▶ Consider variable Z_1 with a missing value, $z_{1k} = ?$
- ▶ Assume distribution of Z_1 depends on Z_2 and a parameter θ

$$P(Z_1 < z) = F(z; Z_2, \theta)$$

- ▶ The concealed value of z_{1k} also has distribution

$$P(Z_{1k} < z) = F(z; Z_2, \theta)$$

because under MAR, it does not depend on the value being missing when we know Z_2

- ▶ Assume we can estimate shape of $F(z; Z_2, \theta) \equiv F_\theta(z)$

The fundamental idea (II)

- ▶ If we know $F_\theta(z)$, we can sample from it:
 1. Sample value, replace missing value with it
 2. Keep observed variables
 3. Save *completed* dataset j
 4. Repeat m times to create m complete datasets
- ▶ Analyze each completed dataset j to obtain an estimate β_j

The fundamental idea (III)

- ▶ Now have m different estimates $\hat{\beta}_j$ of the same quantity β
- ▶ Rubin's formula

$$\hat{\beta} \equiv \frac{1}{m} \sum_j \hat{\beta}_j$$

- ▶ Uncertainty estimate is a sum of
 - ▶ The mean of the standard errors of $\hat{\beta}_j$
 - ▶ Variability between $\hat{\beta}_j$'s across imputations

The fundamental idea (III)

- ▶ Formula for standard error

$$s.e.(\hat{\beta}) = \sqrt{E(s.e.(\hat{\beta}_j)^2) + \left(1 + \frac{1}{m}\right) \frac{\sum_j (\hat{\beta}_j - E(\hat{\beta}_j))^2}{m-1}}$$

- ▶ Used in t -distribution with the following degrees of freedom:

$$df = (m-1) \left(1 + \frac{m \cdot E(s.e.(\hat{\beta}_j)^2)}{(m+1) \frac{\sum_j (\hat{\beta}_j - E(\hat{\beta}_j))^2}{m-1}} \right)$$

Combining Estimates (general – for statisticians) I

- ▶ For each imputed dataset, estimate \hat{Q}_j and variance estimate U_j (think of U_j as $s.e.(\hat{\beta}_j^2)$)
- ▶ Parameter estimate

$$\bar{Q} = \frac{1}{m} \sum_{j=1}^m \hat{Q}_j$$

- ▶ Within-imputation variance

$$\bar{U} = \frac{1}{m} \sum_{j=1}^m U_j$$

Combining Estimates (general – for statisticians) II

- ▶ Between-imputation variance

$$B = \frac{1}{m-1} \sum_{j=1}^m (\widehat{Q}_j - \overline{Q})^2$$

- ▶ Total variance is estimated as

$$T = \overline{U} + \left(1 + \frac{1}{m}\right) B$$

- ▶ Use \sqrt{T} for standard error and t -distribution for tests and confidence intervals, where degrees of freedom are

$$df = (m-1) \left(1 + \frac{m\overline{U}}{(m+1)B}\right)^2$$

Combining Estimates (general – for statisticians) III

- ▶ Estimated rate of missing information is

$$\gamma = \frac{r + 2(df + 3)^{-1}}{r + 1}$$

with

$$r = \frac{(1 + m^{-1})B}{\bar{U}}$$

Conditions for validity

- ▶ Imputations must be *proper*, i.e.
 1. Estimates from imputed datasets asymptotically follow a normal distribution
 2. Variance of estimates is a consistent estimate of true within-imputation variance, and smaller asymptotically than variance of estimate
- ▶ Hard to verify in practice
- ▶ Rule of thumb:
Whenever complete case analysis is OK asymptotically, and imputations are not degenerate: It works

Why are only a few imputed datasets needed?

- ▶ Assume rate of missing information is not too large ($\gamma < 0.3$)
- ▶ Relative efficiency of MI is $> 94\%$ with 5 imputations
- ▶ Details in Rubin (1987, p. 114)
- ▶ Approximate formula for efficiency is

$$\left(1 + \frac{\gamma}{m}\right)^{-1}$$

Why you often need many imputed datasets

- ▶ Assume you
 1. estimate “many” parameters
 2. do combined tests of parameters
- ▶ Then your m should be relatively large
for B to be well estimated with respect to correlation of estimates
where B is between-imputation covariance matrix

Multiple imputation in practice

- ▶ Implemented in statistical packages:
 - SAS** MI and MIANALYZE
 - Stata** -ice- (add-on) and -mi-
 - R** mi and mice (add-ons)
 - SPSS** MULTIPLE IMPUTATION

Gaussian response: Temperature data I

- ▶ Assume temperature is normally distributed for each gender j ($N(\mu_j, \sigma^2)$)
- ▶ → Temperature can be predicted from gender assuming MAR

Gaussian response: Temperature data II

Algorithm

1. Estimate μ and σ from observed data

```
xi: regress tempC i.sex
```

2. Predict probabilities

```
predict mu if tempC == .
```

```
predict sdf if tempC == ., stdf
```

3. Impute (guess) missing values

```
gen outcome = tempC if tempC != .
```

```
replace outcome = rnormal(mu, sdf)
```

```
if tempC == .
```


“Non-parametric” response

- ▶ Situation: Want to apply non-parametric analysis
- ▶ No obvious distribution for missing values
- ▶ Alternatives to consider
 - ▶ Similar value imputation
 - ▶ Transform to normality
 - ▶ Impute based on parametric distribution (Normal?)
→ analyze non-parametrically

Monotone patterns

- ▶ Assume order exist for $x_{[1]}, \dots, x_{[k]}$ such that
 1. At least one covariate $x_{[1]}$ has no missings
 2. If $x_{[j]}$ has missings then $x_{[1]}, \dots, x_{[j-1]}$ are not missing for these observations
- ▶ Can be inspected with `-misstable-` in Stata
- ▶ If MAR can be assumed, then a sequential approach is possible for predicting missing values:
 - ▶ Let $j = 1, \dots, k$:
 - ▶ Predict $x_{[j]}$ from $x_{[1]}, \dots, x_{[j-1]}$

Non-monotone patterns

- ▶ The most common situation:
 - ▶ Two or more covariates missing for the same individual(s)
- ▶ Problem in predicting unobserved values under MAR
 - ▶ Want to predict x_1 from observed values in x_2, x_3
 - ▶ Want to predict x_2 from observed values in x_1, x_3
 - ▶ When x_2 is missing, observed value in x_3 is dropped in estimation of relationship between x_1 and x_2, x_3
 - ▶ When x_1 is missing, observed value in x_3 is dropped in estimation of relationship between x_2 and x_3, x_2

Binary or categorical covariate

- ▶ Covariate can only assume r different values
- ▶ Strategy
 - ▶ Estimate probability for each category (logistic, ordered logistic, multinomial)
 - ▶ Impute category for missing values based on estimated probabilities
- ▶ **Requires assessing assumptions for modeled relationship:**
 - ▶ Linearity in log-odds (logistic regression)
 - ▶ Collinearity/perfect prediction
 - ▶ Proportional odds (ordered logistic regression)
 - ▶ ...

Continuous covariate

- ▶ Ordinary regression: No assumed distribution of covariate
- ▶ Need distribution for imputing missing values
- ▶ Standard assumption: Normal or transformed-normal
- ▶ Use linear regression for prediction
- ▶ **Requires assessing assumptions for modeled relationship:**
 - ▶ Linearity
 - ▶ Homo-schedasticity (constant standard deviation)
 - ▶ Normality of residuals

Two variables: one with missings, one without

- ▶ Consider *m3_bw* and the variables:
 - cigs*: Cigarette equivalents per day, has missings
 - bweight*: Birth weight in grams, has no missings
- ▶ Imputation strategy is straightforward:
 1. Model relationship between smoking and birthweight among observed values
 2. **Assume identical relationship for unobserved smoking**
 3. Impute values of smoking when missing

Three variables: two with missings, one without

- ▶ Consider *m4_bw* and the variables:
 - cigs: Cigarette equivalents per day, has missings
 - alko: Alcohol units per week, has missings
 - but only if cigs is missing
 - bweight: Birth weight in grams, has no missings
- ▶ Example of monotone missing data pattern

Imputation in monotone patterns

- ▶ Assume
 - ▶ Birth weight predicts alcohol intake
 - ▶ Alcohol intake (and birth weight?) predicts smoking
- ▶ Imputation strategy becomes **sequential**
 1. Model relation between birth weight and alcohol,
→ impute alcohol
 2. Model relation between alcohol and smoking **including imputed alcohol values**
→ impute smoking
- ▶ Implemented in Stata with `-mi impute monotone-`

Comments on monotone imputation

- ▶ Is transparent
- ▶ Is computationally efficient
- ▶ Does not allow for feedback:
Based on an imputed smoking value, one might want to
re-impute alcohol value
- ▶ Only useful if imputation model follows missing data
pattern

More variables, not monotone

- ▶ Two strategies
 1. Impute several variables jointly (`-mi impute mvn-`)
 2. Impute iteratively in round-robin fashion (`-mi impute chained-`)

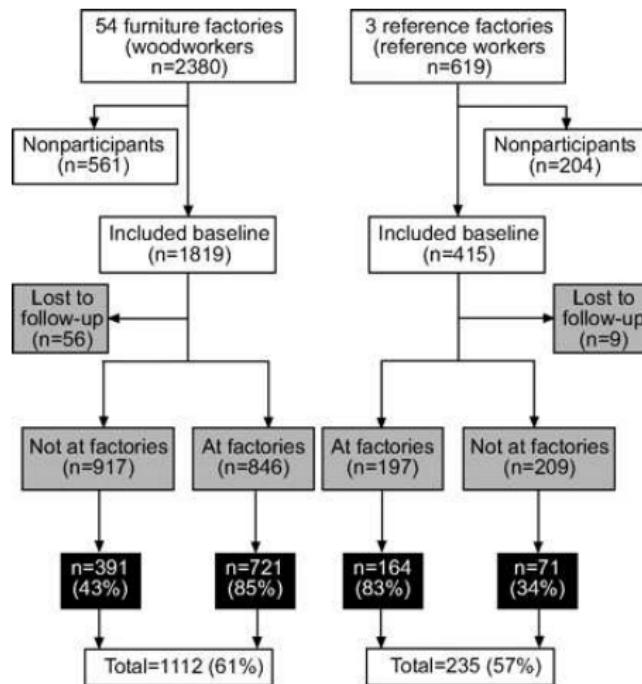
Wood dust and Lung Function

- ▶ Paper by Jacobsen et al, “Longitudinal lung function decline and wood dust exposure in the furniture industry”, 2008, Eur Respir J
- ▶ Included woodworkers from furniture factories and reference workers from reference factories
- ▶ Follow-up study

Inclusion: Workers at factories in Viborg County,
1997-98

Follow-up: First through factories, then mail, 2003-5

Flow chart of study population



Selection process

1. Invited: $n = 2,999$
2. Non-participation (75.5% retained)
3. Lost to follow-up (44.9% retained)
4. Non-response for individual items (measurements, questions) **xx% ??**
5. Study population: $n = 1,347$

Selection process

Using a *complete case analysis*

- ▶ Study population included: $n = 1,347$
- ▶ Table 1: “#: valid cases vary between variables”
- ▶ Table 2: $n = 1,335$
- ▶ Table 3: $n = 1,260$
- ▶ Table 4: $n = 1,199$
- ▶ Table 5: $n = 1,230$ or $n = 1,212$
- ▶ Table 6: $n = 1,190$
- ▶ Minimum participation rate: 39.7%
- ▶ Maximum non-response rate among participants: 11.7%

Wood dust and lung function

- ▶ Use dataset underlying the paper – thanks to V Bælum, Public Health, AU
- ▶ Study population included: $n = 1,347$
- ▶ Maximum non-response rate among participants: 11.7%
- ▶ Objective I: Do analysis with all 1,347 included
- ▶ Objective II: Maintain original hypothesis and models (outcome, exposure, other covariates)

Table of missingness pattern

Stata commands:

- ▶ `-misstable summarize-`
- ▶ `-misstable patterns-`

Missing as outcome

- ▶ Idea:
 1. Create a missing indicator for each variable of interest
 2. Use this indicator variable as outcome (logistic regression, say)
- ▶ Example: smoking status and wood dust exposure
- ▶ Stata commands:

```
gen miss_wooddust = missing(wooddustgrp)  
generate miss_smoke = missing(packryg)
```


Missing as outcome

- ▶ Findings
 1. No statistical significant relations for smoking being missing
 2. Statistical significant association between wood dust exposure being missing and smoking status
- ▶ Can rule out MCAR for wood dust
- ▶ May still be MNAR for **both** wood dust and **smoking!**

A first example “by hand”

- ▶ Outcome: Annual change in FEV1
- ▶ Exposure: Wood dust (in 4 categories)
- ▶ No missings in outcome, 84 missing values in exposure
- ▶ Imputation model: Predict wood dust exposure from outcome with polytomous logistic regression (-mlogit-)
- ▶ See details in do- and log-file

Thank you for your attention!

Slides prepared with L^AT_EX and Beamer