

Applied Statistical Analysis with Missing Data

Exercise 4: The drug study

The drug study involves 106 patients assigned to one of two drugs (DrugE and DrugN). Each patient had a baseline health-score just before assignment and follow up scores at week 13, 14,..., 24 and 38.

The data is available in a “long” format (**DrugStudyLong.dta**) as well as in a “wide” format (**DrugStudywide.dta**).

```
. use DrugStudywide, clear
. codebook, compact
```

Variable	Obs	Unique	Mean	Min	Max	Label
pid	106	106	53.5	1	106	group(id)
drug	106	2	.6698113	0	1	
sex	106	2	1.632075	1	2	
age	106	41	43.16038	20	69	
duration	106	39	22.26415	3	80	no week of last episode
episodes	106	3	1.877358	1	3	no of episodes
score0	106	32	16.99421	3	36	0 score
score13	95	30	15.54222	0	34	13 score
score14	87	33	14.88085	0	35	14 score
score15	94	34	14.1357	0	29	15 score
score16	83	31	13.80675	1	29	16 score
score17	73	27	12.95373	1	29	17 score
score18	79	27	11.7889	0	27	18 score
score19	72	24	10.59194	0	26	19 score
score20	75	27	11.48658	0	29	20 score
score21	66	27	10.63152	0	27	21 score
score22	66	28	10.27713	0	28	22 score
score23	60	24	10.45725	0	26	23 score
score24	67	27	10.32657	0	33	24 score
score38	39	18	6.105641	0	19	38 score

```
. use DrugStudyLong, clear
. codebook, compact
```

Variable	Obs	Unique	Mean	Min	Max	Label
pid	1484	106	53.5	1	106	group(id)
week	1484	14	18.57143	0	38	
score	1062	64	12.69841	0	36	health score
drug	1484	2	.6698113	0	1	
sex	1484	2	1.632075	1	2	
age	1484	41	43.16038	20	69	
duration	1484	39	22.26415	3	80	no week of last episode
episodes	1484	3	1.877358	1	3	no of episodes

Part A – missing values

We will first look at the missing values and their association with what we have observed.

One way to do this, out of many, is to generate a binary variable taking the value 1 if the next score is recorded (observed) and 0 if it is missing:

```
. use DrugStudyLong, clear  
. bysort pid (week): ///  
generate NextRecorded = !missing(score[_n + 1])
```

List the data for patient number 6 to see what this command did.

Q1: Is missing score associated with the score the previous week, sex, age or type of drug?

Another way to look at the association between missing and the observations is to examine the number of observed scores for each person:

```
. use DrugStudyWide, clear  
. egen NMiss = rowmiss(score*)  
. egen NRecorded = rownonmiss(score*)
```

List the data for patient number 6 to examine what you have done.

Q2: Is the number of missing scores associated with the baseline score, sex, age or type of drug?

Part B – Single value imputation

Single value imputation based on a regression model of change from baseline to average of last five scores:

```
. use DrugStudyWide, clear  
. generate changelast5           ///  
      = (score21+score22+score23+score24+score38)/5 - score0  
. regress changelast5 score0 duration i.sex i.drug age episodes  
. predict predch, xb  
. predict sdch, stdf  
. generate imputed = changelast5  
. replace imputed = rnormal(predch, sdch) if missing(changelast5)
```

List the imputed values for the first 9 patients.

Q3: What is the unadjusted difference between the two drugs based on the imputed data?

Q4: What is the difference between the two drugs based on the imputed data, when you adjust for sex and duration?

Note that the results you just found will not properly account for the random variation in the data as they will have too small standard errors.

Part C – Declaring the data as a MI-dataset and making “black box” multiple imputations

First you declare the dataset to be a missing dataset, where you want the imputed values added as extra rows and that missing values are in the score variables

```
. use DrugStudyWide, clear  
. mi set mlong  
. mi register imputed score*  
. mi register regular pid drug sex age duration episodes
```

Now you can you use the tools for describing the patterns of the missing values:

```
. mi describe  
. mi misstable pattern, freq  
. mi misstable summarize
```

We want to generate 20 imputations of the missing scores based on a regression model on age, sex duration, episodes, drug and the other scores:

```
. mi impute chained ///  
    (regress) score??= age i.sex duration episodes b0.drug, ///  
    add(20) dots rseed (DDMM)
```

Read the output generated by Stata, and list some variables for patient 6:

```
list score15 score16 drug sex age _mi_id _mi_miss _mi_m if pid==6
```

If we do not want negative health scores we might set those to zero:

```
. foreach j of numlist 13/24 38 {  
    replace score`j'=0 if score`j'<0  
}
```

Now let us save the data set with imputed values in both wide and long format:

```
. save ImputedWide, replace  
. mi reshape long score, i(pid) j(week)  
. save ImputedLong, replace
```

Part D Analysing the imputed data using the complete data model

The primary end point was the change from baseline to the average of the last five scores and the complete data analysis was `regress changelast5 b0.drug i.sex duration`

```
. use ImputedWide, clear
. mi passive: generate changelast5=
(score21+score22+score23+score24+score38)/5-score0
. mi estimate, dots: regress changelast5 b0.drug i.sex
duration
```