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Crucial part of epidemiology:

e Epidemiology: “study of distributions and determinants of

disease in populations”

Survival analysis, competing risks,

e Disease: (often) binary events occurring in time
regression models.

e survival analysis — analysis of cohort studies

Per Kragh Andersen

Survival data Two-state model for survival data

e time from “zero” to event (death)

e right-censoring, delayed entry

e basic quantity:

— death intensity

— mortality rate

— hazard function

— A(t) = Prob(die before t + A | alive ¢)/A

\ 4 *—@ >

0 . A(t) =~ Prob(state 1 time t+ A |state 0 time t¢)/A

S(t) = Prob(state 0 time t), survival function.




Survival data

The classical relation: Survival data

risk (= “cumulative incidence”) Frequently used regression models for A(¢):

e The Cox regression model
=1-25()

e Poisson regression

t
=1—exp(- /0 Au)du) With covariates z; for individual 4, both can be written in the form:

=1 - exp(-“cumulative rate”) Ni(t] 2) = No(t) exp(BT ).

between risk and rate holds when there are no competing risks. .
e Choice of t7

Approximation when the risk is low:

1 ?
1 - exp(-“cumulative rate”) e Choice of Ag(t)’

~ “cumulative rate”. e 2; may be time-dependent, z;(t)

This (partly) justifies the name.

What is time? Poisson regression.

Which time origin should we use when defining the time variables According to a chosen time variable, suitable intervals are selected,

I, ..., I, and the model has piecewise constant hazards:

Starting point Time scale Xo(t) = Aoj when t € I;.
Birth Age
Any fixed date Calendar time

Likelihood contribution for individual ¢ observed from entry time v;
to exit time t;:
First exposure Time exposed ”
d;
Entry into study Time in study li = (Ni(ta)) exp(—/ Ai(t)dt),
Ui

Disease onset Time since onset e e s s e
where d; = 1 if individual ¢ fails at ¢;, d; = 0 if i is censored at ¢;.

Start of treatment Time on treatment . .
NB: independent censoring.




Poisson regression: categorical covariates.

When all z are categorical it is not hard to show that a sufficiency

reduction is possible:

Create two “time intervals by covariates” tables with cells, say,

Ci,....Cn

One table with numbers of events in each cell: Dy,..., D,,,
one table with numbers of person-years in each cell: Ty, ..., T,,.

Then the total likelihood is

L= H Pr exp(=A\T5)

where A, is the rate in cell C,., i.e. the product of the proper \p; and
exp(372), i.e. the two tables are sufficient.

Poisson regression and the Poisson distribution?

L is proportional to the likelihood we would get by considering

D1,...,D,, as independent Poisson variates with parameters \,.T;.

This may be a useful fact when choosing computer programs to
analyse the data.

However, this interpretation is ackward since the T, are random and
deriving the likelihood from the piecewise constant hazard model is

much more obvious and satisfactory.

The Cox regression model.

In the Poisson model we work with prespecified time intervals and

assume the baseline rate to be constant within these intervals.

In the Cox model the baseline rate A\o(t) is left completely arbitrary
corresponding to letting the time intervals (“bands”) shrink into
“clicks” (Clayton & Hills).

Start with Poisson model with two explanatory variables A and B

and with time divided into bands:

Rate = Time x Ax B
~~ —— ——

A= A 0;

T

t ~ time band (), i ~ subject, 6; = exp(87z;).

Log likelihood contribution from ¢ in band ¢:

d!log ()\t) —yiA
where d; = I(i fails in band t), y! = total time spent by 7 in band t.
Total log likelihood:

> [dilog (Aot - 0:) — yidor - 0] -

it

Profile log likelihood for #-parameters:

delog< 9>




Now: consider clicks instead of time bands.

Length h, redefine y! as indicator, i.e. y! =1 if i is at risk at time Here, first term equals: (since d = {9

tyyl =0 (y-o'% =y h). The profile log likelihood is then:
0
Z log ( (for case) )

0
E dt log Gt T Failures >_Risk Set
>0

= Cox’s (partial) likelihood.

0; Turns out to work fine in spite of the large number of nuisance
- Zdt log ( NI ) —Dlog(h). P &

parameters (AL).

Risk set (at time ¢) — set of subjects who could have been the case
(at time t) Time-dependent explanatory variables

In the Cox regression model:

Rate — Time x AXxDB
D . 0;

1

and the #-parameters (effects of explanatory variables A, B,---) are

estimated from the profile log likelihood:

Time

Z e(for case)
Fig. 30.1. Composition of risk sets. log - |-

: 0
failures ZRISk set

Depends on how TIME is defined (age, calendar time,...)




Some times (often!) the interesting explanatory variables depend on

time (exposure, treatment etc.), i.e.,
0 depends on time
One can still use (*) for estimation but computing time increases.

Reduction of computing time may be achieved by sampling from the
risk set (Nested case-control study)

0
Z log ( (for case) >

failures ZCase—control set 0

(May save other resources then computing time)

Several time origins (“scales”).

Age
75

Time (since diagnosis)

Fig. 31.2. Follow-up by age and time.

Possible Cox model

log(Rate) =  Time + Age+A+ B
N~ —_———

log(\Y) = log(Aot) —+ log(6;)

or vice versal Which time scale should be considered “basic”? Or

should we use a Poisson model?
e parametric/non-parametric

o effects of interest?

The bottom line is that Cox and Poisson models are very similar and

give nearly identical results.

Repeated binary variates.

Another model which is strongly related to Cox and Poisson is the
cloglog link model for repeated binary variates.

Return to the time intervals Iy, ..., I, and the data:
d! = I(i fails in I;).

Then 7;; = Prob(i fails in I; | ¢ is alive at the end of I;_;) may be
related to covariates using, e.g. the cloglog link:

log(—log(1 — ;) = o + 8 z;.

This is in fact the Cox model for grouped survival data with

aj = log(flj Ao(u)du). The cloglog link may, in principle be replaced
by other links for binary data like the logit. However, then 8 no
longer has a log rate ratio interpretation.




Relative Risk, Odds Ratio, Rate ratio
When can they be interchanged?
Fix time interval, (0,7),T = 1, and let:
e 19 =Prob(diseased before T') (ought to be my(T))
e )\ corresponding rate, i.e. my=1—e 0T
e fix 6 =rate ratio= i—[l),
ie,m =1—e 0T
and relative risk—RR = :—(1),
then odds—y =

o —
1—n0791 1

and finally odds ratio= OR = &

Relative Risk, Odds Ratio, Rate ratio: examples.

0 0 m RR OR

0.41/0.59
0.1 5 41 SR =62

0.049/0.951 __
0-01 5 4.9 m —5.1

0.146/0.854 _
0.1 15 1.46 21070851 1 54

Relative Risk, Odds Ratio, Rate ratio: all combinations.

Generalisations: competing risks

1

Dead, cause 1

At

k

Dead, cause




Competing risks
E.g., k = 3 causes:
e cancer
e cardio-vascular diseases
e other causes

Cause-specific intensities (e.g. cause 1)

A1(t) = Prob(state 1 time t+ A |state 0 time ¢)/A

Generalisations: illness-death model

0

Disease-free

)\01 <t)

)\02 (t

The illness-death or disability model (chronic disease).

1

Diseased

12(t)

Illness-death model

Transition intensities

Disease incidence rate:
Ao1(t) =~ Prob(state 1 time ¢+ A |state 0 time t)/A
Mortality rate among disease-free (e.g. standard mortality)

Aoz2(t) ~ Prob(state 2 time t+ A |state 0 time t)/A

Mortality rate among diseased (“fatality rate”)

A12(t) ~ Prob(state 2 time t+ A |state 1 time ¢)/A

Generalisations: illness-death model

0

Disease-free

)\02 (t

1

Diseased

The illness-death or disability model (recurrent disease).

12(t)




Illness-death model, recurrent disease

Transition intensities

As above, but also “cure rate”™
A10(t) =~ Prob(state 0 time ¢+ A |state 1 time t)/A
Bone marrow transplantations

States:

e Transplanted

e Graft versus host disease

e Relapse

e Death

etc. etc.

Common features

Models are given by intensities:

Aij(t) = Prob(state j time t+ A |state i time t)/A

Intensities may be modelled using:
Cox regression, Poisson regression

In order to use Cox regression, a data file must be created for each

transition including:
e entry time (some times 0)
e exit time
e exit status (relevant transition or not)

e covariates

Common features

In order to use Poisson regression, a data file must be created for

each transition and for each combination of covariates, including:
e time spent in state
e number of transitions
e.g.
Age 1 Age 2 Age 3
Exposed To1, Do1 | To2, Doz | Tos, Dos
Non-exposed | T11, D11 | Ti2, D12 | Ti3, D13

This enables us to analyse the intensities (rates) and estimate rate

ratios.

Alternatively: individual records.

Probabilities (risks)?

In survival analysis:

S(t) = exp(— /0 Mu)du).

In more general multi-state models:

e transition probabilities are more complex functions of the

intensities

e 1o general computer programs exist




In the competing risks model:
(2 causes of death:)

Survival probability: Pyo(t) = Prob(alive time t)
t
= exp(~ / (At () + Aa (1) ).
0

Cumulative incidence:

t
Py1(t) = Prob(dead from cause 1 before time t) = / Poo(u) A1 (u)du.
0

e—» time

t

This means that:

e Py1(t) (and similarly Pya(t)) may be estimated from A (t) and
Ao (t).

e SE’s may also be estimated.
e R functions in cmprsk can do it.

e SAS macros exist.

In the competing risks model:

What does

| — exp(— /0 M (u)dw)

estimate?
Prob(Dead from cause 1 before t)

i.e., if the competing risk does not exist.

This hypothetical probability is rarely of interest. However, it is used
frequently anyhow!

“Relapse survival curve” in clinical cancer studies.

Censoring in survival studies
Can this be treated as a competing risk?

When, in survival studies, we draw the Kaplan-Meier estimator only
the death intensity is taken into account - NOT the censoring

intensity.
This makes sense if the population without censoring makes sense.
Example: event — death due to cancer, what about censoring due to
e end of study
e emigration
e death due to traffic accidents
death due to cardiovascular disease

loss to follow-up




Competing risks example: bone marrow transplantation.

1715 leukemia patients with BMT:

e 537 ALL, 340 AMIL,, 838 CML
e 1026 early stage, 410 intermediate stage, 279 advanced stage

e 1224 HLA-identical sibling, 383 HLA-matched unrelated donor,
108 HLA-mismatched unrelated donor

Analysis:

e Cox regression models for cause-specific hazards of “relapse” and

“death in remission”

e Estimation of cumulative incidences

Cox regression

models for cause-specific hazards

Covariate

B

Relapse
(SE)

Death
B (SE)

HLA-id. sibling

HLA-matched donor

0
0.011

HLA-mismatched donor -0.944

0.15
0.36

0 -
0.811 0.097
1.118 0.14

ALL
AML
CML

0
-0.271
-0.721

0.15
0.16

0 -
-0.195 0.14
0.291 0.117

Early stage
Intermed. stage

Advanced stage

0
0.640
1.848

0.15
0.15

0 -
0.474 0.10
0.781 0.13

Karnofsky> 90

-0.118

0.14

-0.504 0.11

Cumulative incidences

030

=
2

Cumuiative Incidence Functon
=
=

~ HLA Identical Siblings
= Matched Unreleled
=~ Mismatched Unvelaled
3 4 5 6
Years Post BT

Figure 1. Cunulative incidence of relapse.

plug-in

Cumulative incidences

covariates are needed:

Fine and Gray, JASA 1999.

pseudo-values Klein and Andersen, Biometrics 2005

Methods to study how the cumulative incidences depend on

Scheike and Zhang, Res. reports, 2005
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