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Survival analysis, 
ompeting risks,regression models.
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Survival analysisCru
ial part of epidemiology:

• Epidemiology: �study of distributions and determinants ofdisease in populations�

• Disease: (often) binary events o

urring in time

• survival analysis = analysis of 
ohort studies
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Survival data

• time from �zero� to event (death)

• right-
ensoring, delayed entry

• basi
 quantity:� death intensity� = mortality rate� = hazard fun
tion� = λ(t) ≈ Prob(die before t + ∆ | alive t)/∆

-t t t

0 t t + ∆
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Two-state model for survival data

Alive 10 Dead-λ(t)

λ(t) ≈ Prob(state 1 time t + ∆ | state 0 time t)/∆

S(t) = Prob(state 0 time t), survival fun
tion.
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Survival dataThe 
lassi
al relation:risk (= �
umulative in
iden
e�)
= 1 − S(t)

= 1 − exp(−

∫ t

0

λ(u)du)=1 - exp(-�
umulative rate�)between risk and rate holds when there are no 
ompeting risks.Approximation when the risk is low:1 - exp(-�
umulative rate�)
≈ �
umulative rate�.This (partly) justi�es the name. 5

Survival dataFrequently used regression models for λ(t):

• The Cox regression model

• Poisson regressionWith 
ovariates zi for individual i, both 
an be written in the form:

λi(t | z) = λ0(t) exp(βTzi).

• Choi
e of t?

• Choi
e of λ0(t)?

• zi may be time-dependent, zi(t)
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What is time?Whi
h time origin should we use when de�ning the time variable±

Starting point Time s
aleBirth AgeAny �xed date Calendar timeFirst exposure Time exposedEntry into study Time in studyDisease onset Time sin
e onsetStart of treatment Time on treatment
7

Poisson regression.A

ording to a 
hosen time variable, suitable intervals are sele
ted,

I1, . . . , Ik, and the model has pie
ewise 
onstant hazards:

λ0(t) = λ0j when t ∈ Ij .Likelihood 
ontribution for individual i observed from entry time vito exit time ti:
li = (λi(ti))

di exp(−

∫ ti

vi

λi(t)dt),where di = 1 if individual i fails at ti, di = 0 if i is 
ensored at ti.NB: independent 
ensoring.
8



Poisson regression: 
ategori
al 
ovariates.When all z are 
ategori
al it is not hard to show that a su�
ien
yredu
tion is possible:Create two �time intervals by 
ovariates� tables with 
ells, say,

C1, . . . , CmOne table with numbers of events in ea
h 
ell: D1, . . . , Dm,one table with numbers of person-years in ea
h 
ell: T1, . . . , Tm.Then the total likelihood is
L =

∏

r

(λr)
Dr exp(−λrTr)where λr is the rate in 
ell Cr, i.e. the produ
t of the proper λ0j and

exp(βTz), i.e. the two tables are su�
ient.9

Poisson regression and the Poisson distribution?

L is proportional to the likelihood we would get by 
onsidering

D1, . . . , Dm as independent Poisson variates with parameters λrTr.This may be a useful fa
t when 
hoosing 
omputer programs toanalyse the data.However, this interpretation is a
kward sin
e the Tr are random andderiving the likelihood from the pie
ewise 
onstant hazard model ismu
h more obvious and satisfa
tory.
10

The Cox regression model.In the Poisson model we work with prespe
i�ed time intervals andassume the baseline rate to be 
onstant within these intervals.In the Cox model the baseline rate λ0(t) is left 
ompletely arbitrary
orresponding to letting the time intervals (�bands�) shrink into�
li
ks� (Clayton & Hills).

Start with Poisson model with two explanatory variables A and Band with time divided into bands:Rate

︸ ︷︷ ︸

= Time

︸ ︷︷ ︸
× A × B

︸ ︷︷ ︸or

λt
i = λ0t · θi

t ∼ time band (j), i ∼ subje
t, θi = exp(βTzi).11

Log likelihood 
ontribution from i in band t:

dt
i log

(
λt

i

)
− yt

iλ
t
iwhere di = I(i fails in band t), yt

i = total time spent by i in band t.Total log likelihood:

∑

i,t

[
dt

i log (λ0t · θi) − yt
iλ0t · θi

]
.

Pro�le log likelihood for θ-parameters:

∑

j,t

dt
j log

(
θj

∑

i yt
iθi

)

.
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Now: 
onsider 
li
ks instead of time bands.Length h, rede�ne yt
i as indi
ator, i.e. yt

i = 1 if i is at risk at time

t, yt
i = 0 (yt,old

i = yt,new
i h). The pro�le log likelihood is then:

∑

j,t

dt
j log

(

θj
∑

i yt,old
i θi

)

=
∑

j,t

dt
j log

(
θj

∑
yt,new

i θi

)

︸ ︷︷ ︸

−D log(h).
13

Here, �rst term equals: (sin
e dt
j =

{
0
1 )

=
∑Failures log

(
θ(for 
ase)

∑Risk Set θ

)

= Cox's (partial) likelihood.Turns out to work �ne in spite of the large number of nuisan
eparameters (λt
c).
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Risk set (at time t) = set of subje
ts who 
ould have been the 
ase(at time t)
Depends on how TIME is de�ned (age, 
alendar time,...)
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Time-dependent explanatory variables

In the Cox regression model:Rate = Time × A × B

λt
i = λ0t · θiand the θ-parameters (e�e
ts of explanatory variables A, B, · · · ) areestimated from the pro�le log likelihood:

∑failures log

(
θ(for 
ase)

∑Risk set θ

)

. (∗)
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Some times (often!) the interesting explanatory variables depend ontime (exposure, treatment et
.), i.e.,

θ depends on timeOne 
an still use (*) for estimation but 
omputing time in
reases.Redu
tion of 
omputing time may be a
hieved by sampling from therisk set (Nested 
ase-
ontrol study)
∑failures log

(
θ(for 
ase)

∑Case-
ontrol set θ

)

(May save other resour
es then 
omputing time)
17

Several time origins (�s
ales�).
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Possible Cox modellog(Rate) = Time

︸ ︷︷ ︸

+ Age + A + B
︸ ︷︷ ︸

log(λt
i) = log(λ0t) + log(θi)or vi
e versa! Whi
h time s
ale should be 
onsidered �basi
�? Orshould we use a Poisson model?

• parametri
/non-parametri


• e�e
ts of interest?

The bottom line is that Cox and Poisson models are very similar andgive nearly identi
al results.
19

Repeated binary variates.Another model whi
h is strongly related to Cox and Poisson is the
loglog link model for repeated binary variates.Return to the time intervals I1, . . . , Ik, and the data:

dj
i = I(i fails in Ij).Then πij = Prob(i fails in Ij | i is alive at the end of Ij−1) may berelated to 
ovariates using, e.g. the 
loglog link:

log(− log(1 − πij)) = αj + βTzi.This is in fa
t the Cox model for grouped survival data with

αj = log(
∫

Ij
λ0(u)du). The 
loglog link may, in prin
iple be repla
edby other links for binary data like the logit. However, then β nolonger has a log rate ratio interpretation.20



Relative Risk, Odds Ratio, Rate ratioWhen 
an they be inter
hanged?Fix time interval, (0, T ), T = 1, and let:

• π0 =Prob(diseased before T ) (ought to be π0(T ))

• λ0 
orresponding rate, i.e. π0 = 1 − e−λ0·T

• �x θ =rate ratio= λ1

λ0
,

• i.e., π1 = 1 − e−θλ0·T

• and relative risk=RR = π1

π0

,
• then odds=Ω0 = π0

1−π0

, Ω1 = π1

1−π1

• and �nally odds ratio= OR = Ω1

Ω0

21

Relative Risk, Odds Ratio, Rate ratio: examples.

π0 θ π1 RR OR0.1 5 0.41 4.1 0.41/0.59
0.1/0.9 =6.20.01 5 0.049 4.9 0.049/0.951

0.01/0.99 =5.10.1 1.5 0.146 1.46 0.146/0.854
0.1/0.9 =1.54

22

Relative Risk, Odds Ratio, Rate ratio: all 
ombinations.
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Generalisations: 
ompeting risks

Alive0

Dead, 
ause k
k

Q
Q

Q
Q

Q
Qs

Dead, 
ause 1
1

�
�

�
�

�
�3

λ1(t)

λk(t)

p

p

p
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Competing risksE.g., k = 3 
auses:
• 
an
er
• 
ardio-vas
ular diseases
• other 
ausesCause-spe
i�
 intensities (e.g. 
ause 1)

λ1(t) ≈ Prob(state 1 time t + ∆ | state 0 time t)/∆
25

Generalisations: illness-death model

Disease-free 10 Diseased

Dead

-

2S
S

S
Sw

�
�

�
�/

λ01(t)

λ02(t) λ12(t)

The illness-death or disability model (
hroni
 disease).
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Illness-death modelTransition intensitiesDisease in
iden
e rate:

λ01(t) ≈ Prob(state 1 time t + ∆ | state 0 time t)/∆Mortality rate among disease-free (e.g. standard mortality)

λ02(t) ≈ Prob(state 2 time t + ∆ | state 0 time t)/∆Mortality rate among diseased (�fatality rate�)

λ12(t) ≈ Prob(state 2 time t + ∆ | state 1 time t)/∆

27

Generalisations: illness-death model

Disease-free 10 Diseased

Dead

-

�

2S
S

S
Sw

�
�

�
�/

λ01(t)

λ10(t)

λ02(t) λ12(t)

The illness-death or disability model (re
urrent disease).
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Illness-death model, re
urrent diseaseTransition intensitiesAs above, but also �
ure rate�:

λ10(t) ≈ Prob(state 0 time t + ∆ | state 1 time t)/∆Bone marrow transplantationsStates:

• Transplanted
• Graft versus host disease
• Relapse

• Deathet
. et
. 29

Common featuresModels are given by intensities:

λij(t) ≈ Prob(state j time t + ∆ | state i time t)/∆Intensities may be modelled using:Cox regression, Poisson regressionIn order to use Cox regression, a data �le must be 
reated for ea
htransition in
luding:

• entry time (some times 0)

• exit time

• exit status (relevant transition or not)

• 
ovariates 30

Common featuresIn order to use Poisson regression, a data �le must be 
reated forea
h transition and for ea
h 
ombination of 
ovariates, in
luding:
• time spent in state

• number of transitionse.g. Age 1 Age 2 Age 3Exposed T01, D01 T02, D02 T03, D03Non-exposed T11, D11 T12, D12 T13, D13This enables us to analyse the intensities (rates) and estimate rateratios.Alternatively: individual re
ords. 31

Probabilities (risks)?In survival analysis:

S(t) = exp(−

∫ t

0

λ(u)du).

In more general multi-state models:

• transition probabilities are more 
omplex fun
tions of theintensities
• no general 
omputer programs exist
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In the 
ompeting risks model:(2 
auses of death:)Survival probability: P00(t) = Prob(alive time t)

= exp(−

∫ t

0

(λ1(u) + λ2(u))du).

Cumulative in
iden
e:
P01(t) = Prob(dead from 
ause 1 before time t) =

∫ t

0

P00(u)λ1(u)du.

-t t t t

0 u u + du t
time

33

This means that:

• P01(t) (and similarly P02(t)) may be estimated from λ1(t) and

λ2(t).

• SE's may also be estimated.

• R fun
tions in 
mprsk 
an do it.

• SAS ma
ros exist.
34

In the 
ompeting risks model:What does

1 − exp(−

∫ t

0

λ1(u)du)estimate? Prob(Dead from 
ause 1 before t)IF λ2(t) = 0!i.e., if the 
ompeting risk does not exist.This hypotheti
al probability is rarely of interest. However, it is usedfrequently anyhow!�Relapse survival 
urve� in 
lini
al 
an
er studies.
35

Censoring in survival studiesCan this be treated as a 
ompeting risk?When, in survival studies, we draw the Kaplan-Meier estimator onlythe death intensity is taken into a

ount - NOT the 
ensoringintensity.This makes sense if the population without 
ensoring makes sense.Example: event = death due to 
an
er, what about 
ensoring due to

• end of study
• emigration
• death due to tra�
 a

idents

• death due to 
ardiovas
ular disease

• loss to follow-up 36



Competing risks example: bone marrow transplantation.1715 leukemia patients with BMT:

• 537 ALL, 340 AML, 838 CML

• 1026 early stage, 410 intermediate stage, 279 advan
ed stage

• 1224 HLA-identi
al sibling, 383 HLA-mat
hed unrelated donor,108 HLA-mismat
hed unrelated donorAnalysis:

• Cox regression models for 
ause-spe
i�
 hazards of �relapse� and�death in remission�

• Estimation of 
umulative in
iden
es
37

Cox regression models for 
ause-spe
i�
 hazardsRelapse DeathCovariate β̂ (SE) β̂ (SE)HLA-id. sibling 0 - 0 -HLA-mat
hed donor 0.011 0.15 0.811 0.097HLA-mismat
hed donor -0.944 0.36 1.118 0.14ALL 0 - 0 -AML -0.271 0.15 -0.195 0.14CML -0.721 0.16 0.291 0.117Early stage 0 - 0 -Intermed. stage 0.640 0.15 0.474 0.10Advan
ed stage 1.848 0.15 0.781 0.13Karnofsky> 90 -0.118 0.14 -0.504 0.11
38

Cumulative in
iden
es
39

Cumulative in
iden
esMethods to study how the 
umulative in
iden
es depend on
ovariates are needed:

• plug-in
• Fine and Gray, JASA 1999.

• pseudo-values Klein and Andersen, Biometri
s 2005

• S
heike and Zhang, Res. reports, 2005
40
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