

Prevalent cohort study

Niels Keiding
Department of Biostatistics
University of Copenhagen

Delayed entry: some individuals observed only from some entry time

X_i iid density f , survival function S hazard $\alpha = f/S$

V_i entry time U_i time of censoring X_i time of death

Observe $V_i, X_i \wedge U_i, \delta_i = I\{X_i \leq U_i\}$
in conditional distribution given $X_i > V_i$.

Likelihood

$$\prod_{i=1}^n \frac{\alpha(X_i)^{\delta_i} S(X_i \wedge U_i)}{S(V_i)}$$

Nonparametric maximum likelihood estimator (Kaplan & Meier)

$$\hat{S}(x) = \prod_{\substack{X_i \leq x \\ \delta_i = 1}} \left(1 - \frac{1}{Y(X_i)} \right)$$

$$Y(x) = \#\{j | V_j < x \leq X_j \wedge U_j\} = \text{number at risk at } x$$

Random delayed entry

Basic property that makes delayed entry work:

If V and X are independent then for $x > v$

hazard of X given $V = v$ and $X > V =$

$$\begin{aligned} \frac{P\{X = x | V = v, X > V\}}{P\{X \geq x | V = v, X > V\}} &= \frac{P\{X = x, V = v\}}{P\{X \geq x, V = v\}} \\ &= \frac{P\{X = x\}}{P\{X \geq x\}} = \text{hazard of } X \end{aligned}$$

Random delayed entry: Covariates

Assume $V \perp X|Z$

V and X conditionally independent given Z

Then

$$\frac{P\{X = x|V = v, Z = z, X > V\}}{P\{X \geq x|V = v, Z = z, X > V\}} = \frac{P\{X = x|Z = z\}}{P\{X \geq x|Z = z\}}$$

so the *conditional hazard given Z* is estimable using the delayed entry approach under the weaker assumption that entry time V and survival time X are just *conditionally* independent given Z .

Prevalent cohort study

A cross-sectional sample of diseased is followed up further – usually for some fixed calendar time.

Is it correct to analyze survival of patients in a prevalent cohort using Kaplan-Meier with left truncation?

In which sense do we have ‘independent delayed entry’?

Age-status-duration distribution in cross-sectional sample

Illness-death process

$$\begin{array}{ccc} H & \xrightarrow{\alpha(t,a)} & I \\ \mu(t,a) \searrow & & \swarrow v(t,a,d) \\ & D & \end{array}$$

calendar time t , age a , duration d

Recruited from Poisson process $\beta(t)$

In cross-sectional sample at time t , the joint distribution of current age Z , current duration $Z-Y$ and status is

$$C(t)\beta(t-z)e^{-\int_0^z(\mu(t+u-z,u)+\alpha(t+u-z,u))du}, \quad \text{healthy individual}$$

$$C(t)\beta(t-z)e^{-\int_0^y(\mu(t+u-z,u)+\alpha(t+u-z,u))du} \alpha(t+y-z,y) e^{-\int_y^z v(t+u-z,u,u-y)du}, \quad \text{diseased individual}$$

X age at death

Y age at onset

T time at death

V age at entry

T_V time at entry

$$= T - (X - V)$$

Show for $t > t_v$, $x > y$

hazard $(X | Y = y, T = t, T_V = t_v, X > V)$

$$= \text{hazard}(X | Y = y, T = t).$$

Then this is directly estimable.

$$\frac{P(X = x | Y = y, T = t, T_V = t_v, X > V)}{P(X \geq x | Y = y, T = t, T_V = t_v, X > V)}$$

$$= \frac{\beta(t-x) e^{-\int_0^y \{\mu(t-x+s, s) + \alpha(t-x+s, s)\} ds} \alpha(t-x+y, y) e^{-\int_y^x \nu(t-x+s, s, s-y) ds} \nu(t, x, x-y)}{\beta(t-x) e^{-\int_0^y \{\mu(t-x+s, s) + \alpha(t-x+s, s)\} ds} \alpha(t-x+y, y) e^{-\int_y^x \nu(t-x+s, s, s-y) ds}}$$

$$= \nu(t, x, x-y)$$

If the death intensity depends on both time t , age x , duration $x-y$, it has to be modelled like that.

Prevalent cohort study

Standard approach: Survival analysis with delayed entry (left truncation); risk set only includes patients *from sampling onwards*

Covariates may be included e.g. through Cox regression model

$$\lambda_i(t) = \lambda_0(t) e^{\beta \cdot Z_i(t)}$$

Alternative 1: length-biased distribution

- a) patients with long disease durations are overrepresented in the prevalent cohort
- b) is it not a waste to throw out the known survival time from onset to sampling?

Length-biased sampling

Basic idea easiest if

$$v(t, a, d) = v(d)$$

(lethality depends only on duration)

Then: the conditional distribution of duration D given onset age Y and current age Z has density

$$e^{-\int_{z-y}^d v(u)du} v(d)$$

\Rightarrow joint distribution of Y, Z, D

$$c \beta e^{-\int_0^y \{\mu(u) + \alpha(u)\} du} \alpha(y) \underbrace{e^{-\int_y^z v(u-y)du} e^{-\int_{z-y}^d v(u)du} v(d)}_{v(d) e^{-\int_0^d v(u)du}}$$

for $0 < \underbrace{y < z < y + d}_{\text{interval for } z \text{ of length } d}$

integrating out z and then $y \Rightarrow$

$$\text{const.} \cdot d \nu(d) e^{-\int_0^d \nu(u) du}$$

density of the length biased distribution

Estimate v from length-biased distribution (counting everybody from disease onset): under uncensored observation the NPMLE of the distribution function

$$H(d) = 1 - e^{-\int_0^d v(u) du}$$

is the Cox-Vardi estimator

$$\hat{H}(d) = \sum_i \frac{I\{D_i \leq d\}}{D_i} \left/ \sum_i \frac{1}{D_i} \right.$$

generalized to right censoring by Vardi (1989).

Alternative 2: forward recurrence time

Sometimes we do not know age at onset, so can we use the marginal distribution of time from sampling to death?

Under same assumptions

$$v(t, a, d) = v(d)$$

the *density* of the forward recurrence time distribution equals

$$\text{const. } e^{-\int_0^f v(u) du} = \text{const.} \{1 - H(f)\}$$

$F = D - (Z - Y)$ = forward recurrence time

NPMLE (uncensored): Grenander (1956)

generalization to right censoring by Denby & Vardi (1986)

alternative algorithm by Huang & Zhang (1994)

Remember: if duration D has

$$\text{density } h(d) \quad (= v(d) e^{-\int_0^f v(u) du})$$

distribution function $H(d)$

then the density of

length-biased distribution

$$\text{is} \quad \text{const. } d \ h(d)$$

forward recurrence time distribution

$$\text{is} \quad \text{const.} \{1 - H(f)\}$$

Not clear how to incorporate age a , time t and other covariates into these two models.

Therefore: so far little practical applicability in typical prevalent cohort situations.

Recapitulation

If density $h(d)$, distribution function $H(d)$

Then

length-biased density

const. $d h(d)$

forward recurrence time density

const. $\{1 - H(d)\}$

Oakes & Dasu (1990)

Biometrika

forward recurrence time hazard

$$\frac{1 - H(d)}{\int\limits_{\alpha}^{\infty} \{1 - H(u)\} du} = \frac{1}{e(d)}$$

$e(x)$ = mean residual life function of D

so

prop. Hazards for forward recurrence time

\Leftrightarrow prop. Mean residual life for D

Example: prevalent cohort of insulin-dependent diabetics in Denmark

All insulin-dependent diabetics (1499) in county of Fyn (population 450,000) on 1 July 1973 were identified by going through all prescriptions at the National Health Service over a five month period.

Mortality depends on age, calendar time, duration, cf. decent analysis by Andersen et al., Biometrics 1985.

Here for illustration: assume dependence only on duration.