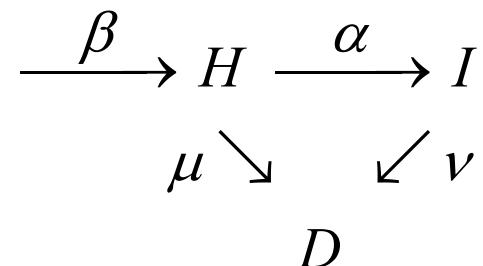


Age-specific incidence and prevalence

Niels Keiding
January 2007

Prevalence, incidence and duration: background model

Keiding (2005) Encycl.Biostat. (2. ed.), 2502-2506.



Individuals are born into the healthy state H according to time-homogeneous Poisson process with intensity β .

Individuals then develop according to (time, age, duration) - homogeneous Markov illness-death process:

Healthy individuals become diseased (I) with intensity α .

Healthy individuals die (D) with intensity μ .

Diseased individuals die with intensity ν .

Prevalence

Intuitively: the frequency of diseased in the population

Possible formalization: take a cross-sectional sample of the population at some time t , say $t = 0$.

$$E(\# \text{ healthy at } t = 0) = \int_0^\infty \beta \exp[-(\alpha + \mu)a] da = \frac{\beta}{\alpha + \mu}$$

because individual born at $t = -a$ remains in H until $t=0$ with probability $\exp[-(\alpha + \mu)a]$.

$$E(\# \text{ diseased at } t = 0) = \iint_0^\infty \beta \exp[-(\alpha + \mu)y] \alpha \exp[-\nu(a-y)] dy da = \frac{\alpha \beta}{(\alpha + \mu)\nu}$$

$(\text{birth at } t = -a, \text{disease onset at } t = -a + y \in [-a, 0]).$

Disease duration

Here exponentially distributed with mean

$$E(\text{disease duration}) = \nu^{-1}.$$

Incidence

Recommended ('individual') definition (R & G p. 32)

Healthy individual gets diseased at rate α per time unit.

Alternative definition,

Rate of occurrence of new disease in the population

= E (new cases of diseased in population per calendar time unit)

$$= \beta \int_0^\infty \exp[-(\alpha + \mu)y] \alpha dy = \frac{\beta \alpha}{\alpha + \mu}$$

Prevalence = incidence × duration

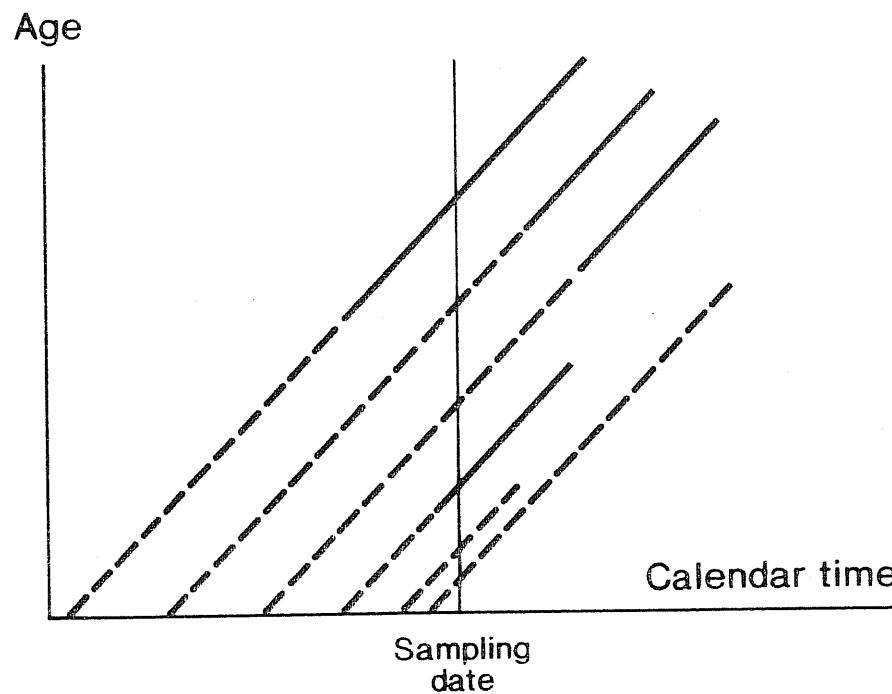
Incidence definition 1:

$$\text{prevalence odds} = \frac{E(\text{diseased})}{E(\text{healthy})} = \frac{\alpha\beta/[(\alpha + \mu)\nu]}{\beta/(\alpha + \mu)} = \alpha \cdot \frac{1}{\nu} = \text{incidence} \times \text{mean duration}$$

Incidence definition 2:

$$\text{prevalence} = E(\text{diseased}) = \frac{\alpha\beta}{(\alpha + \mu)\nu} = \frac{\alpha\beta}{\alpha + \mu} \cdot \frac{1}{\nu} = \text{incidence} \times \text{mean duration}$$

Age-dependence: Lexis diagram



Lexis's own diagrams

Keiding (2000). Graphical representations in mortality measurement: Knapp, Zeuner, Becker, Lexis. Res. Rep. 00/8.

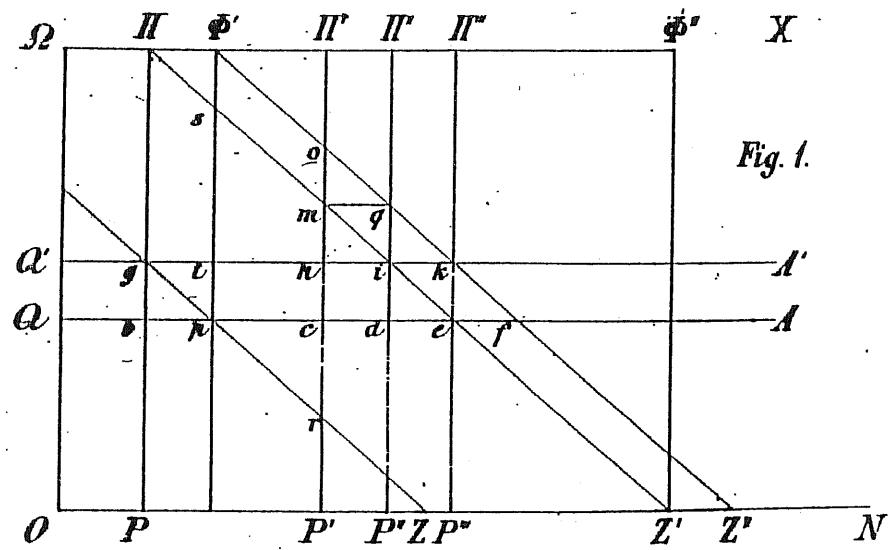


Fig. 1.

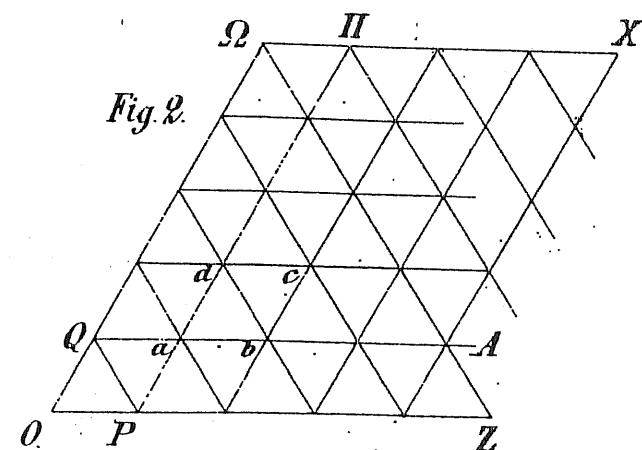
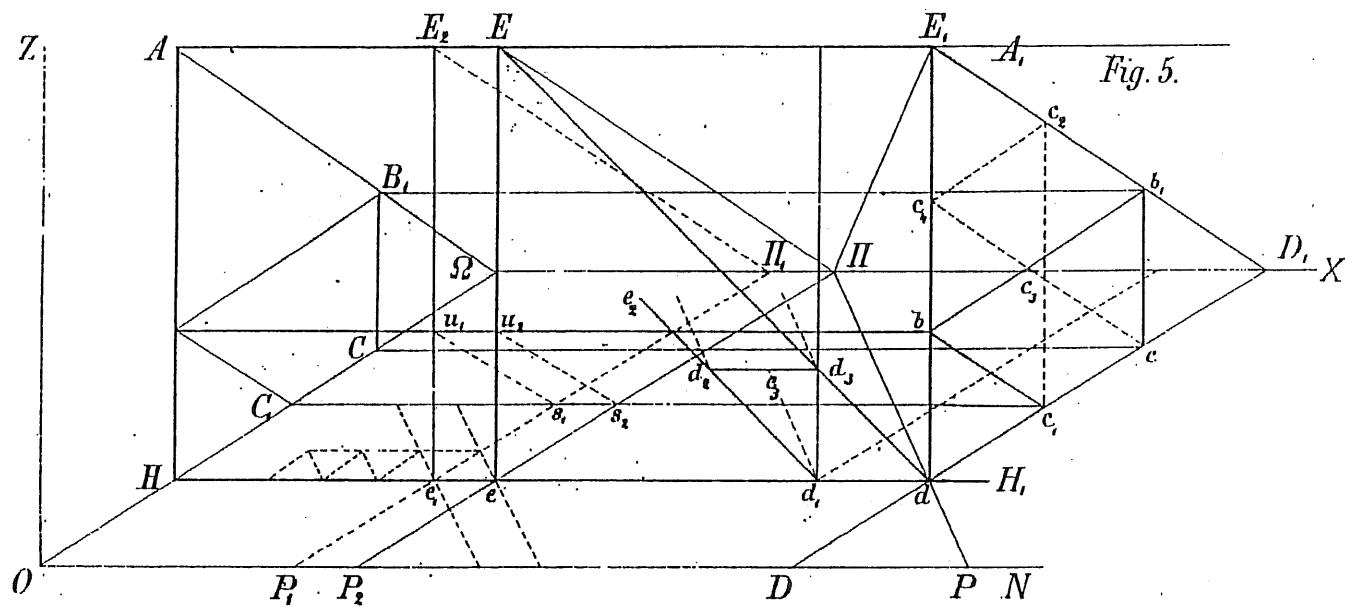


Fig. 2.

(Cohort, age)

equilateral

Lexis's own diagrams



(cohort, age at marriage, age at death)

Lexis diagram: basic concepts

Incidence $\alpha(t,a)$

Healthy person at time t and age a contracts disease in next interval $[t,t+h) \times [a,a+h)$ with probability $\alpha(t,a) h$

Mortality of the healthy $\mu(t,a)$

Healthy person at time t and age a dies in next interval $[t,t+h) \times [a,a+h)$ with probability $\mu(t,a) h$

Mortality of the diseased $\nu(t,a,d)$

Diseased person at time t and age a and duration d dies in next interval $[t,t+h) \times [a,a+h) \times [d,d+h)$ with probability $\nu(t,a,d) h$

Lexis diagram: the planar point process

Poisson process of births with intensity $\beta(t)$ generates

Planar Poisson process of incidences with intensity

$$\gamma(t, a)\alpha(t, a)$$

where

$$\gamma(t, a) = \beta(t - a) e^{-\int_0^a [\mu(t - a + y, y) + \alpha(t - a + y, y)] dy} .$$

$\gamma(t, a)$: density of disease-free survivors

Brillinger (1986).

Prevalence under time homogeneity

$$\alpha(t, a) = \alpha(a); \quad \mu(t, a) = \mu(a); \quad \nu(t, a, d) = \nu(a, d)$$

$$E(\# \text{ diseased at } t = 0)$$

$$= \int_0^\infty \int_0^\infty \beta \exp \left[- \int_0^y \{\alpha(u) + \mu(u)\} du \right] \alpha(y) \exp \left[- \int_0^s \nu(y+u, u) du \right] ds dy$$

where

$$\int_0^\infty \exp \left[- \int_0^s \nu(y+u, u) du \right] ds = E(\text{disease duration} | \text{onset at age } y) = \Delta_y$$

which is independent of y if lethality $\nu(a, d) = \nu(d)$ depends only on disease duration, not on age. In that case “prevalence”

$$= E(\# \text{ diseased at } t = 0) = \Delta \int_0^\infty \beta \exp \left[- \int_0^y \{\alpha(u) + \mu(u)\} du \right] \alpha(y) dy$$

$$= \Delta \cdot E(\text{new cases of diseased in population per calendar time unit})$$

$$= \text{mean duration} \cdot \text{“incidence”}.$$