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Day 1, 9 - 11:

1. Basic concepts: Terminology, measures of disease occurrence,
measures of association, regression models, main designs.

2. The epidemiological study as a measurement exercise:
Precision, Validity, Selection problems, Confounding,
Information problems. Generalizability. Effect-modification.

3. Independent risk factors.
The effect of omitting covariates in RCTs.
Omitting covariates in multiple regression and logistic
regression.

"Epidemiology is concerned with the patterns of disease occurrence
in human populations and the factors that influence these patterns.
Epidemiologists are primarily interested in the occurrence of
disease as categorized by time, place and person”.

Personal characteristics include:

» Demographic factors

>  Biological characteristics and genetic factors
> Life style and social and economic factors

Purpose:

>  To elucidate the etiology of a disease

»  To evaluate the consistency of epidemiologic data with
etiological hypotheses

»  To evaluate preventive procedures and public health
practices

What causes the disease? Can it be prevented?

Here focus on the methods used to answer these questions




Problem: epidemiologic studies are typically observational
studies. (Causal) interpretation of the results becomes
complex.

Terminology

Outcome: The variable or factor that summarizes the disease or
health phenomenon under study

Determinants or exposures: Covariates or factors that may
influence the outcome

Treatment is often used for exposures that are controlled.

Most epidemiologic methods concern categorical outcomes,
typically a dichotomies.

Ex. Presence or absence of a specific diagnosis. Cause of death

Continuous outcomes are occasionally considered

Ex. Blood pressure.

Measures of disease occurrence I

Two basic aspects:
> Prevalence: Who have the disease?
> Incidence: Who develop the disease?

Proportions

Prevalence (proportion): the relative frequency of individuals in

a population (or sample), who have the disease in question at a

given point in time.

Cumulative incidence (proportion): The relative frequency of healthy
individuals, who develop the disease in a given period of time

The statistical model should allow estimation of these quantities,
either directly as parameter estimates or indirectly as functions
of other parameters.

Note: In epidemiology the distinction between the theoretical
quantities (probabilities) and their estimates (proportions) is
seldom made.




Measures of disease occurrence IT

Rates
The "time" aspect is an important. A description of how the
"instantaneous risk" depends on time is useful

Incidence rate: The relative rate of change of the population size
due to the disease

In statistical terms:

The incidence rate is the hazard rate of the time-to-disease
distribution or the transition intensity in a simple two state
model (healthy, diseased) of the life course of an individual.

To model epidemiologic data important to consider

> Choice of time scale - usually age or time since exposure
> Censoring and fruncation
> Competing causes

Measures of disease occurrence ITI
Rates: If the hazard rate is (piecewise) constant the
maximum likelihood estimate becomes Events/Risktime.

Example: Fetal death by pre-pregnancy BMI categories in DNBC
Features: Left truncation, right censoring, competing causes
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Exposure-outcome relationships - Measures of association

Two exposure categories: Unexposed (0) and Exposed (1)

Measures based on proportions

Relative risk: RR=21
Po
Risk difference: RD = p,—p,
0dds ratio: OR=_D / Py
1- P 1- Po
Measures based on rates
t
Hazard ratio HR(t)=HR = A®
A (1)

Continuous outcomes are usually described by linear models and the

"effect” of exposure is the difference between expected outcomes
7

The basic regression models used in epidemiology I

Binomial regression models

Generalized linear model with a link function that correspond to
the measure of association

Odds ratio: logit link (logistic regression)
Relative risk: log link
Risk difference: identity link

Log-linear hazard rate models

Data with records on individuals

Proportional hazards regression models (e.g. Cox regression)

Aggregated data (multiway tables of counts and person-years)

Poisson regression (log-linear model with piecewise constant
hazard rate)




The basic regression models used in epidemiology II

Continuous outcome (Gaussian)
Multiple regression models
Unlike the multiple regression model the binomial regression models

are derived from a one-parameter exponential family and the
variance is a function of the mean.

Model-based standard errors of estimates may underestimate the
uncertainty in the estimates.

Solutions:
» Use "robust” standard errors (GEE methodology).

» Generalized linear mixed models: Introduce additional
random component(s) in the model

Robust standard errors - Are they always robust?

logistic respl covx[fw=number], coef

Logistic regression Number of obs = 70

LR chi2 (1) = 3.01

Prob > chi2 = 0.0827

Log likelihood = -27.202656 Pseudo R2 = 0.0524

respl | Coef. Std. Err. Z P>|z]| [95% Conf. Interval]
,,,,,,,, I __ N,

covx | .3111931 .1882717 1.65 0.098 ~-.0578127 .6801988

\

-1.926355 .3834859 -5.02 0.000 -2.677973 -1.174736

logistic respl covx [fw=number], coef robust

Logistic regression Number of obs = 70

Wald chi2 (1) = 13.87

Prob > chi2 = 0.0002

Log pseudo-likelihood = -27.202656 Pseudo R2 = 0.0524

\ Robust

respl | Coef. Std. Err. z P>|z| [95% Conf. Interval]
________ I

covx | .3111931 .0835506 3.72 0.000 .1474368 .4749493

cons |-1.926355 .3367578 -5.72 0.000 -2.586388 -1.266322




Populations

Study population: The individuals who are included in the study.

Source population: The population from which the study population
is obtained

Target population: The population to which the results are to be
applied
The terminology is not used consistently

The study population is the sample(s) - but rarely random
sample(s). Inference in the study population may therefore not
apply directly to the source population (or the target population).

Important: Investigate to what extend the findings in the study
population are valid more generally.

The design of epidemiologic studies I
Cohort studies. From causes fo effects

Basic form: Disease occurrence in a study population of healthy
individuals, who are followed forward in time. Exposure is assessed
at entry.

In principle: A fixed cohort followed for a fixed time period allows
direct estimation of cumulative incidence and the corresponding
measures of association

In practice: Censoring by competing causes and loss to follow-up
make models based on incidence rates more attractive.

Dynamic cohort: Entry in and exit from the cohort during follow-up.

Lexis diagrams (more later) are useful to clarify more complex designs

Choice of time scale
Prolonged exposure: Hormone Replace Therapy and Breast Cancer

12




The design of epidemiologic studies II
Case-control studies. From effects to causes

Problem with cohort studies of rare diseases:
Large studies are required to obtain the number of cases needed.

Alternative approach:
Case-control studies or case-referent studies

Basic idea: Identify the cases in a hypothetical cohort study and
compare their exposure histories with those of a suitable sample of
referents

Several types of case-control designs reflecting choice of
measure of association and/or use of matching between cases and
controls

The design of epidemiologic studies III

Case-control studies. Controls as non-cases.
Measure of association: Odds Ratio

Source population:
non- non-

case case case case
E=1| Py Pio or Py |1-P OR = PuPw _ P/(1-P)
E=0| Por | Poo Py |1-F " e BIA-F)

Sampling probabilities: m;

non- OR, = P11Poo 71170
case case PioPo1 7170
E=1 | pyTTy4/C| PyoTTio/C

if 7,=7%, and 7, =7,
E=0 | poiTor/C | PooTTeo/C i.e. sample fraction independent
of exposure then OR  =OR; 1,

pop




The design of epidemiologic studies IV

Case-control studies. Controls = Random sample of Source
Population. Measure of association: Incidence Rate Ratio

. Y /Y, _Y /T,
Rate Ratio: /O =-1 /-1
L/ 1, Y, To\ only the relative size of

the time-at-risk is heeded

Basic idea: Use the ratio of exposed o unexposed in a
random sample from the source population instead.

If possible: Use sampling probabilities proportional to
the contribution to the time-at-risk

The odds ratio in the sample estimates the rate ratio in the source
population.

Nested case-control studies
Case-cohort studies
Case-crossover studies

Macthed case-control studies (also counter-matching) .5

The design of epidemiologic studies V
Cross-sectional studies

Basic idea: Disease status and exposure status are determined in a
study population in a “given point” in time.

Allow estimation of prevalences and the corresponding measures of
association.

The timing of disease and exposure may not be available so causal
interpretation is copmplex (at best).

Further design options:
Prevalent cohort: Follow-up of a study population identified in a
cross-sectional study




Precision and validity in Epidemiologic studies

"One way to formulate the objectives of an epidemiologic study is
to view the study as an exercise in measurement”

Precision: Random error

Validity: Bias
> Internal validity:
From the study population to the source population

Selection bias
‘Information bias
*Confounding

> External validity - Generalizability
Beyond the source population

Precision
Random variation - lack of precision - unpredictability

Sources of uncertainty
Sampling variation
Unexplained heterogeneity
Measurement errors in key variables

Model-based standard errors of estimates reflect sampling
variation only. Alternative, robust, estimates of uncertainty may
be more reliable.

To improve precision
Increase sample size
Stratified sampling, matching
Improve measurement of key variables
Reduce heterogeneity by refining the modeling




Internal validity - Selection Bias I

Selection bias: The relation between exposure and disease is
different for members of the study population (the participants)
and for members of the source population (the eligible persons).

Selection bias: A result of procedures used to select study
subjects and/or factors that influence study participation

Associations observed in the study population represents a mix of
forces determining participation and forces determining disease.

Case-control studies are particularly vulnerable to selection biases

Cohort studies: Non-participation, self-selection

Examples:

> Danish National Birth Cohort (DNBC): Approx. 30% of all eligible
pregnant women were included in the cohort.

> Life Span Study (A-bomb survivors): Cohort members were alive
when the cohort was established in October 1950. 19

Internal validity - Selection Bias IT

Cohort studies in occupational epidemiology:
"Healthy worker” effect

Mortality (or disease incidence) in an occupational cohort is
compared to national figures. Cohort members, typically
identified as workers employed at a given date, are followed
forward in time.

Selection bias may occur at the time of first employment. and
Moreover those still working when the study is initiated are a
“survivors".

Internal comparisons (if feasible) may reduce (eliminate?)
the healthy worker effect

Example: "Un-healthy worker" effect: Thule cohort

20

10



Internal validity - Confounding I

The basic problem: A comparison of disease occurrence in a sample
of exposed with disease occurrence in a sample of unexposed.

Experimental research:
Randomization, balancing, blinding, etc. ensure a valid comparison

Observational research:

The apparent exposure effect may also reflect the effect of other
factors, which differ between the two samples.

Such factors are called confounding factors or confounders

How do we identify confounders?

How do we correct for the influence of confounders when
estimating the effect of exposure?

21

Internal validity - Confounding II
Criteria for a confounding factor (definition?)

1. A confounding factor must be a risk factor for the
disease (among unexposed).

risk factor = a “cause” or a factor associated with a “cause”
(a marker or a surrogate)

2. A confounding factor must be associated with the exposure
(in the source population)

3. A confounding factor must not be affected by the exposure or
the disease. In particular, it cannot be an intermediate step in the
causal path between the exposure and the disease

Note: These criteria require information outside the data

22

11



Internal validity - Confounding III

Counterfactual definition of confounding: The average counterfactual
response in the exposed study population differ from the average
response in the unexposed study popuation.

Operational "definition” of confounding:

If the association between exposure and disease is unchanged
when adjusting for a factor, the factor is not a confounder.

Fundamental problem: The definition depends on the chosen
measure of association.

Practical problem: Due to sampling variation small, “unimportant”
changes are expected.

Solution(?): Change-in-estimate criteria: accept changes less than
10% (or 5% or...)

The definition of non-confounding as collapsibility or of
confounding as non-collapsibility differs from the “classical”
definition. 23

Internal validity - Confounding IV
Non-confounding and collapsibility

Contingency tables: Three-way table classified by E, D and C.

A measure of association of E and D is collapsible across C if it is
constant across the conditional subtables and this constant value
equals the value in the marginal (E,D) table.

Collapsibility of the odds ratios in a contingency table (or of the
parameter in a logistic regression) :

CLEID CLDIE

© ©

24
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Internal validity - Confounding V

Correction for the effect of confounding factors

In the design:

> Matching (used mainly for case-control studies)
> Restriction

In the analysis:

> Stratification (Mantel-Haenszel methodology)
> Regression modeling
» Standardization methods (weighting)

If the number of confounding factors is large some of these
methods are not feasible. Alternative approach: Propensity score

Confounding and intermediate factors
Analyses both with and without correction for a particular factor
may provide useful information on the relationships (mediation)

Internal validity - Information Bias I
Measurement error and misclassification

Measurement error: E frue exposure, F measured exposure

Two basic types: Note:
Classical:  F = E+error, Var(F) > Var(£)
Berkson:  E=F +error, Var(E) > Var(F)

Consequences in a simple linear model with additive error
Classical model
Y=a+pB.E+e¢, £~N(0,07)

Observed exposure: F=E+U, U~N(0,0;)
U independent of the error &
2
The regression of Yon F: 3, =% .
oy +0,

26
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Internal validity - Information Bias IT
10,0y

2

Residual variation:  Var(Y|F)=0+ X
o, +0o;

Use of observed exposure instead of the true exposure leads to
an attenuation of the slope and increased residual variation
Berkson mode/

Relation between exposures: E=F+V, V ~N(0,62)
Vindependent of the error ¢

The regression of Yon F: .=
Residual variation: Var(Y | F)=0. + B0,

Use of observed exposure instead of the frue exposure leads to
an unbiased slope estimate and increased residual variation

General solution methods: Regression calibration, modeling (e.qg.
EM algorithm), SIMEX 27

Internal validity - Information Bias ITI

Misclassification of exposure, disease or confounders

Differential misclassification - the misclassification probabilities
dependent on other variables
Non-differential misclassification

Non-differential misclassification in exposure or outcome leads
usually to bias against the null value.

Non-differential misclassification in a confounder reduces the
degree to which confounding can be controlled. May cause bias in
either direction (depending on the direction of the confounding).

Differential misclassification: Can cause bias in both direction.

If validation data are available: Correction for misclassification by
modeling the misclassification or by sensitivity analyses

Example: Cause of death inLSS »8

14



Internal validity - Information Bias IV

Example: Pregregnancy BMI in DNBC and pregnancy outcomes

DNBC
Under- Normal Over-
NJC weight weight weight Obese Total
Underweight 149 24 0 0 173
Normal weight 72 2932 45 0 3049
Overweight 0 173 998 23 1194
Obese 0 3 96 518 617
Total 221 3132 1139 541 5033

Agreement:  91.4%

Consequences ( from a sensitivity analysis):
Relative bias in RR for obese: ~-5%

29

External validity - Generalizability

Scientific generalizations: Move from a time-place specific results

to an abstract “universal” hypothesis, e.g. “radiation causes cancer”.

BUT this is a complex problem and insight in the mechanisms is

usually required.

Example:

In the LSS cohort both additive and multiplicative models for the

excess risk related to radiation may describe the data.

The consequences of these models are very different when the

models are “transported” to other settings, since the background
cancer rates differ between countries.

Similar problem with projections in time: Non-trivial differences

between excess lifetime risk per unit dose derived from different

models that fit equally well

30
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Effect modification - Interaction

Effect modification: The effect of a risk factor depends on other
covariates (effect modifiers).

Statistical terminology: Interaction between the effect of
exposure and the effect of the covariate(s).

Effect modification is described by including interaction terms in
the regression model.

Usually:
> We want to eliminate (reduce) the influence of confounding
factors.

> We want to describe effect modification

But presence of effect modification depend on the measure of
association used in the analysis

All other things being equal we may prefer to use a measure of
association for which the data can be modeled without interactions
terms. 31

Independent risk factors

In experimental studies randomization ensures

> Unbiased estimation of average treatment effect

> Treatment allocation is independent of covariates: Known and
unknown risk factors are expected to be balanced

> Valid significance test of the hypothesis of no treatment
effect can be based on the radomization distribution

In observational studies exposure is not allocated at random

Exposure may be related to important covariates, i.e. confounding
is present.

Adjustment for the confounding factors is necessary. But what
about independent risk factors?

32
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The effect of omitting an independent risk factor X

X=1
Y=1 Y¥=0

E=1| 20 5| 25
E=0| 15| 10| 25

35 15 50
RR 1.33
RD 0.20
OR 2.67

The covariate X is
a risk factor

OR within exposure
categories = 6

X=0
Y=1 Y=0
10| 15| 25
51 20| 25
15 35 50
2.00
0.20
2.67
Summed over X
y=1 Y=0
E=1 30| 20
E=0 20| 30
50 50

X=1 X=0
E=1| 25| 25| 50
E=0| 25| 25| 50
50 50 100
E and X are
marginally
independent
RR 150
% Rrp 020

50 OR 2.25

100

33

The effect of omitting an independent risk factor X

More general set-up:

Estimation of treatment effect in randomized experiments with
non-linear regressions and an omitted covariate

Bias
against null

Binomial

Poisson
Exponential

Cox reression

identity
log

logit
identity
log

log
inverse

no
no
yes
no
no
no
yes
yes

The effect of omitted covariates on model-based Score test of

no exposure effect has also been investigated

34

17



Omitted covariates -
relation to marginal and conditional models

Implicit assumption: The values within levels of the covariate are
"correct” and the value obtained when the covariate is omitted may
be biased.

Another perspective: Some important (unknown) covariates are
always missing so some heterogeneity is always expected.

The omitted-covariate-results are not biased but correspond to
associations on the population level: A marginal model.

The associations within levels of the covariates correspond to
conditional models, i.e. given the fixed and random factors that
determine the relationship between exposure and disease.

Different answer to different questions!

35

Conventional wisdom - Multiple regression
Consider the two models

Modell  E(YIE)=b,+bE, Var(Y 1 E) =0}
Model 2 E(Y1E)=b,+bE+b,X, Var(YE,X)=0,

Data: Simple random sample. Both models are fitted to the data
using method of least squares. Estimators of exposure effect: b, b,

Asymptotic relative precision
A~ -1
[Var(bl)] B Var(l;f) 1-p;,

ARP(b, to b)) = — =
[Var(b1 )] Var(h) 1= Py

No confounding (collapsibility), i.e. b =p, if one or both of the
following conditions holds

Condition 1: Pxz =0

Condition 2: P =0 (e b,=0) N

18



Conventional wisdom - Multiple regression

Condition 1 alone: ARP > 1
Desirable to adjust for a predictive covariate in randomized studies

Condition 2 alone: ARP <1

Undesirable to adjust for a non-predictive covariate which is
correlated to the risk factor of interest.

Both conditions holds: ARP =1

In general (also when confounding is present): The relative size of
the two correlations determine whether ARP<1,=10r>1

37

Logistic regression

Y, E and X dichotomous variables. Consider the two models
Model 1 logit(p) =b, +b E

Model 2 logit(p) =b, +bE+b,X

Technical problem: Both models cannot be “true” simultaneously

Data: Random samples of exposed and unexposed individuals. Both
models are fitted to the data using maximum likelihood. Estimators
of exposure effect: b/, b,

Asymptotic relative precision
~ -1
A N Var(b, | E) ~
ARP(b to b, ) = [ 1 ]1 _Varh 1E) |
[Var 1Ey| Var(h1E)

with equality if and only if X independent of (Y,E)
Proof: Minkowski's inequality

38
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Logistic regression

No confounding (collapsibility), i.e. b, =b, if one or both of the
following conditions holds

Condition 1 E and X are independent given Y
Condition 2" Y and X are independent given E (i.e. b, = 0)

Condition 1' alone or condition 2' alone: ARP <1
Both conditions hold: X independent of (Y,E) and ARP =1

Unlike multiple regression, including a “non-confounding” covariate
associated with Y leads to loss of precision of the exposure
effect.

Does it matter in practice?
The loss in precision may not be negligible!

39
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