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1. Intelligent mothers get intelligent children

2. Children with intelligent mothers have lower prenatal mercury exposure

If we ignore the confounder maternal intelligence then the adverse mercury effect is overestima-
ted. Highly exposed children are doing poorly also because their mothers are less intelligent.

Standard approach to confounder correction: multiple regression



Multiple Regression Results: effect of 10-fold increase in exposure

Cord Blood Maternal Hair
Response β p β p
NES2 Finger tapping
Preferred hand −1.01 0.08 −1.03 0.08
Non preferred hand −0.55 0.31 −0.91 0.11
Both hands −1.90 0.10 −2.74 0.02

NES2 Hand-Eye Coordination

Error score∗ 0.03 0.27 0.05 0.10
NES2 Continuous Performance Test

Ln total missed∗ 0.22 0.07 0.08 0.52
Reaction time∗ 34.57 0.002 16.24 0.13
Wechsler Intelligence Scale
Digit Spans −0.21 0.14 −0.17 0.24
Similarities −0.003 0.99 −0.23 0.57
Sqrt. Block Designs −0.11 0.31 −0.06 0.59
Bender Visual Gestalt Test

Errors on copying∗ 0.33 0.49 0.33 0.51
Reproduction −0.10 0.54 0.07 0.68
Boston Naming Test
No cues −1.61 0.002 −1.10 0.04

With cues −1.70 0.001 −1.12 0.03

California Verbal Learning Test
Learning −1.00 0.23 −0.97 0.27
Short-term repro. −0.46 0.06 −0.41 0.11
Long-term repro. −0.46 0.10 −0.42 0.15
Recognition −0.26 0.21 −0.19 0.38



Multiple exposures Multiple endpoints

Potential confounders
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Weaknesses of the regression analysis

• result is blurred

- multiple testing problems ∼ Bonferroni adjustment?

• not efficient

- fails to borrow information from different outcomes

• exposure measurement error is ignored

- regression coefficients become biased



Exposure error in simple linear regression

Y : response, X: true exposure, W : measured exposure

Y = β0 + βx ·X + ǫ, W = X + U

Naive Analysis: Replace X by W

The exposure effect is attenuated - the higher the imprecision the worse



Correlation between covariate and residual term

Y : response, X: true exposure, W : measured exposure

Y = β0 + βx ·X + ǫ, W = X + U , U ∼ N(0, var(U))

Naive analysis:

Y = β0 + βx · (W − U) + ǫ = β0 + βx ·W − βx · U + ǫ

Model violation: cov(W,U) 6= 0

β̂x → λβx, λ =
var(X)

var(X) + var(U)

Strong bias when imprecision is high and true exposure variation is low



Exposure error in multiple regression

Y : response, X: true exposure, W : measured exposure, Z: confounder

Y = β0 + βx ·X + βz · Z + ǫ, W = X + U

Naive analysis:

β̂x → λ · βx, λ =
var(X|Z)

var(X|Z) + var(U)

var(X|Z): variance in the true exposure not explained by the confounders

Strong bias when imprecision is high and true exposure variation for fixed level of

confounders is low



Correction for exposure error

Naive analysis:

β̂x → λ · βx, λ =
var(X|Z)

var(X|Z) + var(U)

If λ known: β̃x = β̂x/λ, var(β̃x) = var(β̂x)/λ2

corrected estimate has increased variance

Alternative methods

• Regression calibration: Regress Y on Z and an estimate of E(X|W,Z) (ba-
sed on validation data including X)

• SIMEX: add more noise and extrapolate (var(U) known)

• Instrumental variables: exposure surrogate associated to X, but not to U

• Structural equation models



Structural equation models

Consist of two parts

The measurement part:

Observed variables considered manifestations of a limited number of underlying (la-

tent) variables. Obtained through factor analytic models.

The structural part:

Latent variables related to each other and to observed covariates. Obtained through

multiple linear regression models.



The measurement part - confirmatory factor analysis

Dependent variables yi = (yi1, ..., yip)
t in subject i considered manifestations of

latent variables ηi = (ηi1, ..., ηim)t

with measurement error ǫi = (ǫi1, ..., ǫip)
t (i = 1, ..., n)

yi1 = ν1 + λ11 · ηi1 + ...+ λ1m · ηim + ǫi1
.
.
.
yip = νp + λp1 · ηi1 + ...+ λpm · ηim + ǫip

In matrix form: yi = ν + Ληi + ǫi

ǫi ∼ N(0,Ω)



The structural part

Linear relations between latent variables ηi = (ηi1, ..., ηim)t

and independent variables zi = (zi1, ..., ziq)
t

with residuals ζi = (ζi1, ..., ζim)t

ηi1 = α1 + Σj 6=1 β1j ηij + Σj γ1j zij + ζi1
.
.
.
ηim = αm + Σj 6=m βmj ηij + Σj γmj zij + ζim

In matrix form: ηi = α+Bηi + Γzi + ζi

ζi ∼ N(0,Ψ)



Neurobehavioural test scores included

Neurobehavioural Examination System (NES) Finger Tapping: First the child tapped a (compu-
ter) key for 15 seconds twice with the preferred hand, then twice with the non-preferred hand
and finally two keys were tapped with both hands twice. Scores (FT1, FT2 and FT3) are the
maximum number of taps under each condition.

NES Hand Eye Coordination: The child had to follow a sine-wave curve on the computer screen
using a joy-stick. The score (HEC) is the average deviation from the stimulus in the best two
trails.

Wechsler Intelligence Scale for Children - Revised Digit Spans: Digit spans of increasing length
were presented until the child failed. The score (DS) is the total number of correct trials.

California Verbal Learning Test (children): A list of 12 words that can be clustered into categories
was given over five learning trails, followed by a presentation of an interference list. The child was
twice requested to recall the initial list, first immediately after the presentation of the interference
list and again 20 minutes later after completing some other tests. Finally, a recognition test was
administered. Scores are the total number of correct responses on the learning trials (CV LT1),
on immediate and delayed recall conditions (CV LT2, CV LT3) and on recognition (CV LT4).

Boston Naming Test: The child was presented with drawings of objects and asked to name
the object. If no correct response was produced in 20 seconds a semantic cue was provided
describing the type of object represented. If a correct response still was not given, a phonemic
cue was presented. The scores are total correct without cues (BNT1) and total correct after
cues (BNT2).



Path diagram for indicators of mercury
exposure and childhood cognitive function
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Selected equations

Measurement part (on the form)

log(B-Hg) = 0 + 1 ·η1 +ǫB-Hg

log(H-Hg) = νH-Hg + λH-Hg ·η1 +ǫH-Hg

FT1 = 0 + 1 ·η3 +ǫFT1

FT2 = νFT2 + λFT2 ·η3 +ǫFT2

FT3 = νFT3 + λFT3 ·η3 +ǫFT3

HEC = νHEC + λHEC ·η3 +ǫHEC

Reference indicators Hg: cord blood, Motor: FT1

Structural part

η3 = α3 + β31 · η1 + γ31 · z1 + ...+ γ39 · z9 + ζ3

η4 = α4 + β41 · η1 + γ41 · z1 + ...+ γ49 · z9 + ζ4



Distribution of observed variables

Structural part: ηi = α+Bηi + Γzi + ζi

gives: ηi = (I −B)−1α+ (I −B)−1Γzi + (I −B)−1ζi

Measurement part: yi = ν + Ληi + ǫi

gives: yi = ν + Λ(I −B)−1α+ Λ(I −B)−1Γzi + Λ(I −B)−1ζi + ǫi

Distribution of yi given zi is multivariate regression model.



Estimation and assessment of model fit

yi|zi ∼ Np{µ(θ) + Π(θ)zi,Σ(θ)}, with θ=(ν,Λ,Ω, α,B,Γ,Ψ)

• µ(θ) = ν + Λ(I − B)−1α

• Π(θ) = Λ(I − B)−1Γ

• Σ(θ) = Λ(I −B)−1Ψ(I − B)−1t

Λt + Ω

L(y, z, θ) =

n∏

i=1

φ{yi|µ(θ) + Π(θ)zi,Σ(θ)}

φ: normal distribution density. ML estimator maximizes L(y, z, θ) as a function of θ.

Unrestricted model: Let µ,Π,Σ vary freely.

Overall fit of proposed model is often assessed through:

−2 log-likelihood ratio test of proposed model against unrestricted model



Normality assumption for independent variables

y|z ∼ Np{µ(θ) + Π(θ)z,Σ(θ)}, θ=(ν,Λ,Ω, α,B,Γ,Ψ)

Assume z ∼ N(µz,Σz), then v = (y, z) has normal distribution

E(v) =

(
ν(θ) + Π(θ)µz

µz

)
, var(v) =

(
Π(θ)ΣzΠ(θ)t + Σ(θ) .

ΣzΠ(θ)t Σz

)

Maximum likelihood inference in this model and original model conditioning on z is

equivalent.

Likelihood function factorization:

log[L(y, z|θ, κ)] = log[L(y|z, θ)] + log[L(z|κ)]



Model modification

Look at path diagram. What arrows are missing?

Re-specifications should be based on substantive expertise.

Automatic model selection procedures available in most SEM software - but uncri-

tical applications will likely yield misleading results.

Piecewise model fitting: Divide model into smaller parts. Fit each part separately.

Evaluate the fit of each part. Modify model parts with poor fit.



Local dependence
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Path diagram illustrating how local dependence between test scores is taken into
account



Effect of a 10-fold increase in mercury exposure

β p
Motor Function −1.03 0.034
Verbal Function −1.62 0.002

Reference indicators Hg: cord blood, Motor: FT1, Verbal: BNT2.



Effect of a 10-fold increase in mercury exposure

β p
Motor Function −1.03 0.034
Verbal Function −1.62 0.002

Reference indicators Hg: cord blood, Motor: FT1, Verbal: BNT2.

Selected multiple regression results

Cord Blood Hg
Response β p
NES2 Finger tapping
Preferred hand (FT1) −1.01 0.08
Boston Naming Test
With cues (BNT2) −1.70 0.001



Models for multiple outcomes
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motor = α3 + β31 log(Hg) + γt3Z + ζ3
verbal = α4 + β41 log(Hg) + γt4Z + ζ4

β31 : mercury effect given covariates

β̂31 = −1.032, p < 5%

motor = α3 + β31 log(Hg) + β34verbal + γt3Z + ζ3
verbal = α4 + β41 log(Hg) + γt4Z + ζ4
cov(ζ3, ζ4) = 0

β31 : mercury effect given covariates AND verbal level

β̂31 = −0.765, p > 5%



Direct and indirect effects
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motor = α3 + β31 log(Hg) + β34verbal + γt3Z + ζ3
verbal = α4 + β41 log(Hg) + γt4Z + ζ4

Direct effect of log(Hg) on motor = β31 = −0.765
Indirect effect of log(Hg) on motor = β34β41 = −0.267
Total effect of log(Hg) on motor = β31 + β34β41 = −1.03



Modeling strategy
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Mercury effects can be estimated in a ’verbal’ and a ’motor’ model respectively.

Why should I build a joint model?

Effect estimation may be improved especially if some variables have missing values.



Missing data analysis

Complete case analysis: not efficient but consistent if data are missing completely

at random.

Missing data indicator: ri,j = 1 if yi,j observed, ri,j = 0 otherwise

Dependent variables yi separated into yi = (yobsi , ymisi )

Missing completely at random: ri ⊥ (yi, zi)

Missing at random (MAR): ri ⊥ ymisi |yobsi , zi

Non ignorable missingness: ri and ymisi dependent given yobsi , zi



Missing data analysis, Likelihood methods

Observed data (r, yobs, z)

Likelihood function under MAR (r ⊥ ymis|yobs, z):

L(r, yobs|z, θ, ψ) =
∫
pψ,θ(r, y

obs, ymiss|z) dymis

=
∫
pψ(r|y

obs, ymis, z) pθ(y
obs, ymiss|z) dymis

= pψ(r|y
obs, z)

∫
pθ(y

obs, ymis|z) dymis

ML inference for θ can be based solely on
∫
pθ(y

obs, ymis|z) dymis



Consequences of confounder error

Regression model: Y = β0 + βxX + βzZ + ǫ, Error model: V = Z + U

Naive analysis: replace Z by V

β̂x → βx + βz αx var(U)/[var(U) + {1 − corr(X,Z)2}var(Z)]

where αx = cov(X,Z)/var(X)

Sign of bias depends on the effect of Z and X-Z relationship.

Bias is stronger for increased imprecision [var(U)], stronger X-Z relationship

[αx, corr(X,Z)] and stronger effect of confounder [βz].



Risks and benefits from seafood intake

Special case: X=log(Hg), Z=nutrients from fish, V=number of fish dinners

Here: βz > 0 and αx > 0

Remember: β̂x → βx+βz αx var(U)/[var(U)+{1−corr(X,Z)2}var(Z)]

Therefore: β̂x → β∗x > βx

Failure to adjust for fish error introduces bias in estimated mercury effect. Adverse

mercury effect is underestimated.

Error variance unknown. Multiple indicators not available. Instead the error variance

was fixed at a wide range of values.



SEM: mercury and nutrients from seafood intake
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Results



Interactions in SEMs

• Between covariates: Include product terms between covariates

• Between latent variables:

η3 = β1 · η1 + β2 · η2 + β3 · η1 · η2 + ζ3

Model is not linear in variables. Non-linear SEMs not available in standard

software.

• Between categorical covariates and latent variables:

Special case of multiple group analysis.



Extensions: Multiple group analysis

zi = (zi1, . . . , ziq)
t : independent variables of subject i.

yi = (yi1, . . . , yip)
t : dependent variables of subject i.

Parameters may depend on a group variable g = 1, ..., G

The measurement part:

yi = νg + Λgηi +Kgzi + ǫi

ǫi ∼ N(0,Ωg)

The structural part:

ηi = αg +Bgηi + Γgzi + ζi

ζi ∼ N(0,Ψg)

Muthén, 1984
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Multiple group: Faroese data
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Path diagram showing the model fitted in each cohort. Mercury concentrations in cord blood
(B-Hg) and hair (H-Hg) are indicators of true exposure (Hg). The outcome may be affected by
the true exposure and covariates.



Effects of mercury exposure in two cohorts

Cohort 1 Cohort 2 Test for Cohort 1 & 2
Outcome β 95%-conf. β 95%-conf. equality β p
Boston Naming Test

No cues -2.06 -3.12; -0.99 -1.89 -4.32; 0.53 0.91 -2.03 <0.001
Cues -2.18 -3.23; -1.12 -1.88 -4.26; 0.49 0.82 -2.13 <0.001
Wechsler Int. Scale
Similarities 0.087 -0.75; 0.93 -0.568 -1.71; 0.57 0.37 -0.143 0.68
California Verb. Learn.

Learning -1.30 -3.10; 0.502 1.12 -3.15; 5.39 0.31 -0.935 0.27
Short-term repro. -0.573 -1.10; -0.04 -0.241 -1.62; 1.14 0.66 -0.530 0.036
Long-term repro. -0.613 -1.21; -0.02 -0.011 -1.31 ; 1.29 0.41 -0.509 0.066
Recognition -0.234 -0.68; 0.21 0.765 -0.27; 1.80 0.083 -0.083 0.69

Estimated effect of 10 fold increase in prenatal exposure to mercury



Categorical response variables

• Dichotomous — two categories:

– live / dead

• Nominal — more categories:

– blue / brown / gray / green

• Ordinal — ordered categories:

– low < medium < high



Threshold model

Ordinal response: assume an underlying continuous variable

1 2 3

Y*

Y

t t1 2

y = k ⇔ tk−1 < y∗ < tk

Thresholds (t): unknown parameters.



Extended model: inclusion of ordinal responses

zi = (zi1, . . . , ziq)t : covariates, yi = (yi1, . . . , yip)t : responses

y∗i = (y∗i1, . . . , y
∗
ip)

t : (latent) continuous responses of subject i

• yij continuous: y∗ij = yij

• yij ordinal: threshold model for y∗ij − yij relation

The measurement part:

y∗i = ν + Ληi + ǫi

ǫi ∼ N(0,Ω)

The structural part:

ηi = α+Bηi + Γzi + ζi

ζi ∼ N(0,Ψ)

Muthén, 1984



Software

Many possibilities!

• Easy programming, sophisticated models, expensive software

Mplus and LISREL

• Complex programming, un-sophisticated models, inexpensive software

R (sem)

• Complex programming, un-sophisticated models, expensive software

SAS (proc calis)



Structural equation models in epidemiology

• allow effect parameters to be interpreted as regression coefficients

• allow for measurement error

– in exposure

– in confounders

• reduce dimensionality

• gain power

• allow missing data ML analysis



Important extensions

• Assumption of conditional multivariate normality:

robust estimation methods that require only mean and variance to be correctly

specified are available.

Brown. British Journal of Mathematical and Statistical Psychology (1984); Satorra. Socio-

logical Methodology (1992)

• Non-linear SEMs: e.g. η2 = α+ β · exp(η1) + ζ
Lee, Zhu. Psychometrika (2002).

• Generalized latent variable modeling: Multilevel, Longitudinal and struc-

tural equation models.

Skrondal, A. and Rabe-Hesketh, S. (2004).
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