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PhD. course in Basic Biostatistics – Day 6
Erik Parner, Department of Biostatistics, Aarhus University©

Multiple comparisons: does bran make the man?

Comparing k independent normal samples
- multiple comparison analysis
- multiple linear regression

The CI of an estimated standard deviation

Comparing k independent normal samples
- one-way analysis of variance (F-test, the Bartlett test 
for variance homogeneity)

The Kruskal-Wallis non-parametric test

Multiple comparisons

An example of analysis of repeated measurements by one-way 
ANOVA.
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Overview

Data to analyse Type of analysis Unpaired/Paired Type Day

Continuous One sample mean Irrelevant Parametric Day 1

Nonparametric Day 3

Two sample mean Non-paired Parametric Day 2

Nonparametric Day 2

Paired Parametric Day 3

Nonparametric Day 3

Regression Non-paired Parametric Day 5

Several means Non-paired Parametric Day 6

Nonparametric Day 6

Binary One sample mean Irrelevant Parametric Day 4

Two sample mean Non-paired Parametric Day 4

Paired Parametric Day 4

Regression Non-paired Parametric Day 7

Time to event One sample: Cumulative risk Irrelevant Nonparametric Day 8

Regression: Rate/hazard ratio Non-paired Semi-parametric Day 8
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Multiple comparisons: does bran make the man?

Bran is the hard outer layers of cereal grain.

Can eating breakfast cereal determine the sex of your 
baby?

The original study, "You Are What Your Mother Eats“, by 
Mathews et al (2008) made headlines around the world. 
Researchers at Exeter and Oxford universities asked 740 
pregnant women to record what they ate during pregnancy 
and just before. 

The authors wrote in their conclusion “Over the past 40 
years, there have been small, but highly consistent, 
declines in the proportion of male infants born in 
industrialized countries… However, population-level 
changes in the diets of young women may explain the 
pattern… At the same time, there is good evidence that 
the prevalence of breakfast skipping is increasing.”
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Multiple comparisons: does bran make the man?

How did the authors arrive at that conclusion?

“We went on to test whether particular foods were 
associated with infant sex. Data of the 133 food items 
from our food frequency questionnaire were analysed, and 
we also performed additional analyses using broader food 
groups. Prior to pregnancy, breakfast cereal, but no other 
item, was strongly associated with infant sex (Wald χ2
=8.2, p=0.004). Women producing male infants consumed 
more breakfast cereal than those with female infants. The 
odds ratio for a male infant was 1.87 (95% CI 1.31, 2.65) 
for women who consumed at least one bowl of breakfast 
cereal daily compared with those who ate less than or equal 
to one bowlful per week. No other foods were significantly 
associated with infant sex (given the multiplicity of 
testing, p≤0.01 was considered significant)”
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Multiple comparisons: does bran make the man?

So 133 statistical tests and one p-values less than 0.01!

Suppose, there were no association between any of the 
food items and the sex of the child, and all statistical 
tests were independent, then we would on average expect 
133*0.01=1.33 statistical significant findings (type 1 error).

Hence the association between breakfast cereal and the 
sex of the child may very well be a type 1 error. 

Today we will consider different way of handling many 
comparison with the focus on normally distributed 
outcomes.
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Comparing k independent normal samples
Example 9.1: Haemoglobin level and sickle cell disease

Question: How does the haemoglobin level differ between 
persons who suffer from three different sickle cell 
diseases (Hb SS, Hb Sβ or Hb SC).

Data: Haemoglobin levels for 41 patients.

Figure 6.1
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Type n average CI low CI upp sd Se
97.5 

t-percentile

Hb SS 16 8.713 8.263 9.162 0.8445 0.2111 2.131

HB Sβ 10 10.630 9.711 11.549 1.2841 0.4061 2.262

Hb SC 15 12.300 11.778 12.822 0.9419 0.2432 2.145

Notation: Let yij denote the haemoglobin level for the jth 
patient in  the ith group, e.g. y25 is the level for patients no 

5 suffering of  HB Sβ sickle cell disease.

And let ni denote the number of patients in the ith group.

Model 0: Three independent samples from three normal 
distributions. Comparable to Day 2.

Let µ1, µ2, µ3 denote the means and σ1, σ2, σ3 the standard 
deviations.

A summary of the data:
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Remember the 95% CI’s are found as:

( ).975 1ii i ity n sd n± − ⋅

The ni − 1 degrees of freedom reflects that the estimate of 
the standard deviation is based on ni observations minus one 
estimated mean.
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Comparing k independent normal samples
multiple comparison analysis

We are interested in the hypothesis

H2: µ1 = µ2 = µ3

We could use the unpaired t-test to test H by comparing and 
testing

H2A : µ1 = µ2

H2B : µ1 = µ3

H2C : µ2 = µ3

Result:

Group 1 versus 2: -1.91  (95%CI: -2.78 ; -1.06), p<0.001

Group 1 versus 3: -3.59 (95%CI: -4.24;-2.93), p<0.001

Group 2 versus 3: -1.67 (95%CI: -2.59; -0.75), p=0.001
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The problem with this analysis is that the overall 
hypothesis 

H2: µ1 = µ2 = µ3

is evaluated with 3 separate analysis each with a Type 1 
error of 5%. 

Thus the chance that is H2 is significant if either of H2A , 
H2B , H2C is significant will occur more often than 5% when 
there is no difference in the means, i.e. test procedure will 
have a higher type 1 error than 5%!

This is the main problem of multiple comparisons (testing).

One overall test of the hypothesis H2 is desired.
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An overall test of no difference in the means can be 
performed in a multiple linear regression analysis.

Define two dummy variable

Type2 1 if type=2 and 0 otherwise.

Type3 1 if type=3 and 0 otherwise.

The mean of model 0 may then be formulated as

Mean haemoglobin level = β1+ β2 ·Type2+ β3 ·Type3

β1 is the mean haemoglobin level in group 1 (Hb SS)

β2 is the difference in mean haemoglobin level between
group 2 and 1 (Hb Sβ versus Hb SS)

β3 is the difference in mean haemoglobin level between
group 3 and 1 (Hb SC versus Hb SS)

Comparing k independent normal samples
multiple linear regression
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Checking the multiple regression model:
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The variation of the residuals seem contant between groups.

Overall, both residual plots looks OK. (A more refined model 
check appears later.)
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In the regression model we may test the hypothesis 

H2: µ1 = µ2 = µ3

by  testing

H2: β2 = β3 = 0
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Stata: Comparing k independent normal samples
- multiple linear regression

. use haemoglob.dta, clear
(Haemoglobin level and sickle cell disease.)

. regress haemo ib1.type

Source |       SS     df       MS         Number of obs = 41
---------+---------------------------- F( 2, 38) =   50.00

Model |  99.8893064   2  49.9446532      Prob > F  =  0.0000
Residual |  37.9585029  38  .998907972      R-squared =  0.7246
---------+---------------------------- Adj R-squared =  0.7101

Total |  137.847809  40  3.44619523      Root MSE  =  .99945

---------------------------------------------------------------
haemo |  Coef.  Std. Err.     t    P>|t|  [95% Conf.Interval]

--------+------------------------------------------------------
type |

Hb Sb  | 1.9175  .4028927    4.76   0.000   1.101886  2.733114
Hb SC  | 3.5875  .3592014    9.99   0.000   2.860335  4.314665

|
_cons | 8.7125  .2498635   34.87   0.000   8.206678  9.218322

---------------------------------------------------------------
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Stata: Comparing k independent normal samples
- multiple linear regression

. test 2.type 3.type
( 1)  2.type = 0
( 2)  3.type = 0

F(  2,    38) =   50.00
Prob > F =    0.0000

. predict fit if e(sample), xb

. predict res if e(sample), res

. scatter res type

. qnorm res

Means CI low CI upp P-value

Type <0.001

HB SS 8.713 8.207 9.218

Hb Sβ - HB SS 1.918 1.102 2.733

HB SC - Hb SS 3.588 2.860 4.315

Results:
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Stata: Comparing k independent normal samples
- multiple linear regression

Note:

The mean values in the first group based on the linear 
regression analysis:

8.7125  (95% CI: 8.206678-9.218322)

If we had analyzed the first group using a one-sample 
normal analysis (Day 1) we could derive

8.7125  (95% CI: 8.262502-9.162498)

Both CI are exact.

The first CI is based on a assumption of the same variance 
in the three groups. The common variance is estimated as 
weighted estimates as in Day 2.
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Recall from Day 1: The precision of such an estimate is 
given by the degrees of freedom, df,  which in general is 
the number of observations minus the number of unknown 
parameters describing the mean.

Finding the 95% CI for σσσσ is a bit complicated, as it involves 
the upper and lower 2.5 percentile in a chi-squared 
distribution with df degrees of freedom:

The precision of an estimated standard deviation

- the 95% CI for σσσσ

( ) ( )
( ) ( )

2 20.975 0.025
ˆ ˆ

ˆ ˆ

df df

df df

l df u df

σ σ σ

σ

χ

σ σ

χ
⋅ ≤ ≤ ⋅

⋅ ≤ ≤ ⋅

df l(df) u(df)
5 0.624 2.453
10 0.699 1.755
15 0.739 1.548
20 0.765 1.444
25 0.784 1.380
50 0.837 1.243
150 0.899 1.128
200 0.911 1.109
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But in Stata you can do these calculation “by hand”.
Ex: From the linear regression had df=38 and sd = σ=
0.99945:

display 0.999450.999450.999450.99945*sqrt(38383838/invchi2(38383838,0.975))
display 0.999450.999450.999450.99945*sqrt(38383838/invchi2(38383838,0.025))

Giving CI(σ): 0.8<σ<1.3

The precision of an estimated standard deviation
- the 95% CI for σσσσ
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One-way analysis of variance

A one-way ANalysis Of VAriance (one-way ANOVA) will 
also give one test/p-value of the hypothesis:  

H2: µ1 = µ2 = µ3

It is another way of deriving the same p-value as in the 
multiple linear regression model.

The idea behind an analysis of variance is to divide the 
variation in the data, the y’s, into different sources.

In a one-way ANOVA there are two sources:
within groups and between groups

total variation=within group variation+between group variation

= +Total W BSS SS SS

( ) ( ) ( )2 2 2

, ,

− = − + ⋅ −∑ ∑ ∑ij ij i i
i j i j

i
i

y y y y n y y
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One-way analysis of variance
Two illustrations

A clear difference between the groups on the left plot!
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One-way analysis of variance

The hypothesis: H2: µ1 = µ2 = µ3 = µ4 is tested by comparing 
the scaled variations between and within groups by 
calculating:

( )
( )

( ) ( )2

2
1

1
1

ˆ

k

i
i

B

W W

in y y k
SS k

SS n k
F

σ
=

⋅ − −−
= =

−

∑

If the group averages differ much, then you will get a large 
value of F, i.e. a large F value is critical for the hypothesis.

The  p-value is found in an F-distrib. with (k-1) and (n-k) df’s.

In the two examples on the previous slide we get:

( )
( )

( )
( )

8,500 / 4 1 8,500 / 4 1

5,682 / 20 4 62,574 / 20 4
7.98 0.72Left RightF F

− −
− −

= = = =

pLeft=0.18% pRight=55%
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Stata: one way ANOVA (and Bartlett test)

. oneway haemo type

Analysis of Variance
Source           SS       df      MS          F    Prob > F

---------------------------------------------------------------
Between groups   99.8893064    2   49.9446532   50.00    0.0000
Within groups   37.9585029   38   .998907972
---------------------------------------------------------------

Total        137.847809   40   3.44619523

Bartlett's test for equal variances:  chi2(2) =   2.1251  
Prob>chi2 = 0.346

The test for equal variances will be discussed in a moment.
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Stata: one way ANOVA

Analysis of Variance
Source              SS         df      MS            F     Prob > F

-----------------------------------------------------------------------
Between groups      99.8893064      2   49.9446532     50.00     0.0000
Within groups      37.9585029     38     .9989080
-----------------------------------------------------------------------

Total           137.847809     40   3.44619523

number of groups -1 Number of obs - number of groups

number of obs -1

The F-test for the hypothesis of no difference in the means.
Here we reject the hypothesis!

2ˆWσ

SS

df
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Testing for identical standard deviations 
= Test of variance homogeneity 

On Day 2 you learned how to test the hypothesis that two 
standard deviations were identical, by an F-test.

Here we want to test that several standard deviations are 
identical:  

11 2 3:H σ σ σ= =
Several tests can do this. The best is 

Bartlett’s test for equal variances

This test is not covered by Kirkwood & Sterne and we will 
leave out the technical details.

Another valid test is Levene’s for equal variances.

Note, these tests will not focus on a special pattern in 
the deviations from the hypothesis. Hence you should 
yourself look out for the most common deviation, where 
the standard deviations increase with the means.
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Checking the model behind the one-way ANOVA

Assumptions:

1. Independence between groups and independent 
observations within each group.

2. Normal distribution within each group.

3. The same standard deviation in all the groups. 

As before 1. is checked by going through the design.

And 2. by QQ-plots within each group. Here you should look 
out for the same type of deviations from normality in all 
groups.

The last assumption can be checked by Bartlett’s test.

If the data consist of many small groups, then normality is 
best checked by a QQ-plot of the residuals.
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Haemoglobin level and sickle cell disease
Checking the model

Normality ok. 

Bartlett's test from Stata: chi2(2) = 2.1251  p= 34.6%
We can accept the hypothesis of identical standard deviations

Figure 6.2
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Haemoglobin level and sickle cell disease
Checking the model

Each of the QQ-plots on previous slide, was based on a 
relatively few observations and it is a good idea to supply 
these plots with a QQ plot of the residuals under the 
model:

ij ij ir y y= −
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Inverse Normal

This also look ok.

Figure 6.3
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Haemoglobin level and sickle cell disease - formulations

Methods
The three groups were analyzed by a one-way analysis of 
variance. Normality was checked by QQ-plots and the of 
assumption variance homogeneity by Bartlett’s test. Means and 
differences between means are given with 95% confidence 
intervals.

Results
The mean haemoglobin levels are shown in a table on the next 
slide. There was a highly significant difference between the 
groups (p<0.001). Patients suffering from type SS had mean 
haemoglobin levels 1.9(1.1;2.7) and 3.6(;2.9;4.3) lower than 
patients suffering from type Sβ and SC, respectively.  The 
mean difference between the two latter was 1.7(.8;2.5).

Conclusion
???????????????
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Type of sickle cell disease

Haemoglobin level and sickle cell disease - formulations

Estimate CI low CI upp

Means

Hb SS 8.7 8.2 9.2

HB Sβ 10.6 10.0 11.3

Hb SC 12.3 11.8 12.8

Differences

Hb Sβ - HB SS 1.9 1.1 2.7

Hb SC - HB SS 3.6 2.9 4.3

HB SC - Hb Sβ 1.7 0.8 2.5
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Model 0: Independent observations and

( )20,ii ijj iji E Ey Nµ σ= + ∼

Model 1: Independent observations and

( )20,ii Wjj iji E Ey Nµ σ= + ∼

1 21 3: WH σ σ σ σ= = =

22 1 3:H µ µ µ µ= = =

Bartlett´s test

Oneway ANOVA : F-test

An overview of the models
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A Non-parametric comparison of several groups
The Kruskal-Wallis test

In the two sample setting we could test the assumption 
of no systematic difference between the two groups by a 
Wilcoxon-Mann-Whitney rank sum test.

The rank based non-parametric test comparing k groups 
is the Kruskall–Wallis test, which is a scaled version of

( )2

1i
i

k

in R R
=

⋅ −∑

 is the average rank in group  and 

 the overall average rank. 

i iR

R

Large values are of course critical.
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Some comments to the one-way ANOVA and the Kruskal-
Wallis test

If we only have two groups, then the one-way ANOVA F-
test is equivalent to the unpaired t-test.

If we only have two groups, then Kruskal-Wallis test is 
equivalent to the Wilcoxon-Mann-Whitney test.

If there exists an ordering of the groups it will not be 
noted by either of the two methods.

E.g. the test will have low power to detect, if the groups 
consist of an increasing dose of a drug.

If this is the case one should turn to regression models.
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Multiple comparison

The multiple regression model and the one-way ANOVA F-
test (or the Kruskall-Wallis-test) supplies you with one p-
value for the hypothesis of no difference (in means) between 
the groups.

That is, the multiple regression model and the one-way 
ANOVA is only relevant in the situation where non of the 
pairwise comparisons are a priori of special interest.

In this situation both analyses prevents a fishing expedition
among the ½k(k-1) pair wise comparisons.

Remember, even if there is no difference between the k
groups, then for each pairwise t-test there is a 5% chance
of getting a ‘statistically significant result’.
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Multiple comparison

If the overall comparison the multiple regression model or 
the one-way ANOVA is significant then the pairwise 
comparison is allowed to discover the difference. 

In general, if a priori some comparisons are of special 
interest ( e.g. treatments versus control), then you should 
focus on this!!! Se an example of hierarchical testing on the 
next slide.

The multiple comparison/testing problems has had a lot of 
focus in the medical/statistical literature. It has given rise 
to many procedures/algorithms that will assure that the 
risk of type 1 error is 5%.

The most common are the Bonferroni and hierarchical 
testing.

Erik Parner Basic Biostatistics - Day 6 35

Multiple comparison

Bonferroni: K = number of tests.
Overall significance level �. 
Each test is tested on level: �*= �/K

Example. 
Pairwise comparison of three groups: 3 tests.
�*= 0.05/3=0.017

Hierarchical testing: Let H1 and H2 be two hypotheses of 
interest, for example a high and low doses of a drug 
compared to control. H1 is considered the most important 
and H2 is of interest once H1 has been rejected. The 
following hierarchical test procedure will main a overall level 
of 5%:

H1 is always tested on level �, but H2 is only tested level � if 
H1 is statistical significant. 
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Multiple comparison

Comments

The use of one-way ANOVA before all pairwise comparisons 
controls the overall significance level (familywise error 
rate, FWER) in a weak sense: the type 1 error is 5% when all 
pairwise hypothesis are true, i.e. when all means are equal.

A procedure controls the FWER in the strong sense if the 
FWER control at level 5% is guaranteed for any configuration 
of true and non-true null hypotheses (including the global null 
hypothesis).

The Bonferoni controls the FWER in the strong sense.

Hierarchical controls the FWER in the strong sense provided 
the hypothesis are ordered with respect seriousness. 
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Repeated measures

Multiple comparison issues arise often if the data consists of 
repeated measure of the same individual.

Repeated measure of continuous data are often analyzed 
using analysis of variance methods.

In some cases an analysis of a summary measure will be 
sufficient. Here we will consider one such application.
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Plasma phosphate levels in three groups of subjects
Measurements over time

Aim
Evaluate the association between hyperglycemia and relative 
hyperinsulinemia. 

Design
The plasma inorganic phosphate level was measured 0, ½, 1, 1½, 
2, 3, 4 and 5 hours after a standard-dose oral glucose 
challenge in 13 controls, 12 non-hyperinsulinemic obese and 8 
hyperinsulinemic obese persons.

Comments
This is a repeated measurements design with 8 measurements 
on each subject. 
A full analysis of such a design is outside the scope of the 
course, but it can to some extend be handled by what we know.
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Plasma phosphate levels in three groups of subjects

Always plot the data !
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Plasma phosphate levels in three groups of subjects

One (and often the best) way to analyze curves like these is 
to summarize the curve for each subject into a single 
observation – a summary measure.

The choice of the summary measure should of course be 
based on the prior knowledge and focus of the study.

The summary measure should be decided before looking at 
the data.

There are of course many options: the average phosphate 
level, minimum, the maximum, the area under the curve (=the 
time averaged mean), the slope after fitting a line, etc.

Sometimes you might calculate two or three summary
measures for each subject.

Here we look at increase = level at 5 hours – minimum level
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Plasma phosphate levels in three groups of subjects

increase = level at 5 hours – minimum level 

In the three groups:

These data can now be analyzed as three independent 
normal samples.
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Estimate CI low CI upp

Means

Controls(n=13) 1.60 1.37 1.83

Non-hyp. obese(n=12) 1.07 0.83 1.30

Hyp. obese(n=8) 0.86 0.57 1.15

Differences

Hyp. obese - controls -0.74 -1.11 -0.37

Hyp. - non-hyp obese -0.20 -0.58 0.17

Non-hyp. obese - controls -0.53 -0.86 -0.21

one-way ANOVA F(2,30)=9.89 p=0.0005

Plasma phosphate levels in three groups of subjects

Conclusion
???
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Plasma phosphate levels in three groups of subjects
checking the model

| Summary of phosphate 8 hours - min
group |        Mean   Std. Dev.       Freq.

------------+------------------------------------
control |         1.6   .33416564          13

non hyp.  |   1.0666667   .37497474          12
hyp. obe |       .8625   .52627396           8

------------+------------------------------------
Bartlett's test:  chi2(2) =   1.9618  p = 0.375

No serious differences 
between the standard 
deviations.
QQ-plot of the residuals 
looks ok.


