

PhD course in Basic Biostatistics - Day 5

Erik Parner, Department of Biostatistics, Aarhus University©

Regression models in general

The simple linear regression

Lung function (PEFR) and height

The model, estimation, inference

Changing the reference height

Checking the model: predicted values and residuals

Point wise confidence and prediction intervals

Comparing two groups after adjustment for a covariate

Sex difference in PEFR

Correlations

The Pearson correlation

The Spearman rank correlation

Why you should not use correlation in the comparison of measurement methods

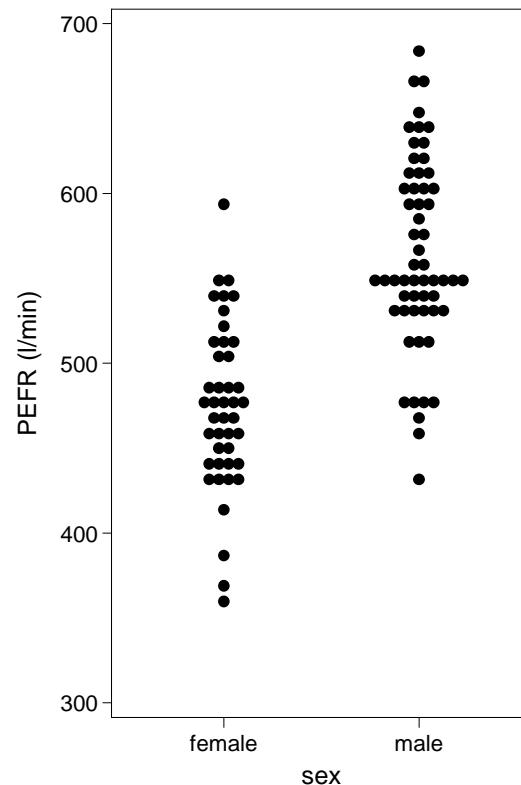
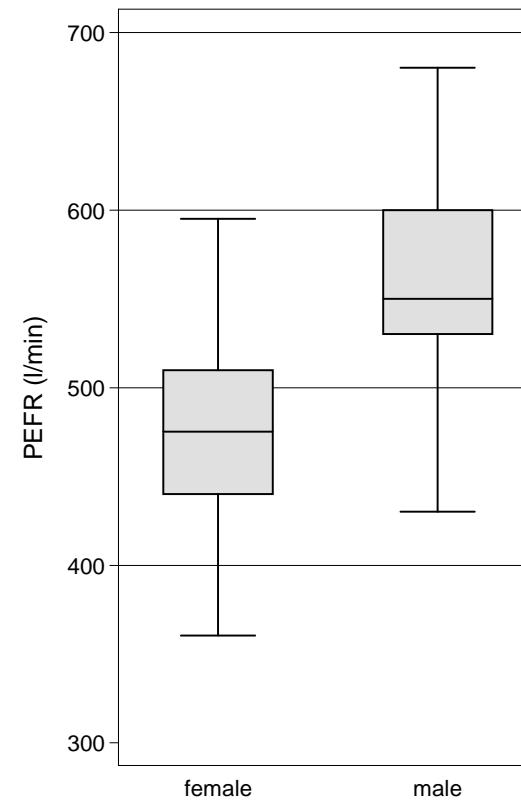
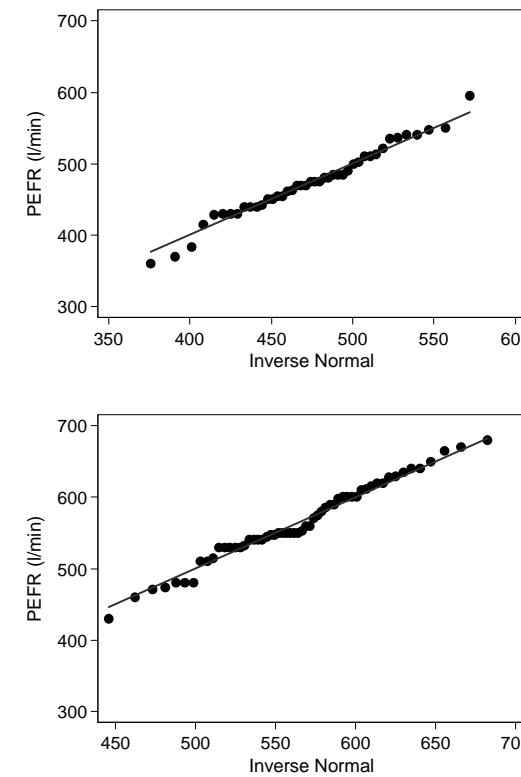
Overview

Data to analyse	Type of analysis	Unpaired/Paired	Type	Day
Continuous	One sample mean	Irrelevant	Parametric	Day 1
			Nonparametric	Day 3
	Two sample mean	Non-paired	Parametric	Day 2
			Nonparametric	Day 2
		Paired	Parametric	Day 3
			Nonparametric	Day 3
			Non-paired	Parametric
	Several means	Non-paired	Parametric	Day 6
			Nonparametric	Day 6
Binary	One sample mean	Irrelevant	Parametric	Day 4
	Two sample mean	Non-paired	Parametric	Day 4
		Paired	Parametric	Day 4
	Regression	Non-paired	Parametric	Day 7
Time to event	One sample: Cumulative risk	Irrelevant	Nonparametric	Day 8
	Regression: Rate/hazard ratio	Non-paired	Semi-parametric	Day 8

Correlation is seen as a topic associated with regression.

Lung function men and women (Example 4 later)

Question: How does the *PEFR* differ for men and women ?



Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf. Interval]
female	43	474.0698	7.4829	49.0687	458.9687 489.171
male	57	564.2807	7.4236	56.0471	549.4094 579.152
diff		-90.21093	10.73949		-111.5231 -68.89877

Example: Lung function men and women

Question: How does the *PEFR* differ for men and women?

First answer:

The mean lung function among men is **90(69;112)l/min** larger than among women!

BUT:

We know that PEFR depends on height and that men are higher than women (in average).

How much of the above difference can be explained by this?

How large is the "height adjusted" difference in *PEFR*?

In the regression model we aim at comparing men and women with the same height (adjusting for height).

Regression in general

A regression model can be many things!

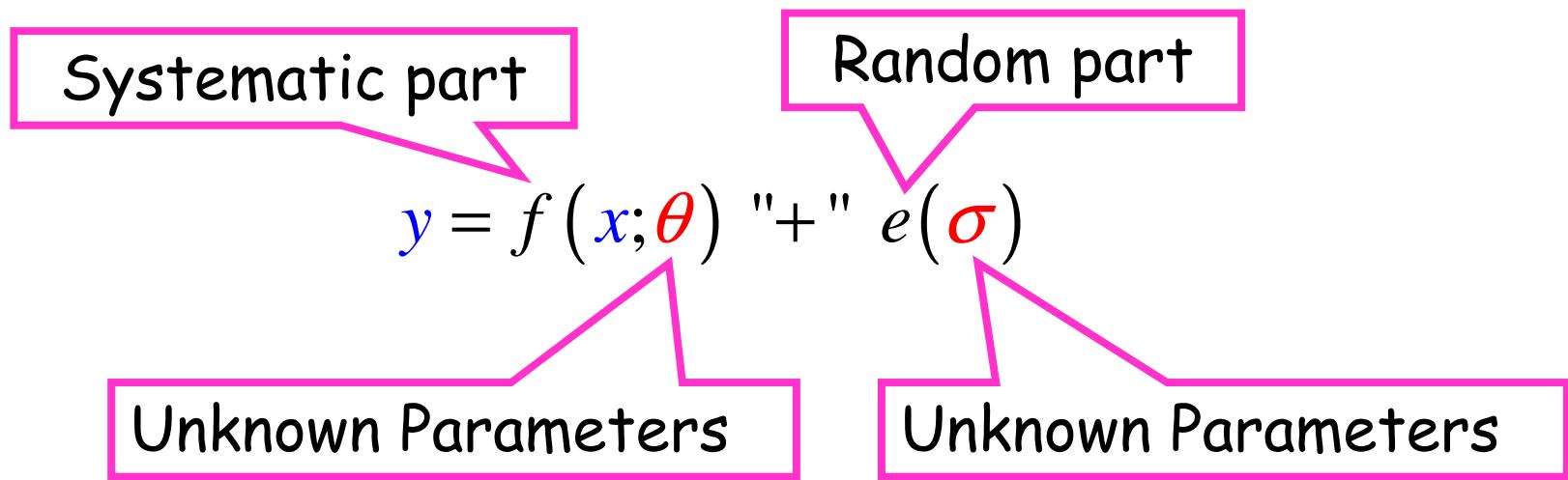
In general it models the relationship between:

y : dependent/response

and a set of

x 's: independent/explanatory variables.

The dependent variable is modelled as a function of the independent variable plus some unexplained random variation:



Regression in general

$$y = f(x; \theta) + e(\sigma)$$

Some examples:

$$pefr = \beta_0 + \beta_1 \cdot \text{height} + E$$

$$pefr = \beta_0 + \beta_1 \cdot \text{height} + \beta_2 \cdot \text{height}^2 + E$$

$$\text{and } E \sim N(0, \sigma^2)$$

$$gfr = \exp(\beta_0 + \beta_1 \cdot \ln[\text{Cr}]) + E$$

$$conc(t) = dose \cdot V \cdot \left[\exp(-\lambda_{abs} \cdot t) - \exp(-\lambda_{eli} \cdot t) \right] + E$$

The first two are linear regressions, the last two non-linear.

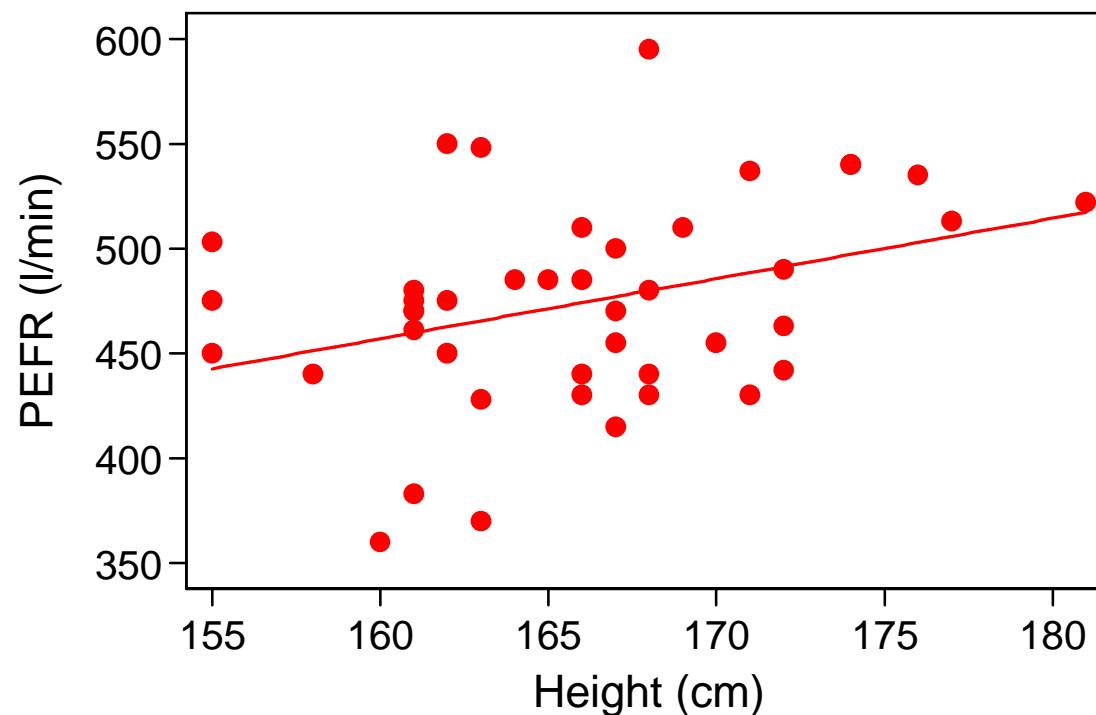
In this course we will focus on the linear regressions.

Example: lung function and height

Purpose: Describe the association between lung function and height among young women:

Data: *PEFR* (l/min) and *height* (cm) for 43 female medical students.

Figure 5.1



A model: $PEFR = \text{line} + \text{some random variation}$
seems to be valid.

Simple linear regression: The model

Let $PEFR_i$ and $height_i$ be the data for the i th woman.

$$PEFR_i = \beta_0 + \beta_1 \cdot height_i + E_i \quad E_i \sim N(0, \sigma^2)$$

This model is based on the assumptions:

1. The **expected** value of $PEFR$ is a **linear function** of $height$.
2. The **unexplained** random deviations are **independent**.
3. The **unexplained** random deviations have the **same distributions**.
4. This distribution is **normal**.

Simple linear regression: The parameters

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + E_i \quad E_i \sim N(0, \sigma^2)$$

The model have three unknown parameters:

1. The intercept β_0
2. The slope (or regression coefficient) β_1
3. The residual variance σ^2 or residual standard deviation σ .

The interpretation of the parameters:

β_0 is expected $PEFR$ of a woman with $\text{height}=0$.

Obviously, this does not make sense.

We will later look at how one can get a meaningful estimate of the general level of $PEFR$!

Simple linear regression: The parameters

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + E_i \quad E_i \sim N(0, \sigma^2)$$

β_1 is the **expected difference** in $PEFR$ for two women, who differ with **one unit** (here cm) in $height$.

If a woman is 6 cm higher than another, then we will expect that her $PEFR$ is $6\beta_1$ higher than the other.

σ is best understood by the fact that a **95%-prediction** interval around the line is given by $\pm 1.96\sigma$.

Simple linear regression: The estimates (by hand)

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + E_i \quad E_i \sim N(0, \sigma^2)$$

Estimates of the parameters are found by the method of least square, which, for this model, is equivalent to the maximum likelihood method.

The estimates are found using a computer program. Explicit formulas for both the estimates and their standard errors exists.

Simple linear regression: Confidence intervals

Approx. 95% CI for β_1 : $\hat{\beta}_1 \pm 1.96 \cdot \text{se}(\hat{\beta}_1)$

Approx. 95% CI for β_0 : $\hat{\beta}_0 \pm 1.96 \cdot \text{se}(\hat{\beta}_0)$

Exact 95% confidence intervals, CI's, for β_0 and β_1 are found from the estimates and standard errors

95% CI for β_1 : $\hat{\beta}_1 \pm t_{n-2}^{0.975} \cdot \text{se}(\hat{\beta}_1)$

95% CI for β_0 : $\hat{\beta}_0 \pm t_{n-2}^{0.975} \cdot \text{se}(\hat{\beta}_0)$

Where $t_{n-2}^{0.975}$ is the upper 97.5 percentile in the t-distribution $n-2$ degrees of freedom.

These confidence intervals are found in the output.

Simple linear regression: test

As usual we can perform a test of hypothesis of the type:

Hypothesis: $\beta_i = \beta_i^0$
by calculating $z_{obs} = \frac{\hat{\beta}_i - \beta_i^0}{se(\hat{\beta}_i)}$

The p-value is found by checking a t-distribution $n-2$ degrees of freedom.

$$p = 2 \cdot \Pr(t(n-2) \geq |z_{obs}|)$$

You will find tests for

$\beta_1 = 0$, i.e. y is independent of x

and

$\beta_0 = 0$, i.e. the line goes through $(0, 0)$
in the regression output.

Stata: Simple linear regression

```
regress PEFR height if sex==1
```

Source	SS	df	MS	Number of obs = 43					
Model	12116.1257	1	12116.1257	F(1, 41) = 5.58					
Residual	89008.665	41	2170.94305	Prob > F = 0.0230					
Total	101124.791	42	2407.73311	R-squared = 0.1198					
pefr		Coef.	Std. Err.	t	P> t	Adj R-squared = 0.0983			
height	2.871025		1.215288	2.36	0.023	Root MSE = 46.593			
_cons	-2.38683		201.8064	-0.01	0.991	[95% Conf. Interval]			
						.4167005	5.325349		
						-409.9432	405.1696		

Diagram illustrating the components of the regression output:

- $\hat{\beta}_1$ and $\hat{\beta}_0$ are labeled near the coefficients in the second table.
- $\hat{\sigma}^2$ is labeled near the standard errors in the second table.
- A box labeled "Standard errors" is connected to the "Std. Err." column of the second table.
- A box labeled "95% confidence intervals" is connected to the "[95% Conf. Interval]" row of the second table.
- A box labeled "n: Always check this" is connected to the "Number of obs = 43" row.

The example: Summarising

$$PEFR_i = \beta_0 + \beta_1 \cdot height_i + E_i \quad E_i \sim N(0, \sigma^2)$$

The estimates: β_1 : **2.87** (0.42;5.33) l/min/cm

β_0 : **-2.39** (-410;405) l/min

σ : **46.6** l/min

The difference in mean PEFR between two women who differ one cm in height is in interval from **0.42** to **5.33** l/min - the best guess is **2.87** l/min.

The mean PEFR for a woman who is 0 cm is in the interval **-410** to **405** l/min - the best guess is **-2.39** l/min.

A 95% prediction interval is given as **±91** l/min.

Stata: changing the intercept

$$PEFR_i = \beta_0 + \beta_1 \cdot (height_i - 170) + E_i \quad E_i \sim N(0, \sigma^2)$$

Let us fit the model with a meaningful intercept/constant:

```
generate height170=height-170
regress PEFR height170 if sex==1
```

Source	SS	df	MS	Number of obs	=	43
Model	12116.1257	1	12116.1257	F(1, 41)	=	5.58
Residual	89008.665	41	2170.94305	Prob > F	=	0.0230
				R-squared	=	0.1198
Total	101124.791	42	2407.73311	Adj R-squared	=	0.098
				Root MSE	=	46.593
PEFR	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
height170	2.871025	1.215288	2.36	0.023	.4167005	5.325349
_cons	485.6874	8.641215	56.21	0.000	468.2361	503.1387

Nothing is changed except this

The expected PEFR for a woman with height = 170cm is:

486 (468;503) l/min

Predicted values and residuals

$$Y_i = \beta_0 + \beta_1 \cdot x_i + E_i \quad E_i \sim N(0, \sigma^2)$$

Based on the estimates we can calculate the **predicted** (fitted) values and the **residuals**:

Predicted value: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_i$

Residual: $r_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 \cdot x_i)$

The **predicted value** is the best guess of y_i (based on the estimates) for the i th person.

The **residual** is a guess of E_i (based on the estimates) for the i th person.

```
predict fitfemale if e(sample),xb  
predict resfemale if e(sample),resid
```

Checking the model: Independent errors ?

Assumption no. 2: *the errors should be independent*, is mainly checked by considering how the data was collected.

The assumption is violated if

- some of the persons are **relatives** (and some are not) and the dependent variable has some **genetic** component.
- some of the persons were **measured** using one instrument and others using another.
- in general if the persons were sampled in **clusters**.

Checking the model: Linearity and identical distributed errors

Assumption no. 1:

The expected value of Y is a linear function of x .

Assumption no. 3:

The unexplained random deviations have the same distributions.

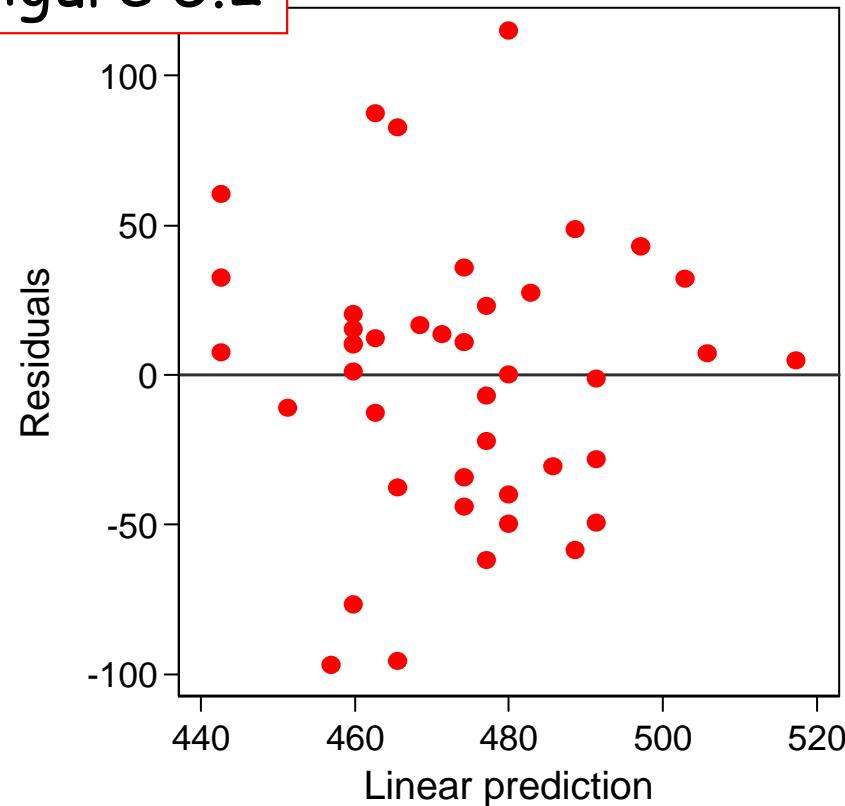
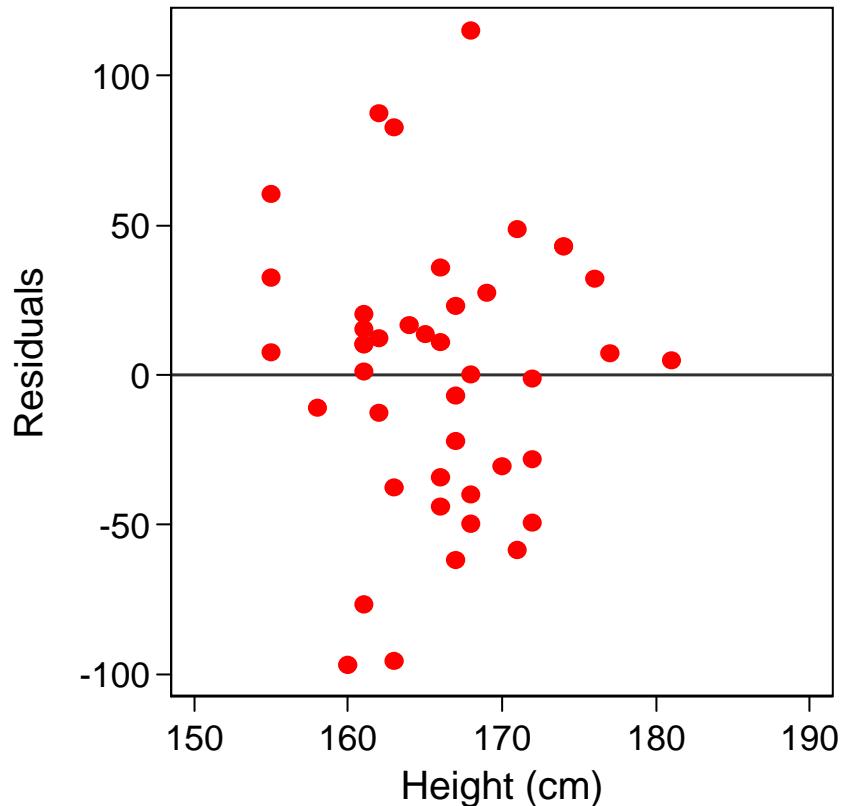
These are checked by inspecting the following plots of:

- Residuals versus predicted
- Residuals versus x

Stata: Checking the model: Linearity and identical distributed errors

```
predict fitfemale if e(sample),xb  
predict resfemale if e(sample),resid  
scatter resfemale fitfemale  
scatter resfemale height
```

Figure 5.2

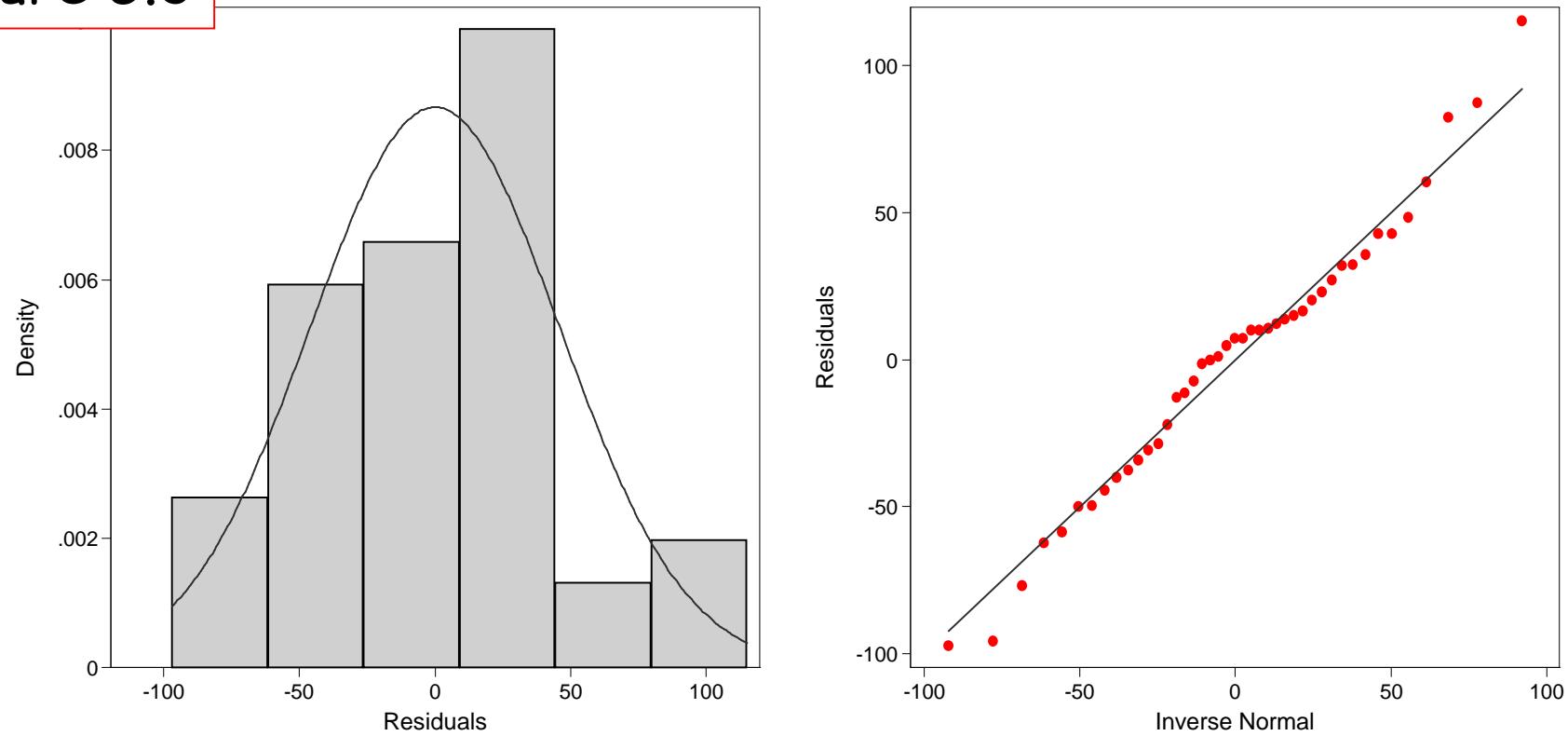


Stata: Checking the normality of errors

Assumption no. 4: the errors should be *normal* distributed.
This is checked by making QQ-plots and histograms of the residuals.

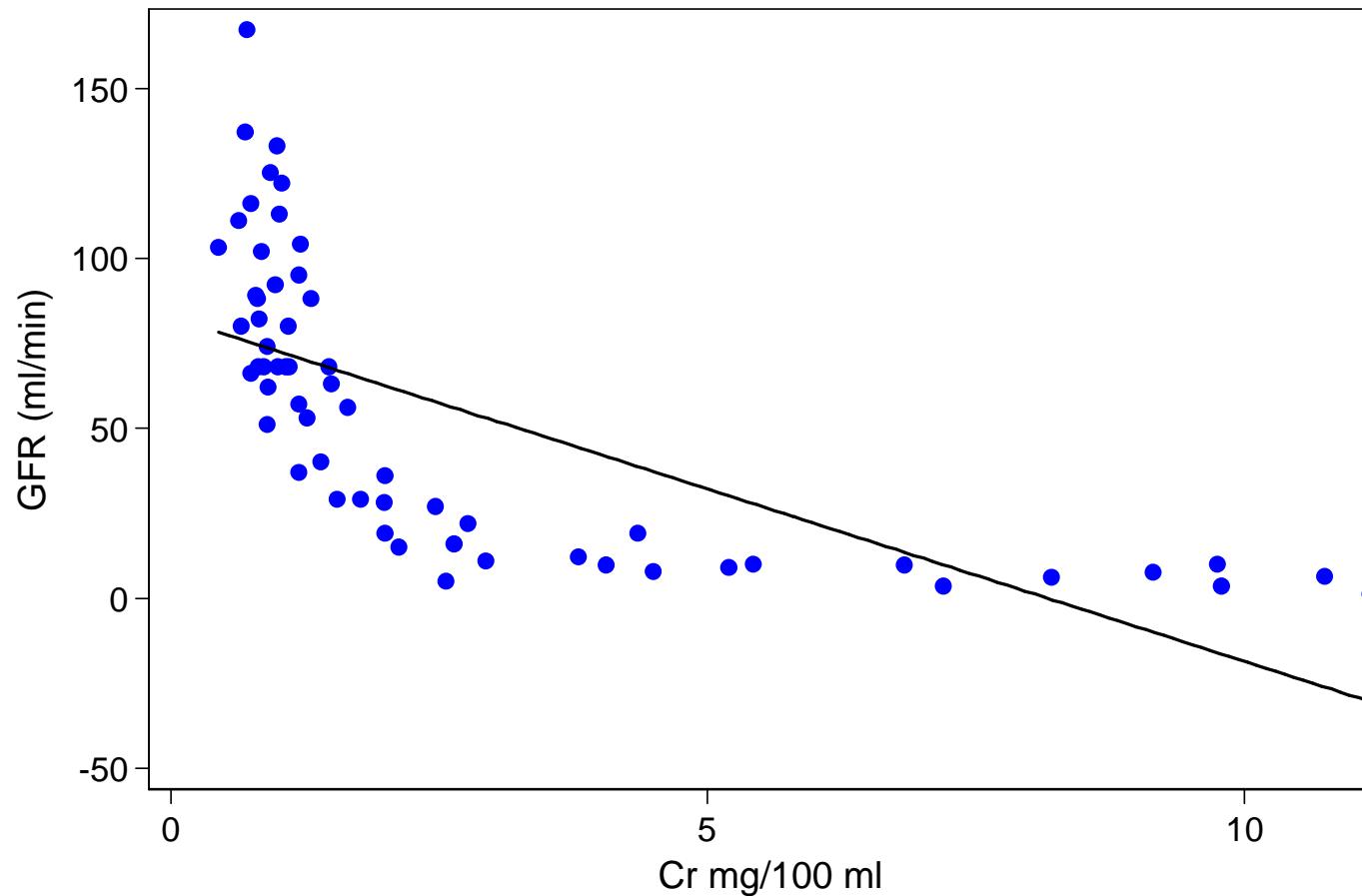
```
qnorm resfemale
```

Figure 5.3



Assumptions violated: Example 2

The relation between GFR and Serum Creatinine

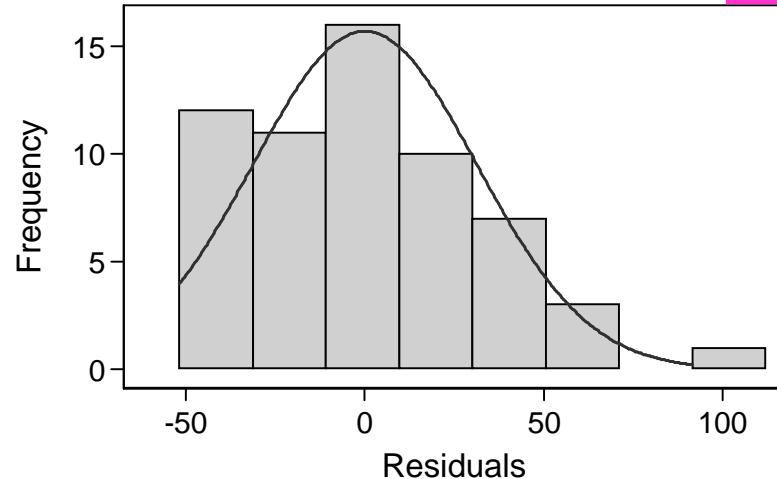
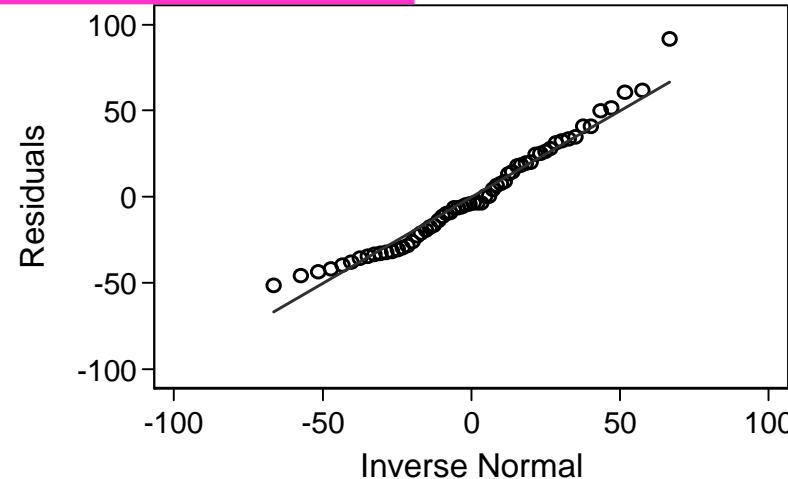
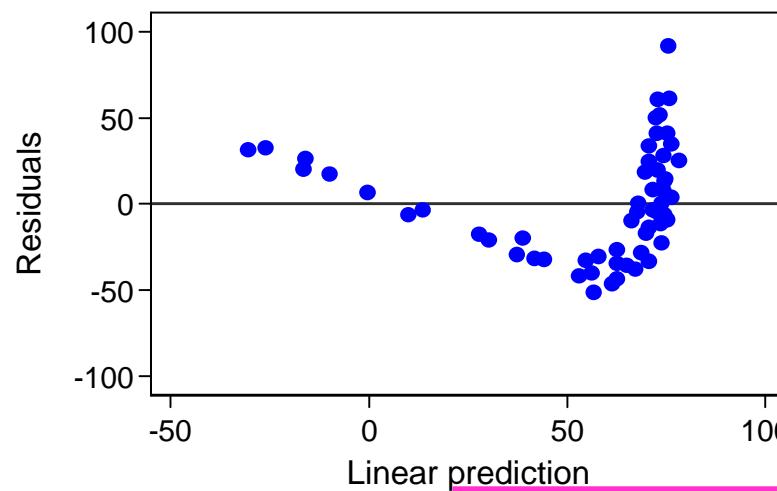
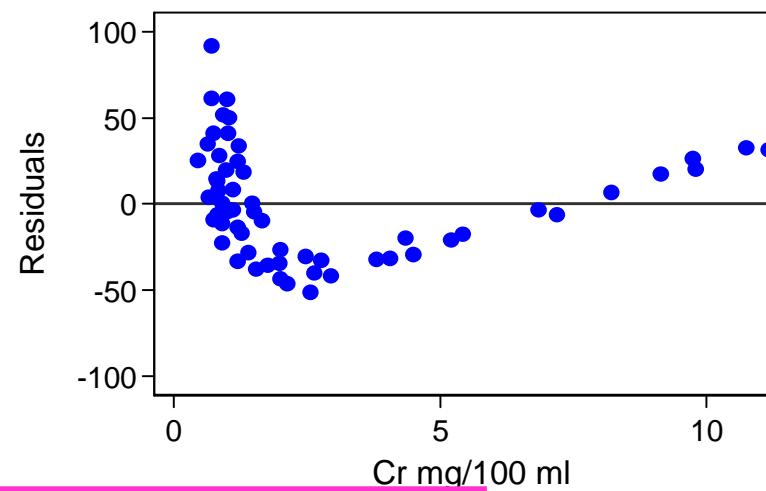


Clearly non-linear!

Assumptions violated: Example 2

Checking the model

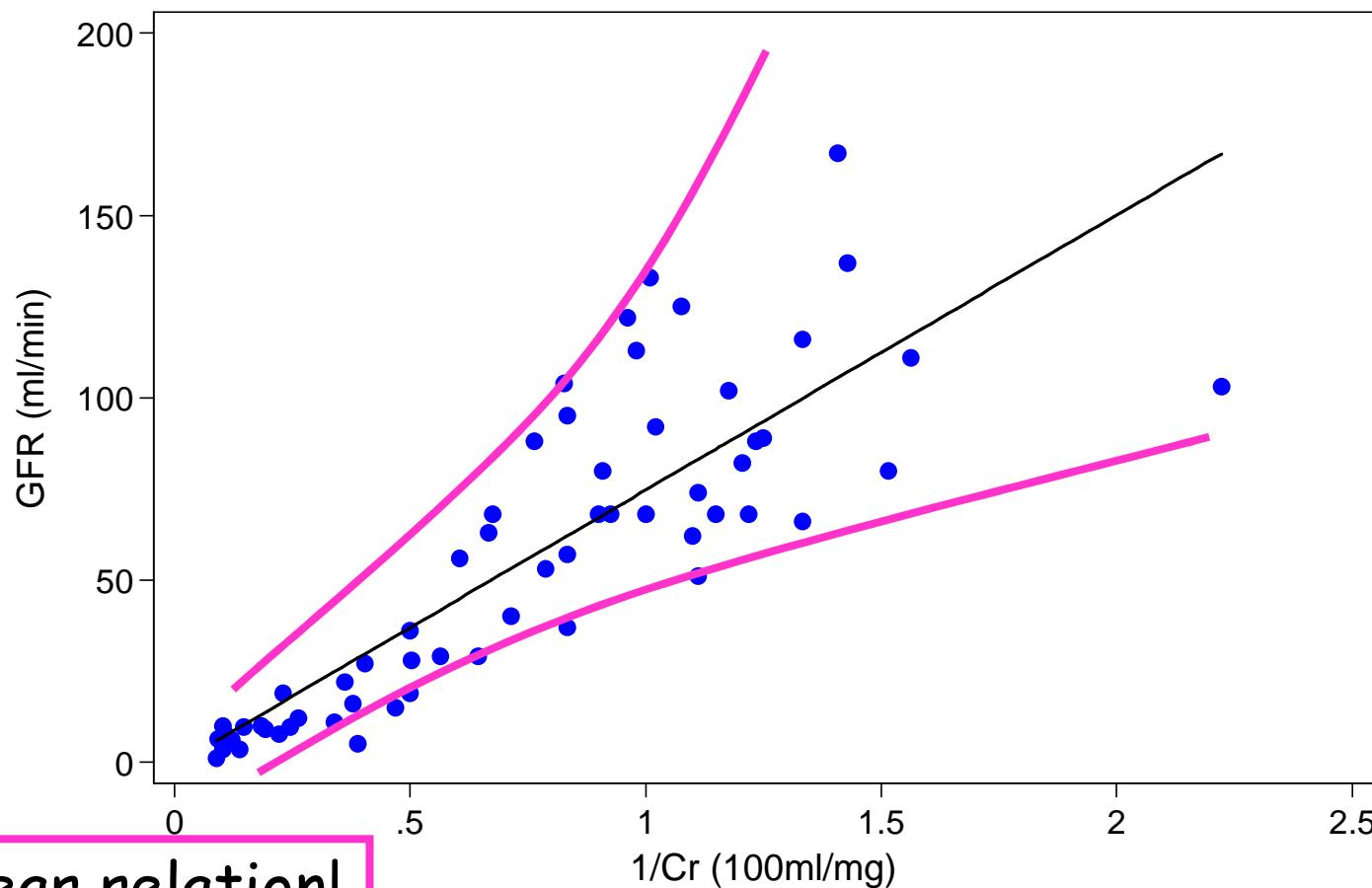
Close to normal



Clearly not constant mean!

Assumptions violated: Example 3

The relation between GFR and 1/Serum Creatinine



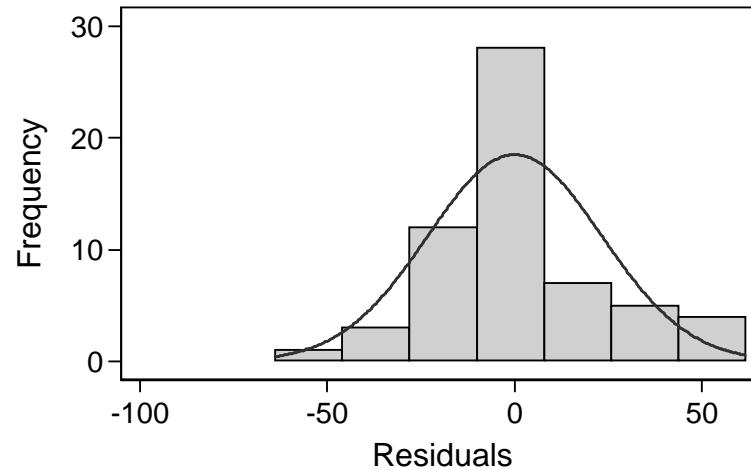
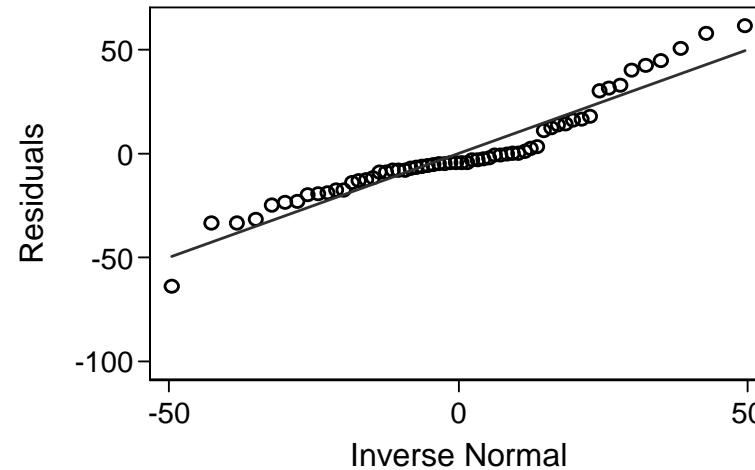
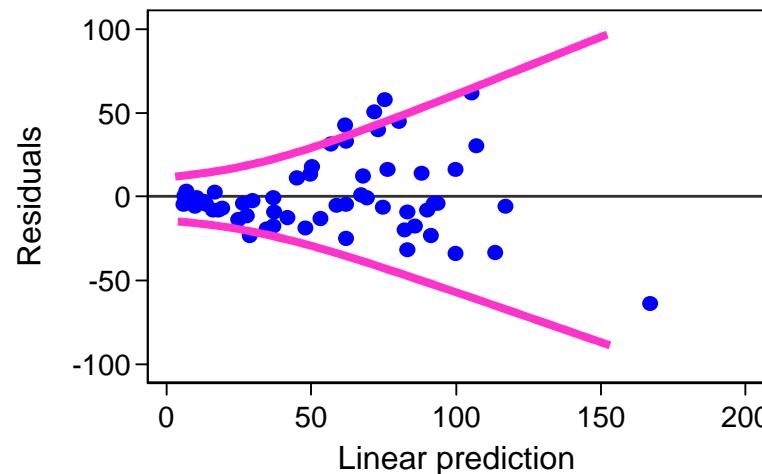
A linear relation!

Increasing variation!

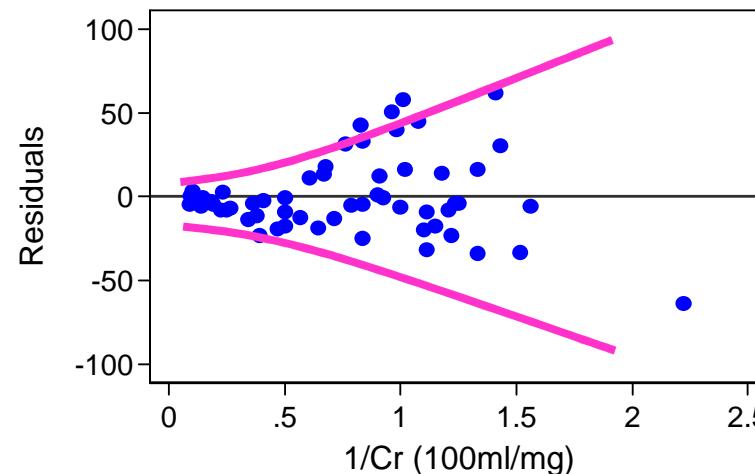
Assumptions violated: Example 3

Checking the model

Close to normal



Increasing variation!



Increasing variation!

Confidence interval for the estimated line

The true line is given as :

$$y = \beta_0 + \beta_1 \cdot x$$

and estimated by plugging in the estimates

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$$

The standard error of this estimate is given by:

$$\text{se}(\hat{\beta}_0 + \hat{\beta}_1 \cdot x) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

with the 95% (pointwise) confidence interval

$$\hat{\beta}_0 + \hat{\beta}_1 \cdot x \pm t_{n-2}^{0.975} \cdot \text{se}(\hat{\beta}_0 + \hat{\beta}_1 \cdot x)$$

Many programs can make a plot with the fitted line and its confidence limits.

In Stata its done by the `lfitci` graph command.

Prediction interval for future value

The true line is given as :

$$y = \beta_0 + \beta_1 \cdot x$$

and estimated by plugging in the estimates

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$$

The standard deviation for a new observation is given by:

$$sd(\hat{\beta}_0 + \hat{\beta}_1 \cdot x + E) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum (x_i - \bar{x})^2}}$$

with the 95% (pointwise) prediction interval

$$\hat{\beta}_0 + \hat{\beta}_1 \cdot x \pm t_{n-2}^{0.975} \cdot sd(\hat{\beta}_0 + \hat{\beta}_1 \cdot x + E)$$

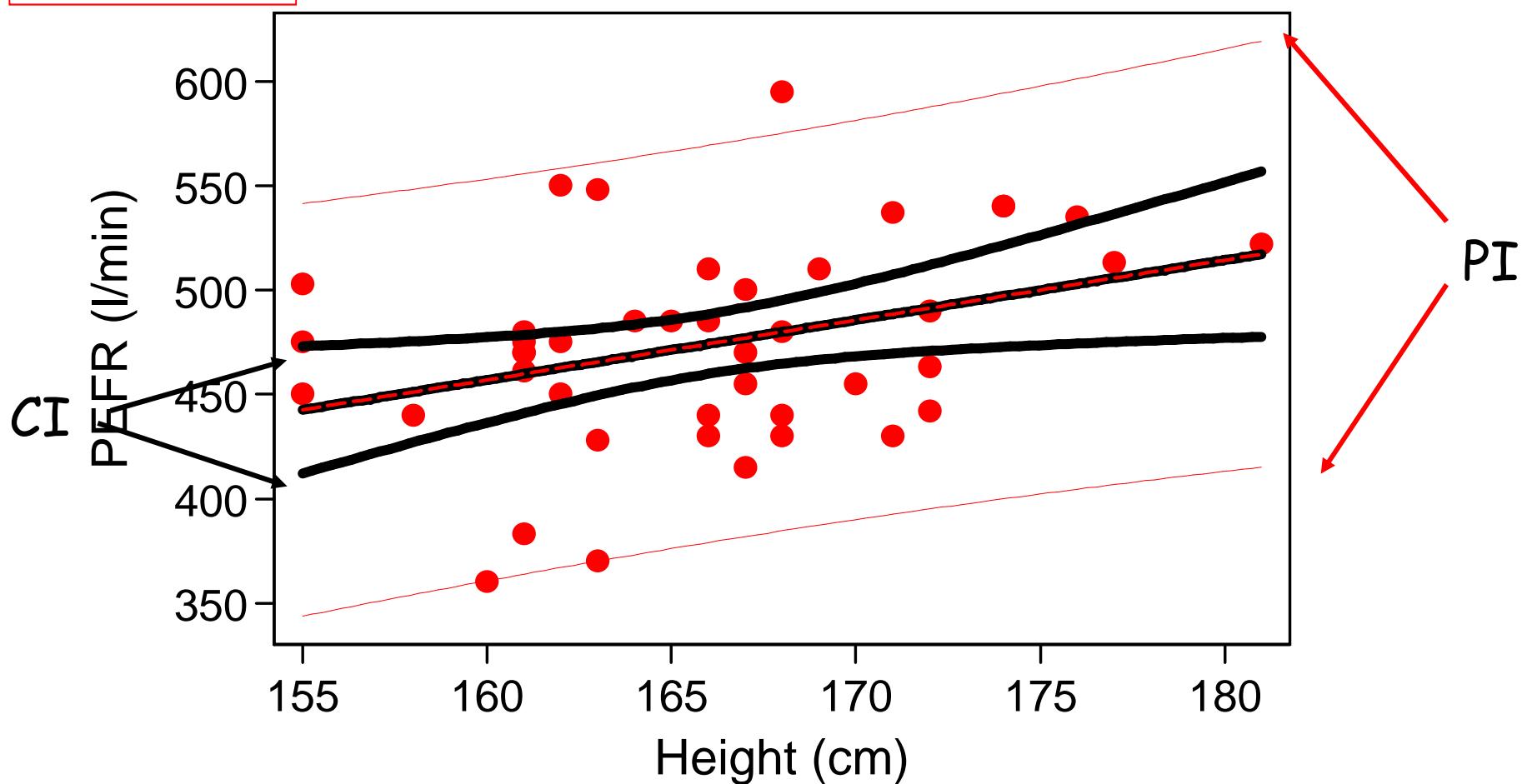
Many programs can make a plot with the fitted line and its prediction limits.

In Stata its done by the `lfitci` and `graph` command, the option `stdf`

Stata: graph confidence and prediction intervals

```
twoway (scatter PEFR height if sex==1) ///
(lfitci PEFR height if sex==1) ///
(lfitci PEFR height if sex==1, stdf)
```

Figure 5.4



Example 4: Lung function men and women

Question: How does the *PEFR* differ for men and women ?

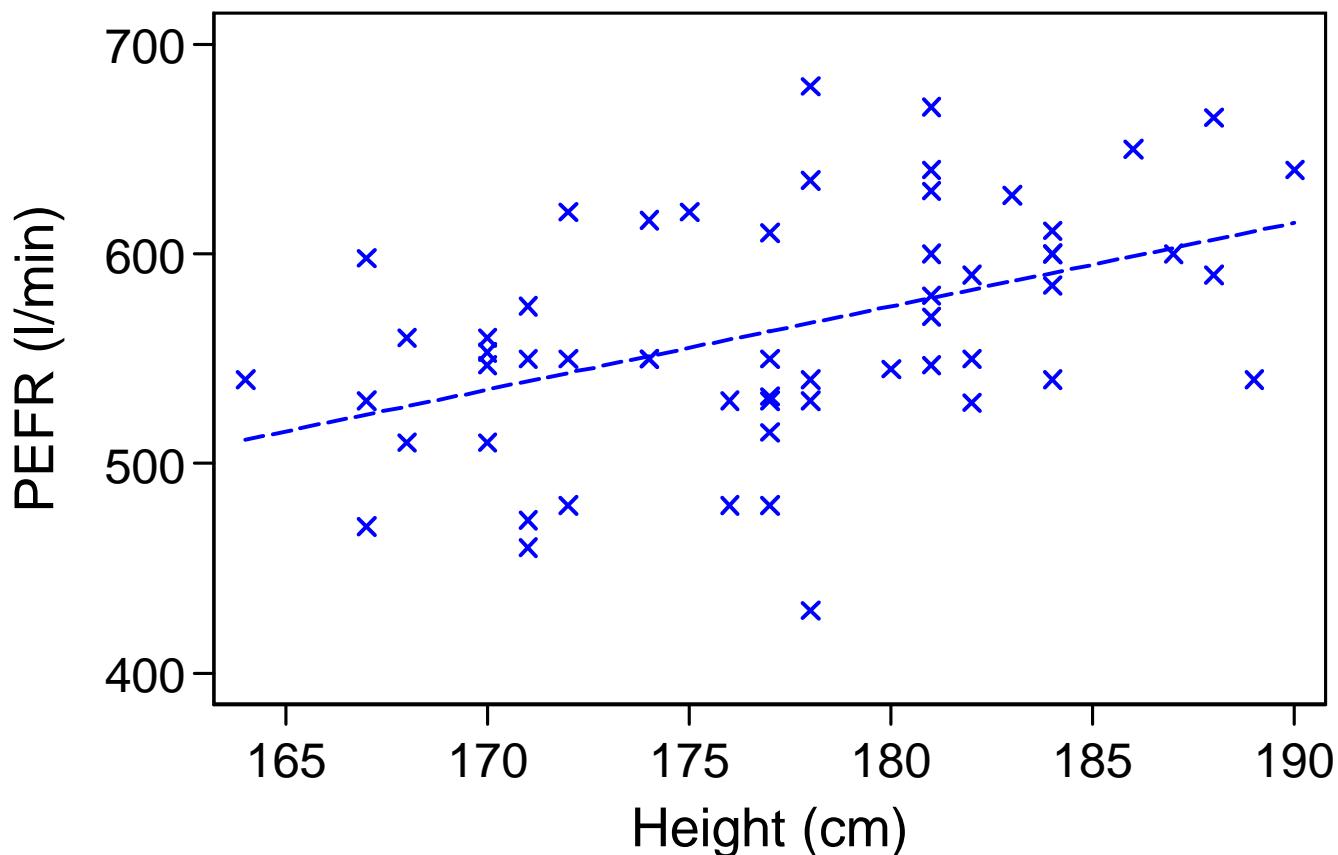
We know that PEFR depends on height and that men are higher than women (in average).

How much of the above difference can be explained by this ?
How large is the "height adjusted" difference in *PEFR* ?

Note, we can only adjust for height, if the *PEFR - height* relationship is the same for men and women.

Let us first fit a linear regression to the data for men.

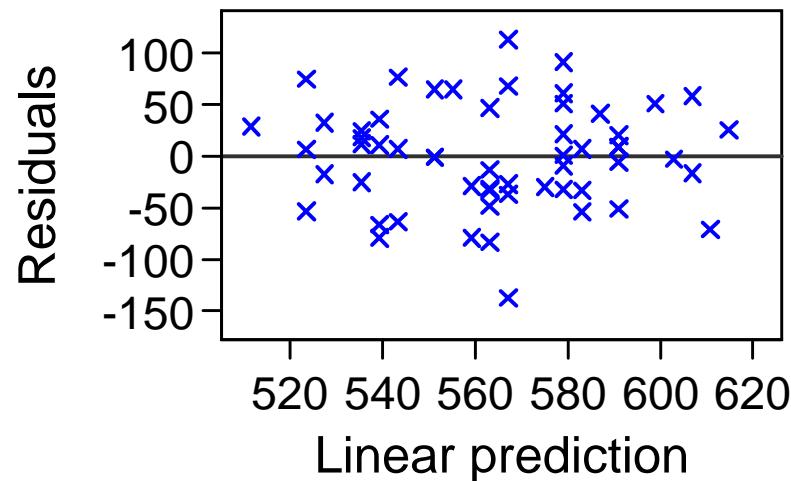
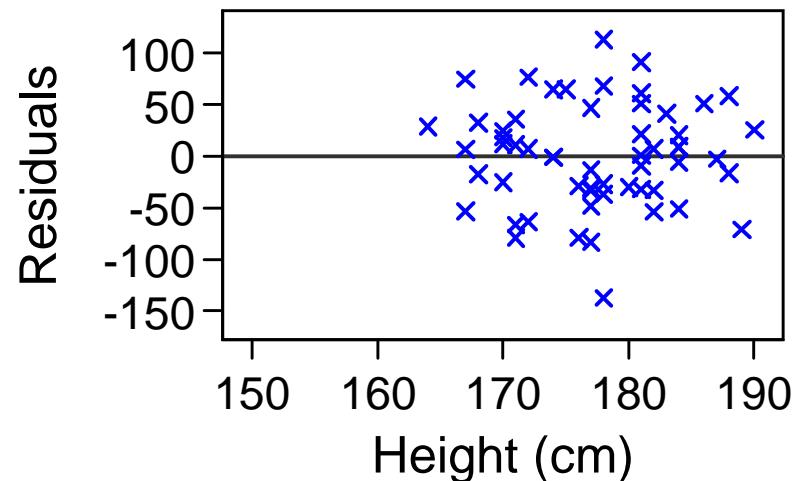
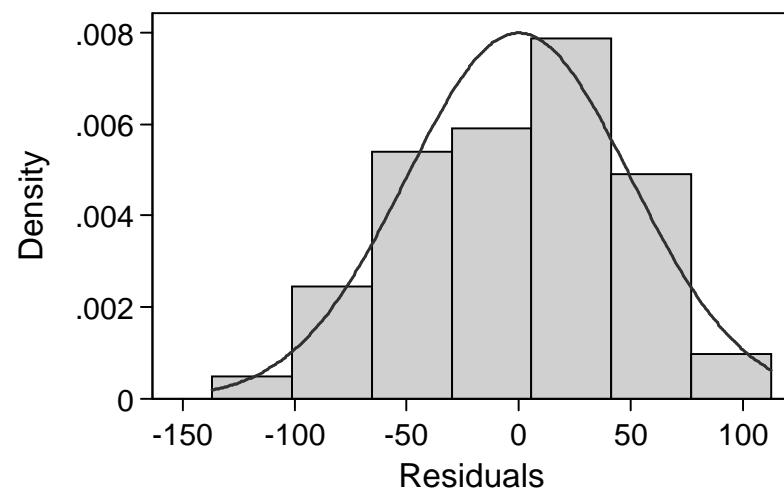
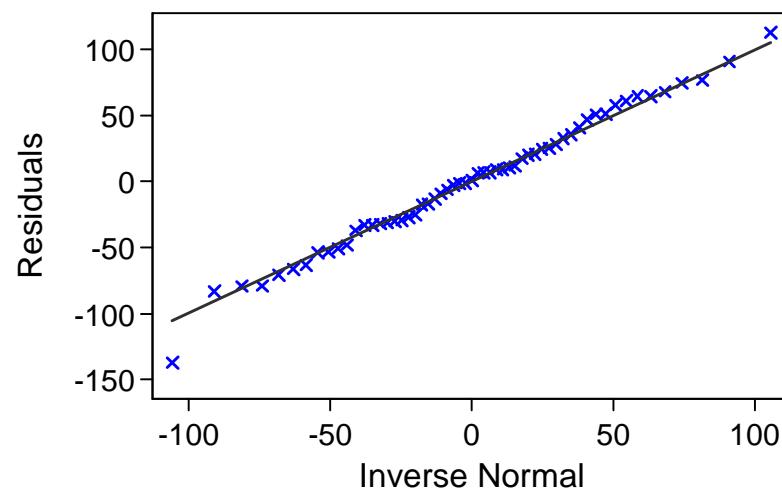
PEFR and height among males



Root MSE = 50.4

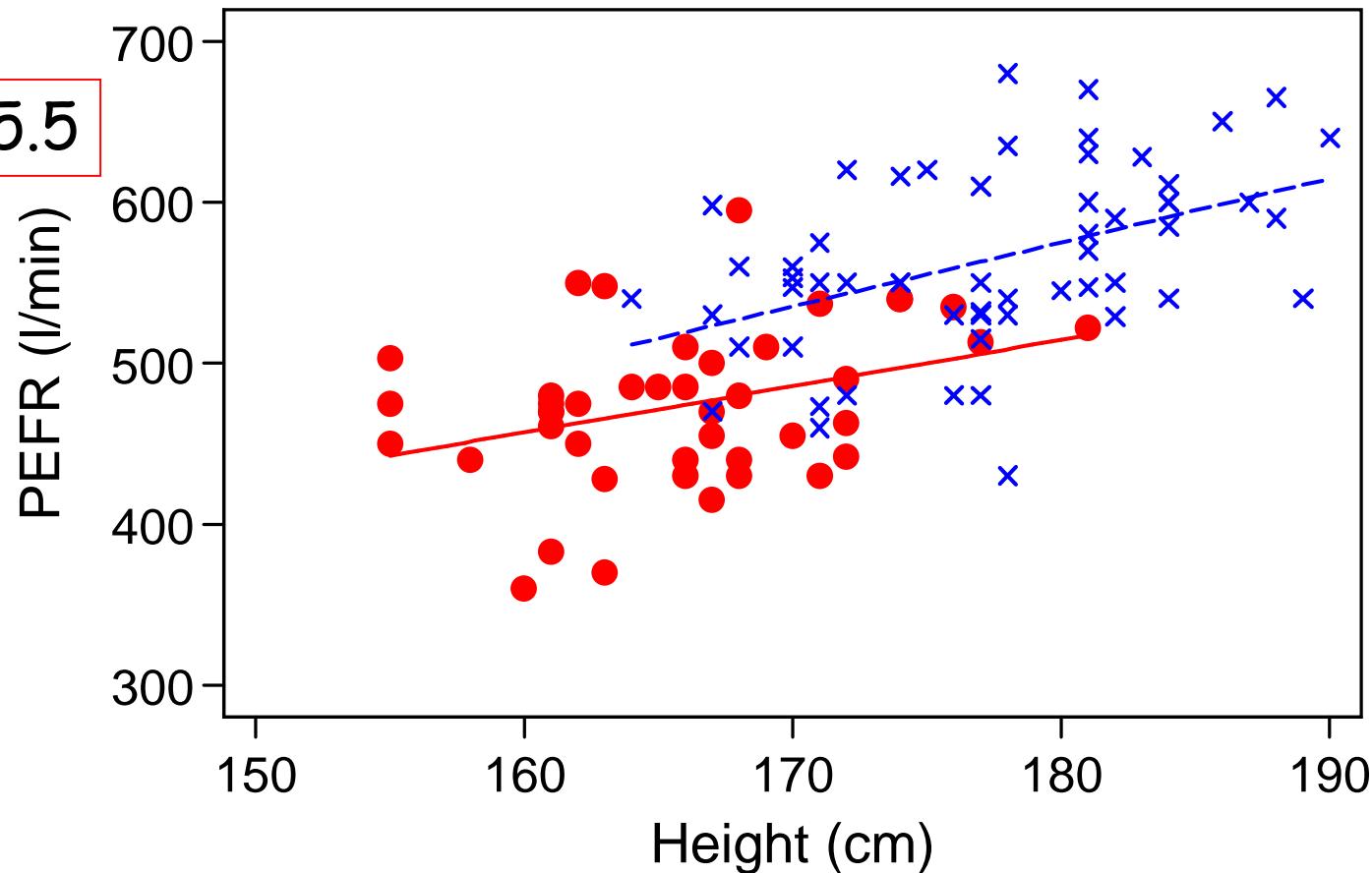
	PEFR	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
height170	3.974479	1.052755	3.78	0.000	1.864712	6.084247	
_cons	535.274	10.17822	52.59	0.000	514.8764	555.6716	

PEFR and height among males: model check



Model ok

Figure 5.5



Summarising results for males and females:

Model 1	Slope (height per cm)				PEFR at 170 cm				SD
Two lines	est	se	lower	upper	est	se	lower	upper	est
Males	3.97	1.05	1.86	6.08	535	10.2	515	556	50.4
Females	2.87	1.22	0.42	5.33	486	8.6	468	503	46.6

Model 1	Slope (height per cm)				PEFR at 170 cm				SD
Two lines	est	se	lower	upper	est	se	lower	upper	est
Males	3.97	1.05	1.86	6.08	535	10.2	515	556	50.4
Females	2.87	1.22	0.42	5.33	486	8.6	468	503	46.6

Here we will focus on the **slopes** and the **intercepts** (PEFR at 170 cm) and **assume** that the size of the unexplained variation is the same for the two sexes, i.e. **identical SD's**. Under this additional assumption we have **Model 2**:

$$PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot \text{height}_i + E_i & \text{female} \\ \alpha_0 + \alpha_1 \cdot \text{height}_i + E_i & \text{males} \end{cases} \quad E_i \sim N(0, \sigma^2)$$

Model 2	Slope (height per cm)				PEFR at 170 cm				SD	
Same SD	est	se	lower	upper	est	se	lower	upper	est	
Males	α	3.97	1.02	1.95	6.00	535	9.9	516	555	48.8
Females	β	2.87	1.27	0.34	5.40	486	9.1	468	504	

Only the standard errors, CI's and the SD changed.

$$PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot \text{height}_i + E_i & \text{female} \\ \alpha_0 + \alpha_1 \cdot \text{height}_i + E_i & \text{males} \end{cases}$$

If we let $\delta_0 = \alpha_0 - \beta_0$ and $\delta_1 = \alpha_1 - \beta_1$ then we can write the model

$$PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot \text{height}_i + E_i & \text{female} \\ (\beta_0 + \delta_0) + (\beta_1 + \delta_1) \cdot \text{height}_i + E_i & \text{males} \end{cases}$$

Model 2		Slope (height per cm)				PEFR at 170 cm				SD
Same SD		est	se	lower	upper	est	se	lower	upper	est
Males	α	3.97	1.02	1.95	6.00	535	9.9	516	555	
Females	β	2.87	1.27	0.34	5.40	486	9.1	468	504	48.8
Differens	δ	1.10	1.63	-2.13	4.34	49.6	13.4	23.0	76.2	

The standard errors are based on complicated formulas
- the computer does it for you.

$$PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot \text{height}_i + E_i & \text{female} \\ (\beta_0 + \delta_0) + (\beta_1 + \delta_1) \cdot \text{height}_i + E_i & \text{males} \end{cases}$$

The same $PEFR$ - $height$ relationship for male and females corresponds to $\delta_1 = 0$.

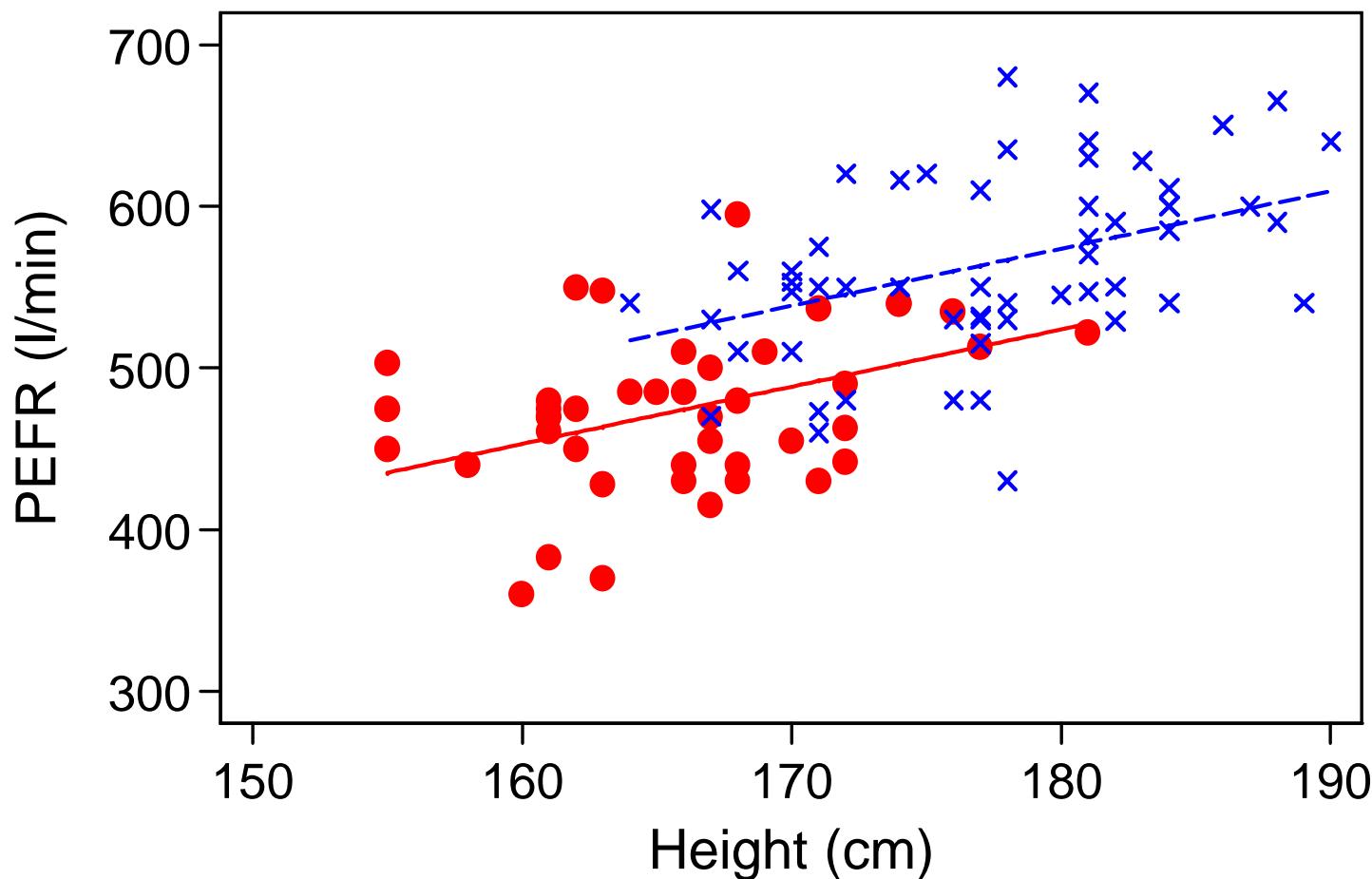
We have the estimate 1.10 (-2.13;4.34)

The confidence interval says this can be accepted (pval=0.55).

Model 3 $PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot \text{height}_i + E_i & \text{female} \\ (\beta_0 + \delta_0) + \beta_1 \cdot \text{height}_i + E_i & \text{males} \end{cases}$

Model 3	Slope (height per cm)				PEFR at 170 cm				SD
	est	se	lower	upper	est	se	lower	upper	
Males	3.54	0.79	1.97	5.12	538	8.7	521	556	
Females					488	8.1	472	504	48.7
Differens	0.00				50.0	13.3	23.6	76.5	

Model 3: two parallel lines



Note:

parallel lines \Leftrightarrow identical slopes

\Leftrightarrow the distance between the sexes is constant

Model 0		mean PEFR				SD
Two groups		est	se	lower	upper	est
Males		564	7.4	549	579	56.0
Females		474	7.5	459	489	49.1
Differens		90.2	10.7	68.9	111.5	

Model 1		Slope (height per cm)				PEFR at 170 cm				SD
Two lines		est	se	lower	upper	est	se	lower	upper	est
Males		3.97	1.05	1.86	6.08	535	10.2	515	556	50.4
Females		2.87	1.22	0.42	5.33	486	8.6	468	503	46.6

Model 2		Slope (height per cm)				PEFR at 170 cm				SD
Same SD		est	se	lower	upper	est	se	lower	upper	est
Males		3.97	1.02	1.95	6.00	535	9.9	516	555	
Females		2.87	1.27	0.34	5.40	486	9.1	468	504	
Differens		1.10	1.63	-2.13	4.34	49.6	13.4	23.0	76.2	

Model 3		Slope (height per cm)				PEFR at 170 cm				SD
Same Slope		est	se	lower	upper	est	se	lower	upper	est
Males		3.54	0.79	1.97	5.12	538	8.7	521	556	
Females						488	8.1	472	504	48.7
Differens		0.00				50.0	13.3	23.6	76.5	

Regression some comments

- The models 2 and 3 are examples of **multiple linear regression** models:

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + \delta_0 \cdot \text{male} + \delta_1 \cdot \text{male} \cdot \text{height}_i + E_i$$

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + \delta_0 \cdot \text{male} + E_i$$

- Notices that the difference between the sexes is smaller after adjustment for the height.
- The methods of adjusting for a continuous variable when comparing two (or several) groups are called **Analysis of Covariance**.

Stata: summary of regression analysis code

```
use PEFR.dta,clear
* Scatter plot
twoway (scatter PEFR height if sex==1) ///
        (lfit PEFR height if sex==1) ///
* Fitting the regression
generate height170=height-170
regress PEFR height170 if sex==1
* Generating fitted values and residuals
* (the if e(sample) ensures that it is only done for the
* observations actually used in the regression)
predict fitfemale if e(sample), xb
predict resfemale if e(sample), res
scatter resfemale fitfemale
scatter resfemale height
* We will go through the analysis comparing the men and the
* women at the exercises.
* Comparing the slopes:
regress PEFR b1.sex##c.height170
* The height adjusted sex difference.
regress PEFR b1.sex c.height170
```

Stata: summary of regression analysis code

b1: sex=1 is set to be the ref.

##: we allow for different slopes

c: height170 is considered continuous with linear effect

Difference for men and women at 170 cm

Slope for women

Difference in slope for men and women

Expected value for women 170 cm

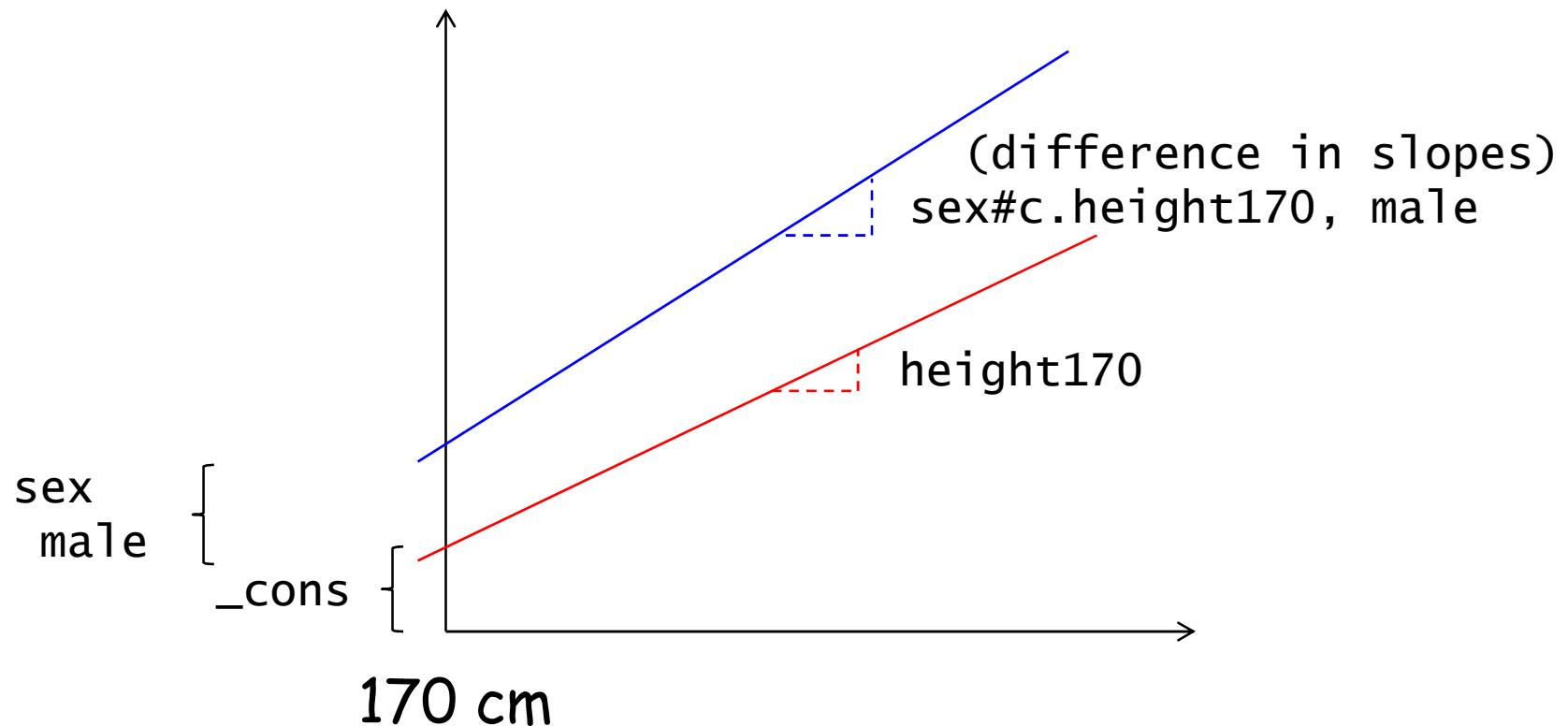
```
regress PEFR b1.sex##c.height170
```

*** output omitted ***

	PEFR	Coef.	Std. Err.	t	P> t	[95%]
sex						
male	49.58657	13.38325	3.71	0.000	23.0	
height170	2.871025	1.273115	2.26	0.026	.341	
sex#c.height170						
male	1.103455	1.631048	0.68	0.500	-2.13	
_cons	485.6874	9.052385	53.65	0.000	467.	

Stata: summary of regression analysis code

The estimates can be placed on a graph



Stata: summary of regression analysis code

.	regress PEFR b1.sex c.height170
	*** output omitted ***
<hr/>	
	PEFR Coef. Std. Err. t P> t [95
<hr/>	
sex	
male 50.0129 13.33098 3.75 0.000 23.	
height170 3.543314 .7935878 4.46 0.000 1.9	
_cons 488.4078 8.087545 60.39 0.000 472	
<hr/>	

Difference in intercept for men and women

Slope for men and women

Intersection for women

PEFR and Gender - formulations

Methods

The gender difference in PEFR was estimated as the difference in mean PEFR after linear adjustment for height. The model was checked by diagnostic plots of the residuals. Estimates... CI....

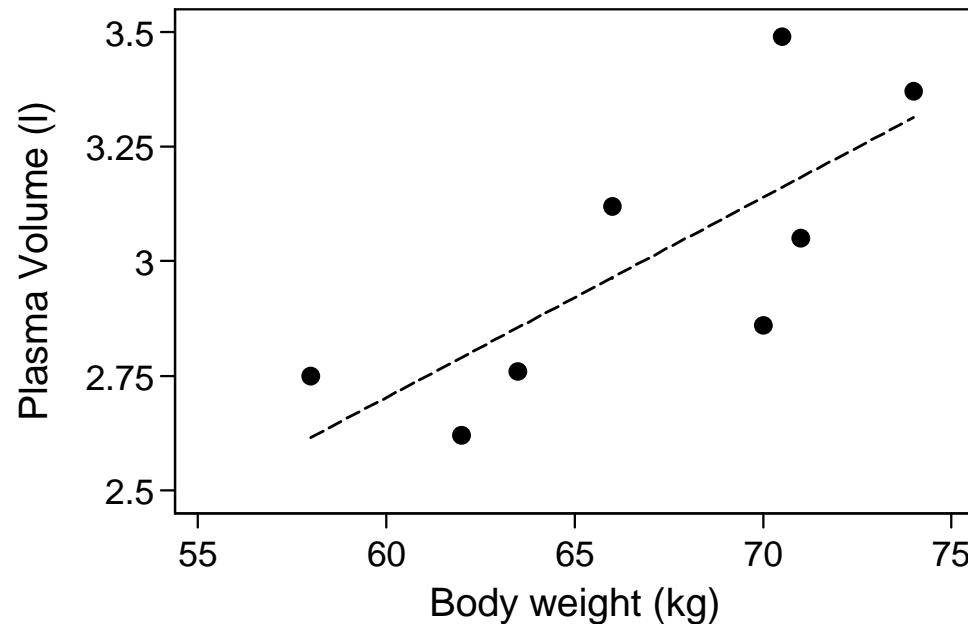
Results

After adjustment for height men had a mean PEFR that was **50(24;77)l/min** higher than women.

Conclusion

The sex difference in PEFR cannot solely be attributed to the difference in heights.

Example 10.1 Body weight and plasma volume



Source	SS	df	MS	Number of obs	=	8
Model	.390684335	1	.390684335	F(1, 6)	=	8.16
Residual	.287265681	6	.047877614	Prob > F	=	0.0289
Total	.677950016	7	.096850002	R-squared	=	0.5763
				Adj R-squared	=	0.5057
				Root MSE	=	.21881
plasma	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	
bweight	.0436153	.0152684	2.86	0.029	.006255	.0809757
_cons	.0857244	1.023998	0.08	0.936	-2.419909	2.591358

The (Pearson) correlation coefficient

The (Pearson) correlation coefficient, ρ , is a measure of the strength of the linear relationship between two variables x and y following a bivariate normal distribution.

It only make sense if both x and y have a normal distribution and there is a linear relationship between x and y .

The correlations coefficient has the following properties:

- It is symmetric in x and y , and a change of scale of x and/or y will not change ρ .
- $\rho = \pm 1$ if the observation line exactly on a straight line.
- $-1 \leq \rho \leq 1$
- If x and y are independent, then $\rho = 0$

The (Pearson) correlation coefficient

The correlation is best understood as the coefficient of determination.

ρ^2 = how much of the variation in one of the variables that can be explained by the variation of the other.

So if $\rho = 0.8$ then $\rho^2 = 0.64 = 64\%$, i.e. 64% of the variation in y can be explained by the variation in x and vice versa.

ρ is estimated by the empirical correlation coefficient r :

$$\hat{\rho} = r = \frac{\sum (\textcolor{blue}{x}_i - \bar{x}) \cdot (\textcolor{blue}{y}_i - \bar{y})}{\sqrt{\sum (\textcolor{blue}{x}_i - \bar{x})^2 \cdot \sum (\textcolor{blue}{y}_i - \bar{y})^2}}$$

The (Pearson) correlation coefficient

It is possible to make **approximate confidence** intervals for the Pearson correlation (see p95-96 in Kirkwood & Sterne).

Very few programs (not Stata!) will do this for you!

It is possible to make an exact test of the hypothesis: $\rho = 0$

The test is **identical** to the test of **zero slope** in the simple linear regression.

All programs can make this test.

Spearman's rank correlation

Subject	Body weight		Plasma volume		The body weight and the plasma volume are ranked separately.
	Obs	Rank	Obs	Rank	
1	58.0	1	2.75	2	
2	70.0	5	2.86	4	
3	74.0	8	3.37	7	
4	63.5	3	2.76	3	
5	62.0	2	2.62	1	
6	70.5	6	3.49	8	
7	71.0	7	3.05	5	
8	66.0	4	3.12	6	

Spearman's rank correlation is found as the correlation of the ranks!

It has the same properties as the correlation, but it has no interpretation.

The test of no association based on Spearman rank correlations is in general valid.

Correlations some comments

The Pearson correlation is only a valid measure of association if:

1. We have independent observations, i.e. the pairs (x, y) are independent.
2. Both the x 's and the y 's have a normal distribution.
3. There is a linear relationship between x and y .

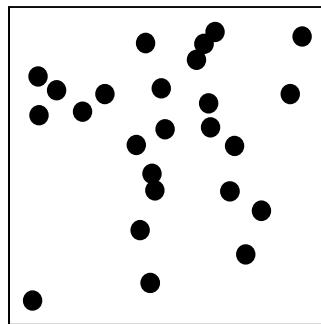
Note, these assumptions are stronger than the ones behind the simple linear regression.

The test of no association based on Spearman rank correlation is valid if 1. and

- 3b. There is a monotone relationship between x and y .

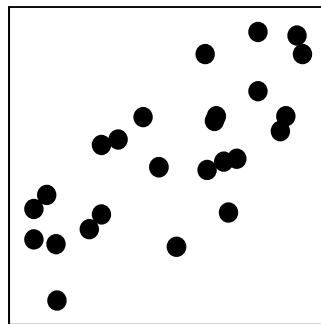
Example of Pearson and Spearman correlations

$r = .12$



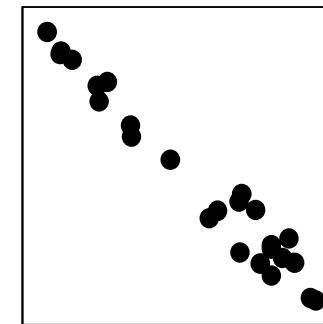
spearman = .067

$r = .74$



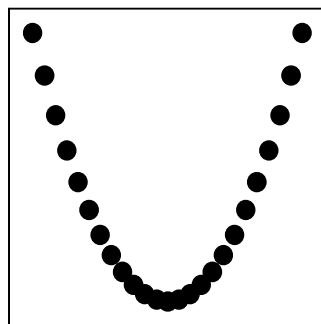
spearman = .718

$r = -.98$



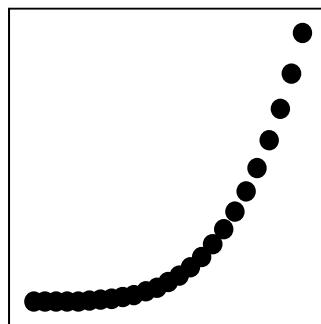
spearman = -.93

$r = 0$



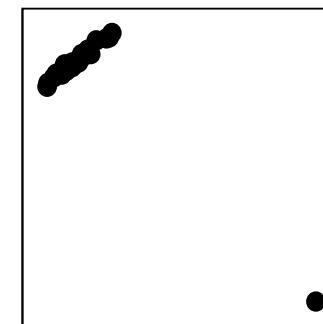
spearman = 0

$r = .87$



spearman = 1

$r = -.8$



spearman = .752

Remember: Always plot the data !!!!

Body weight and plasma volume

The (Pearson) correlation: 0.76(0.12;0.95)

The (Pearson) correlation squared : 0.58(0.014;0.91)

The hypothesis: $\rho = 0$ gives p= 0.029

The Spearman rank correlation is 0.81

The test of no association based on this gives p=0.015

Comparison of the measurement methods

A correlation coefficient is often seen in the literature as a way to compare two measurements.

A correlation coefficient cannot be used to measure the agreement of two methods.

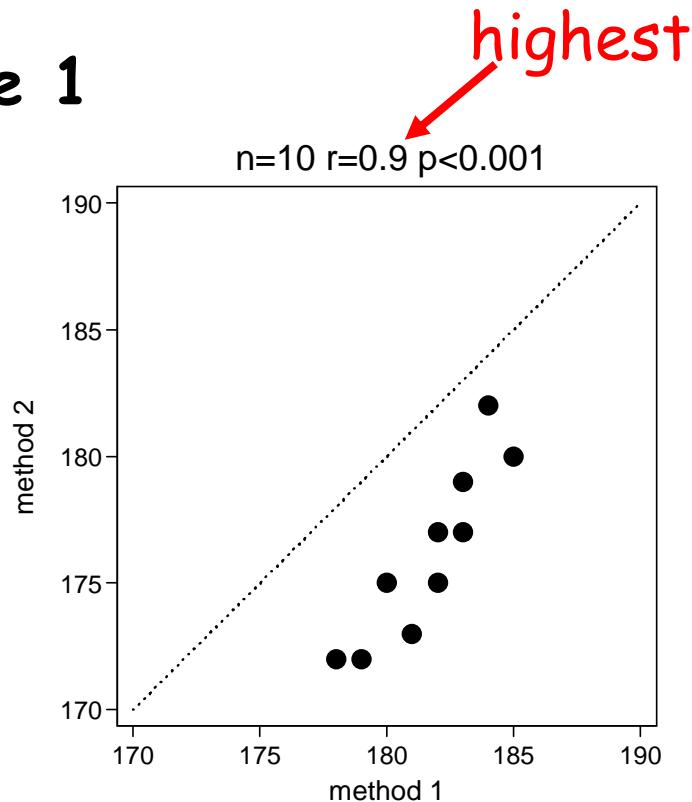
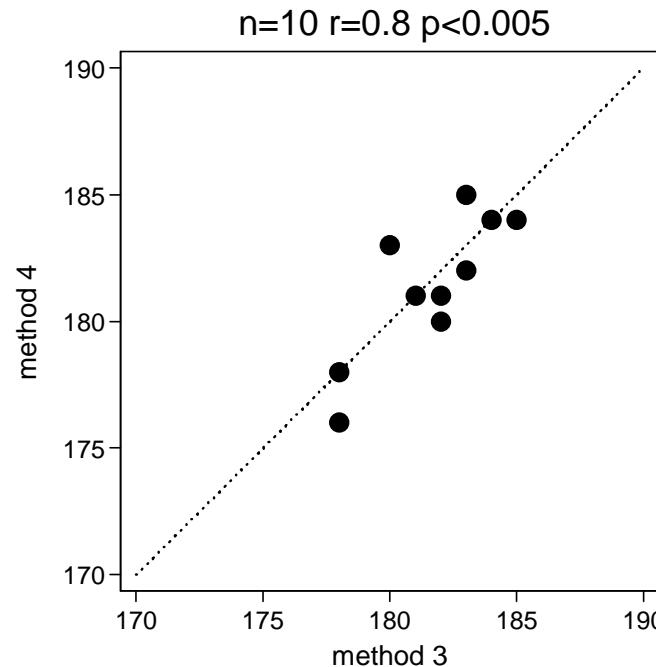
We will illustrate this on the next overheads by showing that the correlation

- Does not measure a systematic difference.
- Does not measure a random difference.

Comparison of the measurement methods

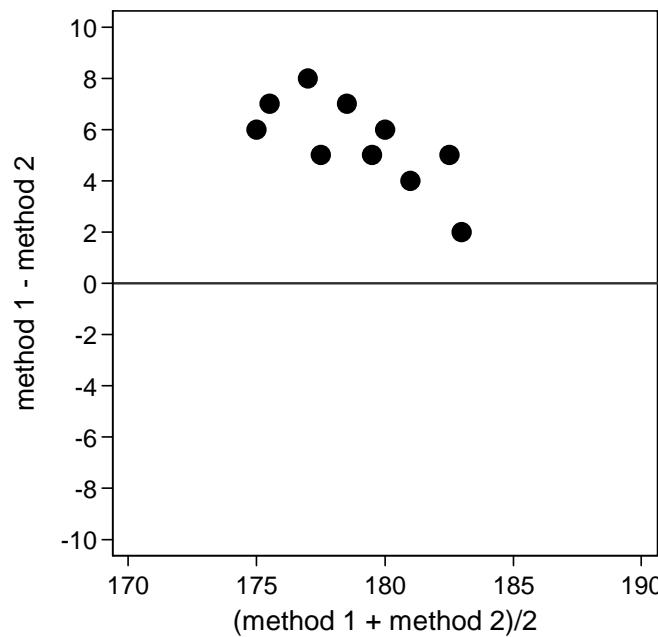
Two studies, each comparing two methods of measuring height on men. In both studies 10 men were measured twice, once with each method.

Example 1



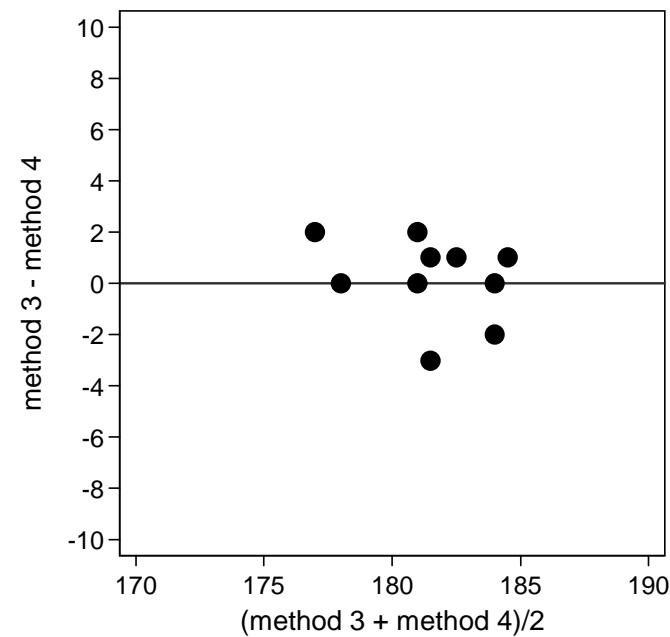
Is a higher correlation evidence of higher agreement?

Is a higher correlation evidence of higher agreement? NO!!!



Average
difference:

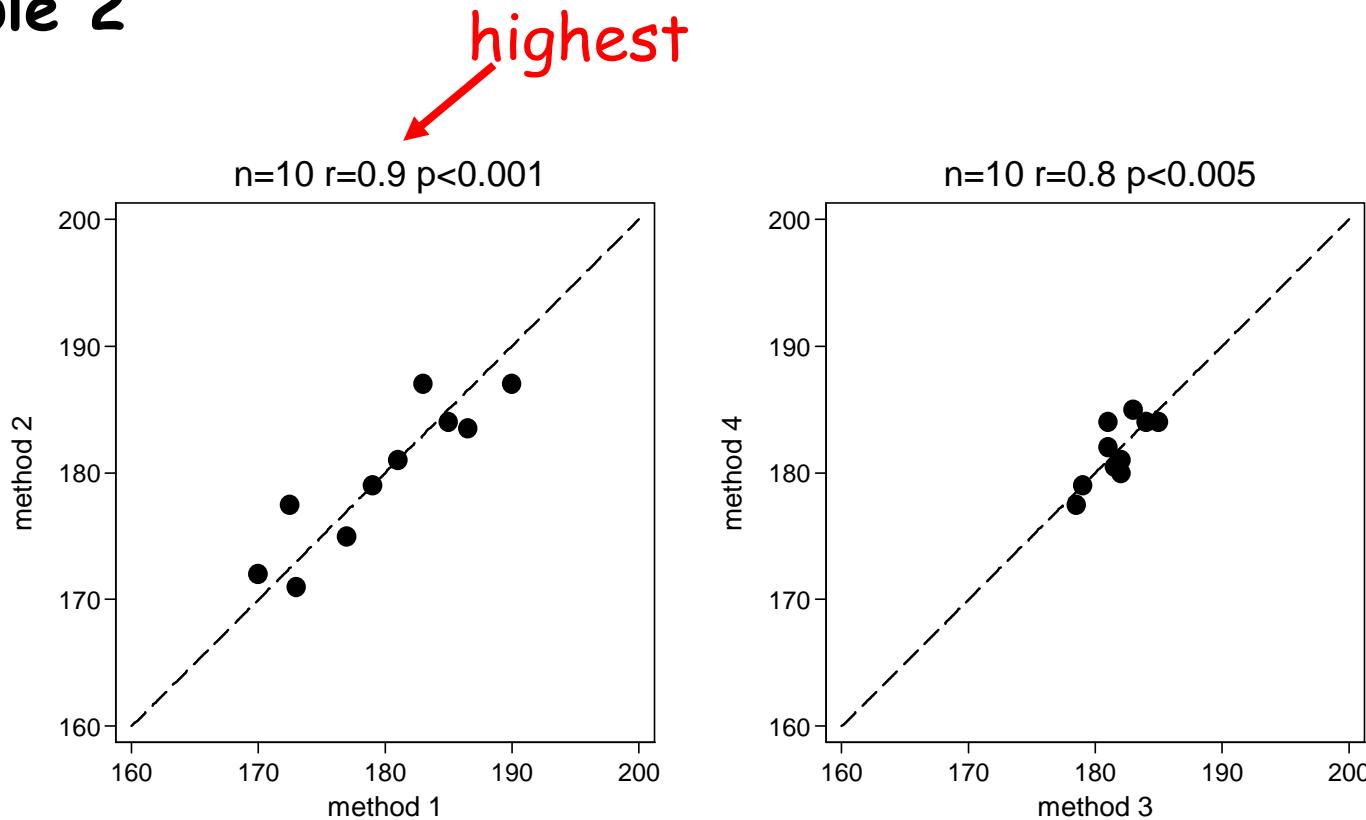
5.6cm



0.2cm

The correlation does not give you any information on whether the observations are located around $y=x$!!!!!

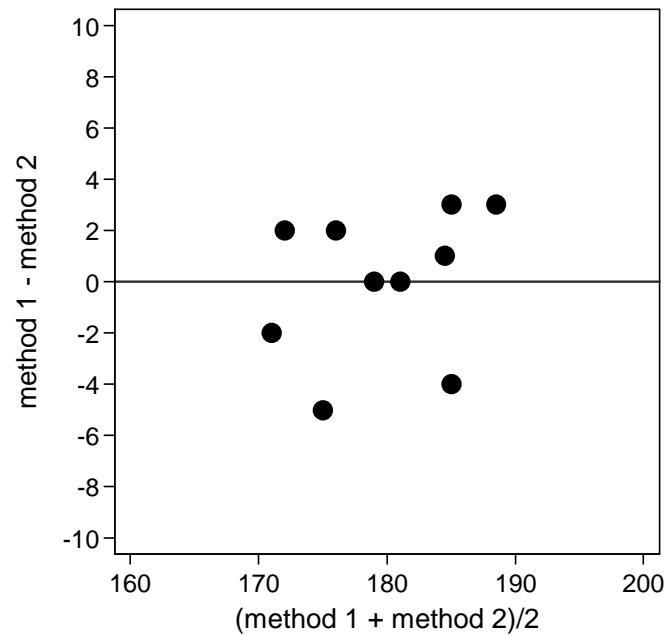
Example 2



Note, both data sets are located around $y=x$!

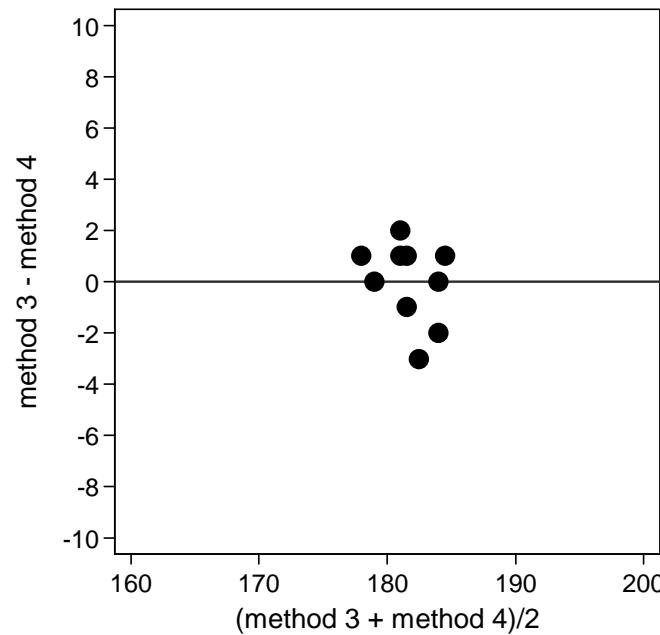
Is a higher correlation evidence of higher agreement?

Is a higher correlation evidence of higher agreement? NO!!!



SD of the difference:

2.8cm



1.6cm

The random differences are a bit smaller in the right plot!