

PhD course in Basic Biostatistics - Day 5

Erik Parner, Department of Biostatistics, Aarhus University©

Regression models in general

The simple linear regression

Lung function (PEFR) and height

The model, estimation, inference

Changing the reference height

Checking the model: predicted values and residuals

Point wise confidence and prediction intervals

Comparing two groups after adjustment for a covariate

Sex difference in PEFR

Correlations

The Pearson correlation

The Spearman rank correlation

Why you should not use correlation in the comparison of measurement methods

04-10-2016

Basic Biostatistics - Day 5

1

Overview

Data to analyse	Type of analysis	Unpaired/Paired	Type	Day
Continuous	One sample mean	Irrelevant	Parametric	Day 1
			Nonparametric	Day 3
	Two sample mean	Non-paired	Parametric	Day 2
			Nonparametric	Day 2
		Paired	Parametric	Day 3
			Nonparametric	Day 3
	Regression	Non-paired	Parametric	Day 5
	Several means	Non-paired	Parametric	Day 6
			Nonparametric	Day 6
Binary	One sample mean	Irrelevant	Parametric	Day 4
	Two sample mean	Non-paired	Parametric	Day 4
		Paired	Parametric	Day 4
	Regression	Non-paired	Parametric	Day 7
Time to event	One sample: Cumulative risk	Irrelevant	Nonparametric	Day 8
	Regression: Rate/hazard ratio	Non-paired	Semi-parametric	Day 8

Correlation is seen as a topic associated with regression.

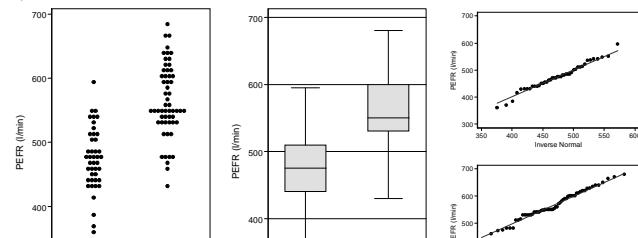
04-10-2016

Basic Biostatistics - Day 5

2

Lung function men and women (Example 4 later)

Question: How does the *PEFR* differ for men and women?



Group	obs	Mean	Std. Err.	Std. Dev.	[95% Conf. Interval]
female	43	474.0698	7.4829	49.0687	458.9687 - 489.171
male	57	564.2807	7.4236	56.0471	549.4094 - 579.152
diff		-90.21093	10.73949		-111.5231 - -68.89877

04-10-2016

Basic Biostatistics - Day 5

3

Example: Lung function men and women

Question: How does the *PEFR* differ for men and women?

First answer:

The mean lung function among men is **90(69;112)l/min** larger than among women!

BUT:

We know that PEFR depends on height and that men are higher than women (in average).

How much of the above difference can be explained by this?

How large is the "height adjusted" difference in *PEFR*?

In the regression model we aim at comparing men and women with the same height (adjusting for height).

04-10-2016

Basic Biostatistics - Day 5

4

Regression in general

A regression model can be many things!

In general it **models** the relationship between:

y : **dependent/response**
and a set of x 's: **independent/explanatory variables**.

The dependent variable is **modelled** as a function of the independent variable plus some unexplained random variation:

Systematic part Random part

$$y = f(x; \theta) + e(\sigma)$$

Unknown Parameters Unknown Parameters

04-10-2016 Basic Biostatistics - Day 5 5

Regression in general

$y = f(x; \theta) + e(\sigma)$

Some examples:

$pefr = \beta_0 + \beta_1 \cdot height + E$

$pefr = \beta_0 + \beta_1 \cdot height + \beta_2 \cdot height^2 + E$ and $E \sim N(0, \sigma^2)$

$gfr = \exp(\beta_0 + \beta_1 \cdot \ln[Cr]) + E$

$conc(t) = dose \cdot V \cdot [\exp(-\lambda_{abs} \cdot t) - \exp(-\lambda_{eli} \cdot t)] + E$

The first two are **linear** regressions, the last two **non-linear**.
In this course we will **focus** on the **linear** regressions.

04-10-2016 Basic Biostatistics - Day 5 6

Example: lung function and height

Purpose: Describe the association between lung function and height among young women:

Data: $PEFR$ (l/min) and $height$ (cm) for 43 female medical students.

Figure 5.1

A model: $PEFR = \text{line} + \text{some random variation}$ seems to be valid.

04-10-2016 Basic Biostatistics - Day 5 7

Simple linear regression: The model

Let $PEFR_i$ and $height_i$ be the data for the i th woman.

$$PEFR_i = \beta_0 + \beta_1 \cdot height_i + E_i \quad E_i \sim N(0, \sigma^2)$$

This model is based on the **assumptions**:

1. The **expected** value of $PEFR$ is a **linear function** of $height$.
2. The **unexplained** random deviations are **independent**.
3. The unexplained random deviations have the **same distributions**.
4. This distribution is **normal**.

04-10-2016 Basic Biostatistics - Day 5 8

Simple linear regression: The parameters

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + E_i \quad E_i \sim N(0, \sigma^2)$$

The model have **three** unknown **parameters**:

1. The **intercept** β_0
2. The **slope** (or **regression coefficient**) β_1
3. The **residual variance** σ^2 or **residual standard deviation** σ .

The **interpretation** of the parameters:

β_0 is expected **PEFR** of a woman with **height**=0.

Obviously, this does not make sense.

We will later look at how one can get a meaningful estimate of the general level of **PEFR**!

04-10-2016

Basic Biostatistics - Day 5

9

Simple linear regression: The parameters

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + E_i \quad E_i \sim N(0, \sigma^2)$$

β_1 is the **expected difference** in **PEFR** for two women, who differ with **one unit** (here cm) in **height**.

If a woman is 6 cm higher than another, then we will expect that her **PEFR** is $6\beta_1$ higher than the other.

σ is best understood by the fact that a **95%-prediction** interval around the line is given by $\pm 1.96\sigma$.

04-10-2016

Basic Biostatistics - Day 5

10

Simple linear regression: The estimates (by hand)

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + E_i \quad E_i \sim N(0, \sigma^2)$$

Estimates of the parameters are found by the method of **least square**, which, for this model, is equivalent to the **maximum likelihood** method.

The estimates are found using a computer program. Explicit formulas for both the estimates and their standard errors exists.

04-10-2016

Basic Biostatistics - Day 5

11

Simple linear regression: Confidence intervals

$$\text{Approx. 95\% CI for } \beta_1 : \hat{\beta}_1 \pm 1.96 \cdot \text{se}(\hat{\beta}_1)$$

$$\text{Approx. 95\% CI for } \beta_0 : \hat{\beta}_0 \pm 1.96 \cdot \text{se}(\hat{\beta}_0)$$

Exact 95% confidence intervals, CI's, for β_0 and β_1 are found from the estimates and standard errors

$$95\% \text{ CI for } \beta_1 : \hat{\beta}_1 \pm t_{n-2}^{0.975} \cdot \text{se}(\hat{\beta}_1)$$

$$95\% \text{ CI for } \beta_0 : \hat{\beta}_0 \pm t_{n-2}^{0.975} \cdot \text{se}(\hat{\beta}_0)$$

Where $t_{n-2}^{0.975}$ is the upper 97.5 percentile in the t-distribution $n-2$ degrees of freedom.

These confidence intervals are found in the output.

04-10-2016

Basic Biostatistics - Day 5

12

Simple linear regression: test

As usual we can perform a test of hypothesis of the type:

Hypothesis: $\beta_i = \beta_i^0$
by calculating $z_{obs} = \frac{\hat{\beta}_i - \beta_i^0}{se(\hat{\beta}_i)}$

The p-value is found by checking a t-distribution $n-2$ degrees of freedom.

$$p = 2 \cdot \Pr(t(n-2) \geq |z_{obs}|)$$

You will find tests for $\beta_1 = 0$, i.e. y is independent of x and $\beta_0 = 0$, i.e. the line goes through $(0, 0)$ in the regression output.

04-10-2016

Basic Biostatistics - Day 5

13

Stata: Simple linear regression

```
regress PEFR height if sex==1
```

n: Always check this

Source	SS	df	MS	Number of obs	F(1, 41)	Prob > F	R-squared	Adj R-squared	Root MSE
Model	12116.1257	1	12116.1257	43	5.58	0.0230	0.1198	0.0983	46.593
Residual	89008.665	41	2170.94305						
Total	101124.791	42	2407.73311						

pefr	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
height	2.871025	1.215288	2.36	0.023	.4167005 5.325349
_cons	-2.38683	201.8064	-0.01	0.991	-409.9432 405.1696

$\hat{\beta}_1$ $\hat{\beta}_0$ $\hat{\sigma}^2$ $\hat{\sigma}$

Standard errors 95% confidence intervals

04-10-2016

Basic Biostatistics - Day 5

14

The example: Summarising

$$PEFR_i = \beta_0 + \beta_1 \cdot height_i + E_i \quad E_i \sim N(0, \sigma^2)$$

The estimates: $\beta_1: 2.87 \text{ (0.42;5.33) l/min/cm}$
 $\beta_0: -2.39 \text{ (-410;405) l/min}$
 $\sigma: 46.6 \text{ l/min}$

The difference in mean PEFR between two women who differ one cm in height is in interval from **0.42** to **5.33** l/min - the best guess is **2.87** l/min.

The mean PEFR for a woman who is **0 cm** is in the interval **-410** to **405** l/min - the best guess is **-2.39** l/min.

A 95% prediction interval is given as **±91** l/min.

04-10-2016

Basic Biostatistics - Day 5

15

Stata: changing the intercept

$$PEFR_i = \beta_0 + \beta_1 \cdot (height_i - 170) + E_i \quad E_i \sim N(0, \sigma^2)$$

Let us fit the model with a meaningful intercept/constant:

```
generate height170=height-170
regress PEFR height170 if sex==1
```

Source	SS	df	MS	Number of obs	F(1, 41)	Prob > F	R-squared	Adj R-squared	Root MSE
Model	12116.1257	1	12116.1257	43	5.58	0.0230	0.1198	0.0983	46.593
Residual	89008.665	41	2170.94305						
Total	101124.791	42	2407.73311						

PEFR	coef.	Std. Err.	t	P> t	[95% Conf. Interval]
height170	2.871025	1.215288	2.36	0.023	.4167005 5.325349
_cons	485.6874	8.641215	56.21	0.000	468.2361 503.1387

Nothing is changed except this

The expected PEFR for a woman with height = 170cm is:
486 (468;503) l/min

04-10-2016

Basic Biostatistics - Day 5

16

Predicted values and residuals

$$Y_i = \beta_0 + \beta_1 \cdot x_i + E_i \quad E_i \sim N(0, \sigma^2)$$

Based on the estimates we can calculate the **predicted** (fitted) values and the **residuals**:

Predicted value: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_i$

Residual: $r_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 \cdot x_i)$

The **predicted value** is the best guess of y_i (based on the estimates) for the i th person.

The **residual** is a guess of E_i (based on the estimates) for the i th person.

```
predict fitfemale if e(sample),xb
predict resfemale if e(sample),resid
```

04-10-2016

Basic Biostatistics - Day 5

17

Checking the model: Independent errors ?

Assumption no. 2: the errors should be **independent**, is mainly checked by considering **how the data was collected**.

The assumption is **violated** if

- some of the persons are **relatives** (and some are not) and the dependent variable has some **genetic component**.
- some of the persons were **measured** using one instrument and others using another.
- in general if the persons were sampled in **clusters**.

04-10-2016

Basic Biostatistics - Day 5

18

Checking the model: Linearity and identical distributed errors

Assumption no. 1:

The **expected value** of Y is a **linear function** of x .

Assumption no. 3:

The unexplained random deviations have the **same distributions**.

These are checked by inspecting the following plots of:

- Residuals versus **predicted**
- Residuals versus x

04-10-2016

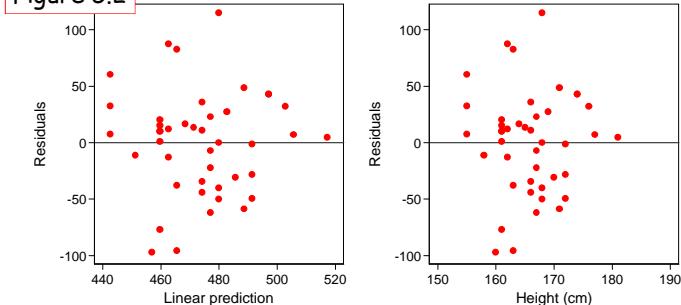
Basic Biostatistics - Day 5

19

Stata: Checking the model: Linearity and identical distributed errors

```
predict fitfemale if e(sample),xb
predict resfemale if e(sample),resid
scatter resfemale fitfemale
scatter resfemale height
```

Figure 5.2



04-10-2016

Basic Biostatistics - Day 5

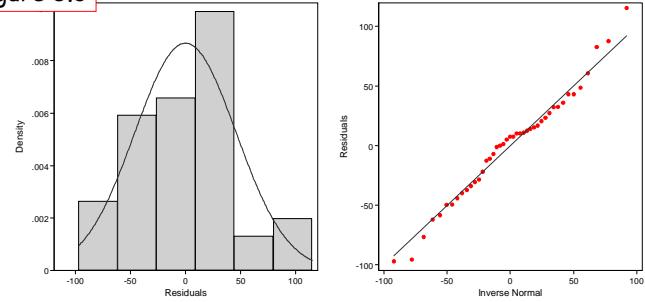
20

Stata: Checking the normality of errors

Assumption no. 4: the errors should be *normal distributed*.
This is checked by making QQ-plots and histograms of the residuals.

```
qnorm resfemale
```

Figure 5.3



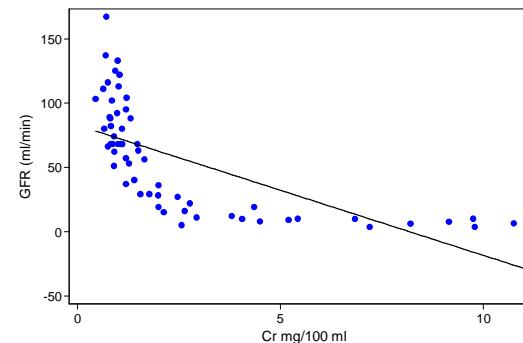
04-10-2016

Basic Biostatistics - Day 5

21

Assumptions violated: Example 2

The relation between GFR and Serum Creatinine



Clearly non-linear!

04-10-2016

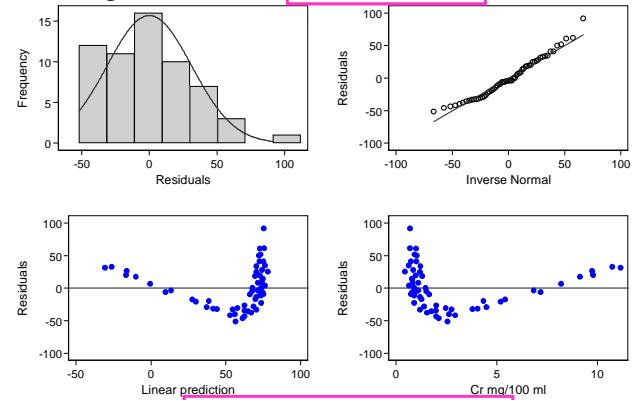
Basic Biostatistics - Day 5

22

Assumptions violated: Example 2

Checking the model

Close to normal



04-10-2016

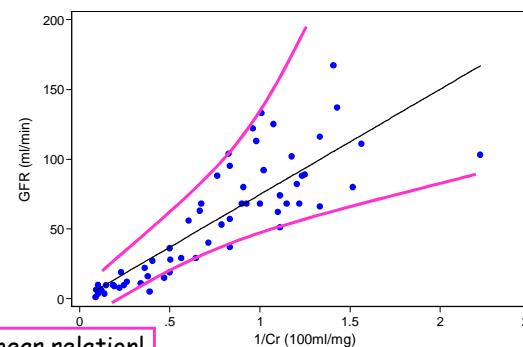
Basic Biostatistics - Day 5

23

Clearly not constant mean!

Assumptions violated: Example 3

The relation between GFR and 1/Serum Creatinine



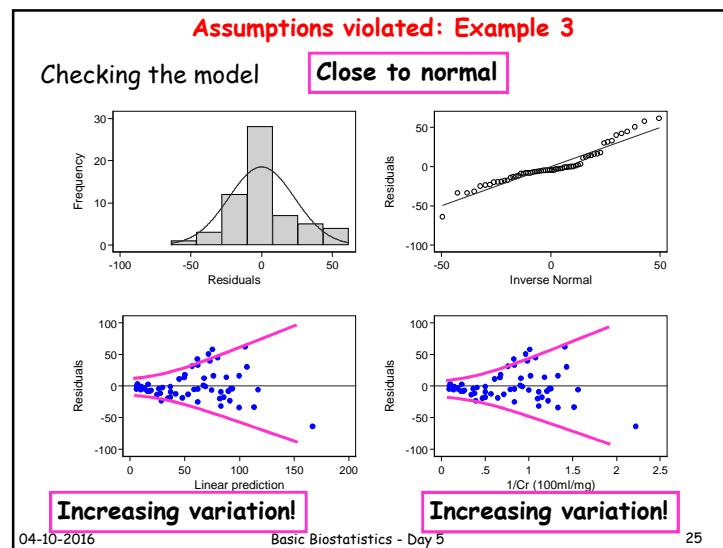
A linear relation!

Increasing variation!

04-10-2016

Basic Biostatistics - Day 5

24



Confidence interval for the estimated line

The **true line** is given as : $y = \beta_0 + \beta_1 \cdot x$
and **estimated** by plugging in the estimates $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$

The **standard error** of this estimate is given by:

$$se(\hat{\beta}_0 + \hat{\beta}_1 \cdot x) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum(x_i - \bar{x})^2}}$$

with the 95% (pointwise) **confidence interval**

$$\hat{\beta}_0 + \hat{\beta}_1 \cdot x \pm t_{n-2}^{0.975} \cdot se(\hat{\beta}_0 + \hat{\beta}_1 \cdot x)$$

Many programs can make a plot with the fitted line and its confidence limits.

In Stata its done by the **lfitci** graph command.

04-10-2016 Basic Biostatistics - Day 5 26

Prediction interval for future value

The **true line** is given as : $y = \beta_0 + \beta_1 \cdot x$
and **estimated** by plugging in the estimates $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \cdot x$

The **standard deviation** for a **new observation** is given by:

$$sd(\hat{\beta}_0 + \hat{\beta}_1 \cdot x + E) = \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum(x_i - \bar{x})^2}}$$

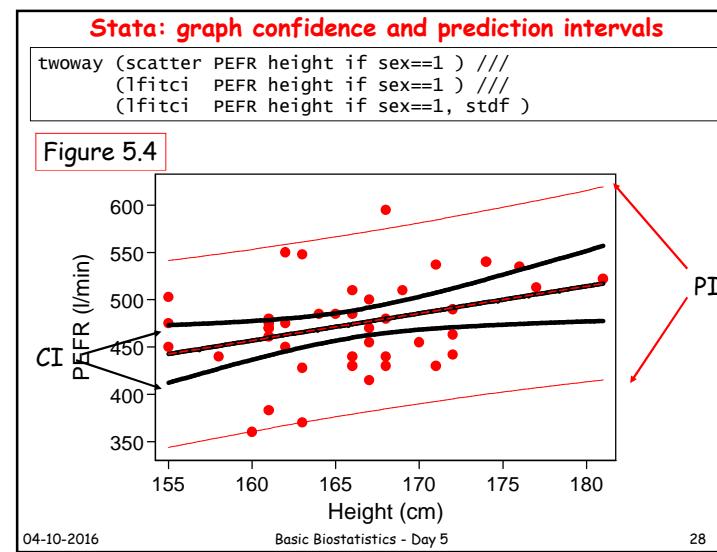
with the 95% (pointwise) **prediction interval**

$$\hat{\beta}_0 + \hat{\beta}_1 \cdot x \pm t_{n-2}^{0.975} \cdot sd(\hat{\beta}_0 + \hat{\beta}_1 \cdot x + E)$$

Many programs can make a plot with the fitted line and its prediction limits.

In Stata its done by the **lfitci** and graph command, the option **stdf**

04-10-2016 Basic Biostatistics - Day 5 27



Example 4: Lung function men and women

Question: How does the *PEFR* differ for men and women?

We know that *PEFR* depends on height and that men are higher than women (in average).

How much of the above difference can be explained by this?
How large is the "height adjusted" difference in *PEFR*?

Note, we can only adjust for height, if the *PEFR - height* relationship is the same for men and women.

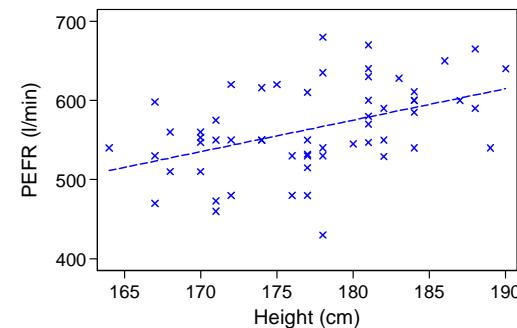
Let us first fit a linear regression to the data for men.

04-10-2016

Basic Biostatistics - Day 5

29

PEFR and height among males

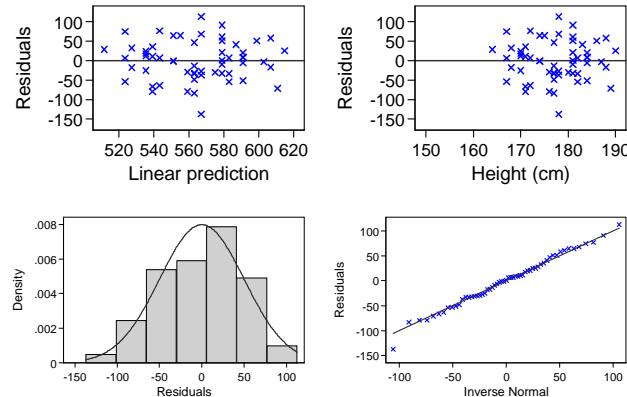


Root MSE = 50.4

PEFR	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
height170	3.974479	1.052755	3.78	0.000	1.864712 6.084247
_cons	535.274	10.17822	52.59	0.000	514.8764 555.6716

04-10-2016 Basic Biostatistics - Day 5 30

PEFR and height among males: model check



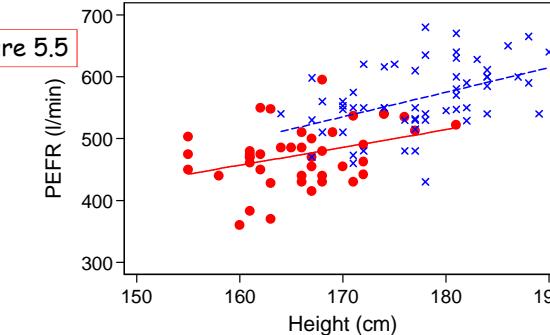
Model ok

04-10-2016

Basic Biostatistics - Day 5

31

Figure 5.5



Summarising results for males and females:

Model 1	Slope (height per cm)				PEFR at 170 cm				SD	
	Two lines	est	se	lower	upper	est	se	lower	upper	
Males		3.97	1.05	1.86	6.08	535	10.2	515	556	50.4
Females		2.87	1.22	0.42	5.33	486	8.6	468	503	46.6

04-10-2016 Basic Biostatistics - Day 5 32

Model 1 Slope (height per cm)								PEFR at 170 cm	SD
Two lines	est	se	lower	upper	est	se	lower	upper	est
Males	3.97	1.05	1.86	6.08	535	10.2	515	556	50.4
Females	2.87	1.22	0.42	5.33	486	8.6	468	503	46.6

Here we will focus on the **slopes** and the **intercepts** (PEFR at 170 cm) and **assume** that the size of the unexplained variation is the same for the two sexes, i.e. **identical SD's**. Under this additional assumption we have **Model 2**:

$$PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot height_i + E_i & \text{female} \\ \alpha_0 + \alpha_1 \cdot height_i + E_i & \text{males} \end{cases} \quad E_i \sim N(0, \sigma^2)$$

Model 2 Slope (height per cm)								PEFR at 170 cm	SD	
Same SD	est	se	lower	upper	est	se	lower	upper	est	
Males	α	3.97	1.02	1.95	6.00	535	9.9	516	555	48.8
Females	β	2.87	1.27	0.34	5.40	486	9.1	468	504	

Only the standard errors, CI's and the SD changed.

04-10-2016

Basic Biostatistics - Day 5

33

$$PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot height_i + E_i & \text{female} \\ \alpha_0 + \alpha_1 \cdot height_i + E_i & \text{males} \end{cases}$$

If we let $\delta_0 = \alpha_0 - \beta_0$ and $\delta_1 = \alpha_1 - \beta_1$ then we can write the model

$$PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot height_i + E_i & \text{female} \\ (\beta_0 + \delta_0) + (\beta_1 + \delta_1) \cdot height_i + E_i & \text{males} \end{cases}$$

Model 2 Slope (height per cm)								PEFR at 170 cm	SD	
Same SD	est	se	lower	upper	est	se	lower	upper	est	
Males	α	3.97	1.02	1.95	6.00	535	9.9	516	555	48.8
Females	β	2.87	1.27	0.34	5.40	486	9.1	468	504	
Differens	δ	1.10	1.63	-2.13	4.34	49.6	13.4	23.0	76.2	

The standard errors are based on complicated formulas
- the computer does it for you.

04-10-2016

Basic Biostatistics - Day 5

34

$$PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot height_i + E_i & \text{female} \\ (\beta_0 + \delta_0) + (\beta_1 + \delta_1) \cdot height_i + E_i & \text{males} \end{cases}$$

The same **PEFR - height** relationship for male and females corresponds to $\delta_1 = 0$.

We have the estimate 1.10 (-2.13;4.34)

The confidence interval says this can be accepted (pval=0.55).

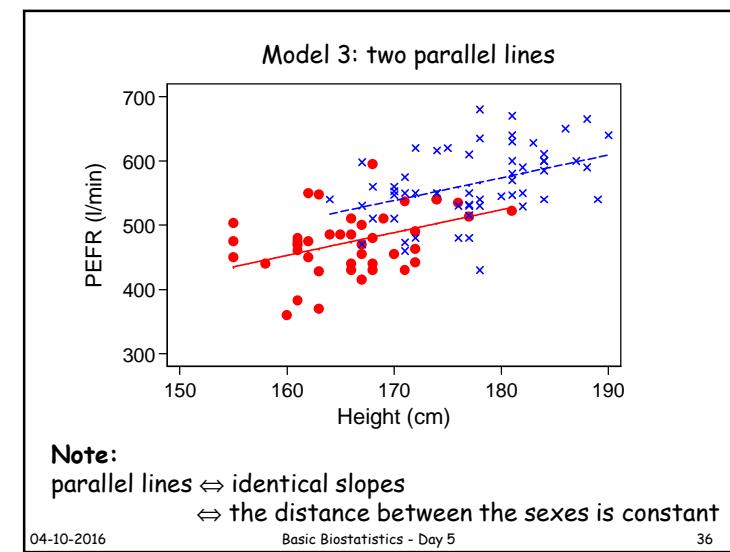
Model 3 $PEFR_i = \begin{cases} \beta_0 + \beta_1 \cdot height_i + E_i & \text{female} \\ (\beta_0 + \delta_0) + \beta_1 \cdot height_i + E_i & \text{males} \end{cases}$

Model 3 Slope (height per cm)								PEFR at 170 cm	SD
Same Slope	est	se	lower	upper	est	se	lower	upper	est
Males	3.54	0.79	1.97	5.12	538	8.7	521	556	48.7
Females	488	8.1	472	504					
Differens	0.00		50.0	13.3	23.6		76.5		

04-10-2016

Basic Biostatistics - Day 5

35



04-10-2016

Basic Biostatistics - Day 5

36

Model 0		mean PEFR					SD
Two groups		est	se	lower	upper	est	
Males		564	7.4	549	579	56.0	
Females		474	7.5	459	489	49.1	
Differens		90.2	10.7	68.9	111.5		

Model 1		PEFR at 170 cm					SD
Two lines		est	se	lower	upper	est	
Males		3.97	1.05	1.86	6.08	535	10.2
Females		2.87	1.22	0.42	5.33	486	8.6
Differens						503	46.6

Model 2		PEFR at 170 cm					SD
Same SD		est	se	lower	upper	est	
Males		3.97	1.02	1.95	6.00	535	9.9
Females		2.87	1.27	0.34	5.40	486	9.1
Differens		1.10	1.63	-2.13	4.34	49.6	13.4
						23.0	76.2

Model 3		PEFR at 170 cm					SD
Same Slope		est	se	lower	upper	est	
Males		3.54	0.79	1.97	5.12	538	8.7
Females		4.87	0.79	3.18	6.56	488	8.1
Differens		0.00				50.0	13.3
						23.6	76.5

04-10-2016

Basic Biostatistics - Day 5

37

Regression some comments

- The models 2 and 3 are examples of **multiple linear regression** models:

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + \delta_0 \cdot \text{male} + \delta_1 \cdot \text{male} \cdot \text{height}_i + E_i$$

$$PEFR_i = \beta_0 + \beta_1 \cdot \text{height}_i + \delta_0 \cdot \text{male} + E_i$$

- Notices that the difference between the sexes is smaller after adjustment for the height.

- The methods of adjusting for a continuous variable when comparing two (or several) groups are called **Analysis of Covariance**.

04-10-2016

Basic Biostatistics - Day 5

38

Stata: summary of regression analysis code

```
use PEFR.dta,clear
* Scatter plot
twoway (scatter PEFR height if sex==1) ///
        (lfit PEFR height if sex==1) ///
* Fitting the regression
generate height170=height-170
regress PEFR height170 if sex==1
* Generating fitted values and residuals
* (the if e(sample) ensures that it is only done for the
* observations actually used in the regression)
predict fitfemale if e(sample), xb
predict resfemale if e(sample), res
scatter resfemale fitfemale
scatter resfemale height170
* We will go through the analysis comparing the men and the
* women at the exercises.
* Comparing the slopes:
regress PEFR b1.sex##c.height170
* The height adjusted sex difference.
regress PEFR b1.sex c.height170
```

04-10-2016

Basic Biostatistics - Day 5

39

Stata: summary of regression analysis code

b1: sex=1 is set to be the ref.

##: we allow for different slopes

c: height170 is considered continuous with linear effect

```
regress PEFR b1.sex##c.height170
*** output omitted ***
-----
```

	PEFR	Coef.	Std. Err.	t	P> t	[95%]
sex	male	49.58657	13.38325	3.71	0.000	23.0
height170		2.871025	1.273115	2.26	0.026	.34
sex#c.height170	male	1.103455	1.631048	0.68	0.500	-2.1
Expected value for women 170 cm	_cons	485.6874	9.052385	53.65	0.000	467

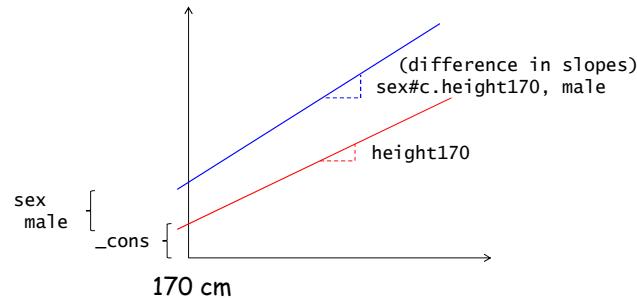
04-10-2016

Basic Biostatistics - Day 5

40

Stata: summary of regression analysis code

The estimates can be placed on a graph



04-10-2016

Basic Biostatistics - Day 5

41

Stata: summary of regression analysis code

Difference in intercept for men and women
Slope for men and women
Intersection for women

. regress PEFR b1.sex c.height170 *** output omitted ***					
PEFR	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
sex	50.0129	13.33098	3.75	0.000	23.00 - 76.99
height170	3.543314	.7935878	4.46	0.000	1.90 - 6.60
_cons	488.4078	8.087545	60.39	0.000	472.00 - 504.80

04-10-2016

Basic Biostatistics - Day 5

42

PEFR and Gender - formulations

Methods

The gender difference in PEFR was estimated as the difference in mean PEFR after linear adjustment for height. The model was checked by diagnostic plots of the residuals. Estimates... CI....

Results

After adjustment for height men had a mean PEFR that was **50(24;77)l/min** higher than women.

Conclusion

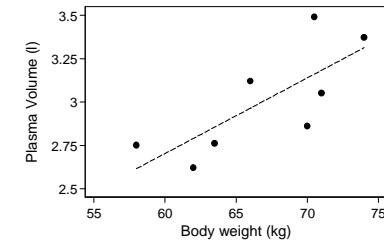
The sex difference in PEFR cannot solely be attributed to the difference in heights.

04-10-2016

Basic Biostatistics - Day 5

43

Example 10.1 Body weight and plasma volume



Source	SS	df	MS	Number of obs
Model	.390684335	1	.390684335	8
Residual	.287265681	6	.047877614	
Total	.677950016	7	.096850002	
F(1, 6) = 8.16 Prob > F = 0.0289 R-squared = 0.5763 Adj R-squared = 0.5057 Root MSE = .21881				
plasma	Coef.	Std. Err.	t	P> t
bweight	.0436153	.0152684	2.86	0.029
_cons	.0857244	1.023998	0.08	0.936
.006255 .0809757 -2.419909 2.591358				

04-10-2016

Basic Biostatistics - Day 5

44

The (Pearson) correlation coefficient

The (Pearson) correlation coefficient, ρ , is a measure of the strength of the **linear relationship** between two variables x and y following a **bivariate normal** distribution.

It only make sense if both x and y have a normal distribution and there is a linear relationship between x and y .

The correlations coefficient has the **following properties**:

- It is symmetric in x and y , and a change of scale of x and/or y will not change ρ .
- $\rho = \pm 1$ if the observation line exactly on a straight line.
- $-1 \leq \rho \leq 1$
- If x and y are independent, then $\rho = 0$

04-10-2016

Basic Biostatistics - Day 5

45

The (Pearson) correlation coefficient

The correlation is best understood as the coefficient of determination.

ρ^2 = how much of the variation in one of the variables that can be explained by the variation of the other.

So if $\rho = 0.8$ then $\rho^2 = 0.64 = 64\%$, i.e. 64% of the variation in y can be explained by the variation in x and vice versa.

ρ is **estimated** by the empirical correlation coefficient r :

$$\hat{\rho} = r = \frac{\sum (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \cdot \sum (y_i - \bar{y})^2}}$$

04-10-2016

Basic Biostatistics - Day 5

46

The (Pearson) correlation coefficient

It is possible to make **approximate confidence** intervals for the Pearson correlation (see p95-96 in Kirkwood & Sterne).

Very few programs (not Stata!) will do this for you!

It is possible to make an exact test of the hypothesis: $\rho = 0$

The test is **identical** to the test of **zero slope** in the simple linear regression.

All programs can make this test.

04-10-2016

Basic Biostatistics - Day 5

47

Spearman's rank correlation

Subject	Body weight		Plasma volume	
	Obs	Rank	Obs	Rank
1	58.0	1	2.75	2
2	70.0	5	2.86	4
3	74.0	8	3.37	7
4	63.5	3	2.76	3
5	62.0	2	2.62	1
6	70.5	6	3.49	8
7	71.0	7	3.05	5
8	66.0	4	3.12	6

The body weight and the plasma volume are ranked separately.

Spearman's rank correlation is found as the correlation of the ranks!

It has the same properties as the correlation, but it has no interpretation.

The test of no association based on Spearman rank correlations is in general **valid**.

04-10-2016

Basic Biostatistics - Day 5

48

Correlations some comments

The Pearson correlation is only a valid measure of association if:

1. We have independent observations, i.e. the pairs (x, y) are **independent**.
2. Both the x 's and the y 's have a **normal distribution**.
3. There is a **linear relationship** between x and y .

Note, these assumptions are **stronger** than the ones behind the simple linear regression.

The **test** of no association based on **Spearman** rank correlation is valid if 1. and

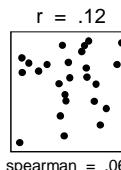
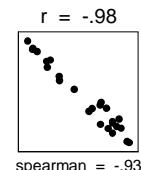
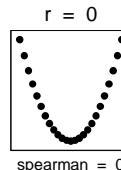
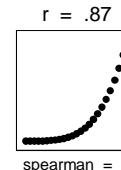
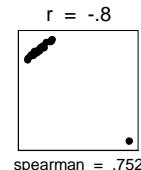
- 3b. There is a **monotone relationship** between x and y .

04-10-2016

Basic Biostatistics - Day 5

49

Example of Pearson and Spearman correlations



Remember: Always plot the data !!!!

04-10-2016

Basic Biostatistics - Day 5

50

Body weight and plasma volume

The (Pearson) correlation: $0.76(0.12;0.95)$

The (Pearson) correlation squared: $0.58(0.014;0.91)$

The hypothesis: $\rho = 0$ gives $p = 0.029$

The Spearman rank correlation is 0.81

The test of no association based on this gives $p = 0.015$

04-10-2016

Basic Biostatistics - Day 5

51

Comparison of the measurement methods

A correlation coefficient is often seen in the literature as a way to compare two measurements.

A correlation coefficient cannot be used to measure the agreement of two methods.

We will illustrate this on the next overheads by showing that the correlation

- Does not measure a systematic difference.
- Does not measure a random difference.

04-10-2016

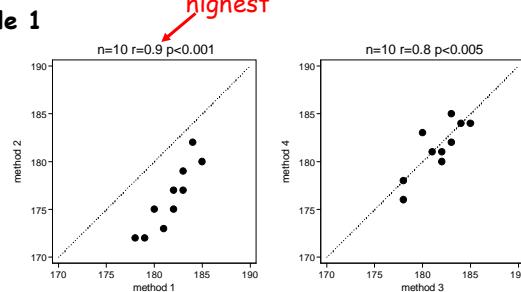
Basic Biostatistics - Day 5

52

Comparison of the measurement methods

Two studies, each comparing two methods of measuring height on men. In both studies 10 men were measured twice, once with each method.

Example 1



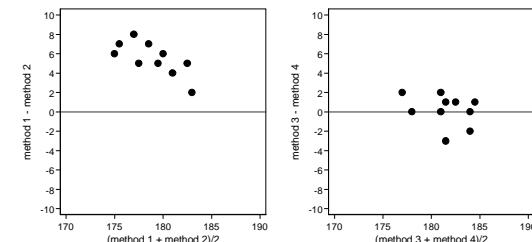
Is a higher correlation evidence of higher agreement?

04-10-2016

Basic Biostatistics - Day 5

53

Is a higher correlation evidence of higher agreement? NO!!!



Average difference:

5.6cm

0.2cm

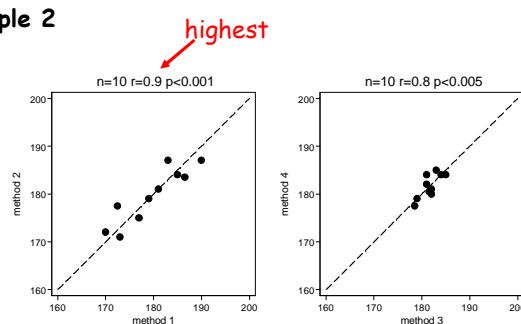
The correlation does not give you any information on whether the observations are located around $y=x$!!!!

04-10-2016

Basic Biostatistics - Day 5

54

Example 2



Note, both data sets are located around $y=x$!

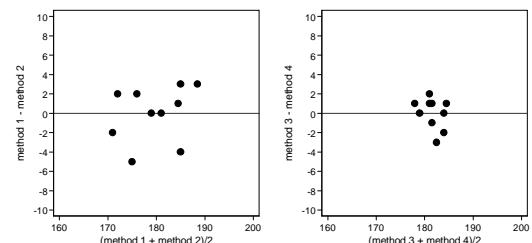
Is a higher correlation evidence of higher agreement?

04-10-2016

Basic Biostatistics - Day 5

55

Is a higher correlation evidence of higher agreement? NO!!!



SD of the difference:

2.8cm

1.6cm

The random differences are a bit smaller in the right plot!

04-10-2016

Basic Biostatistics - Day 5

56