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PhD course in Basic Biostatistics – Day 4
Erik Parner, Department of Biostatistics, Aarhus University©

One sample from a binomial
Model, estimate, exact and approximate inference

Two independent binomial samples 
Model, estimates, measures of association
Exact and approximate inference
Sample size and power
The Chi-squared test for 2x2 tables
Fishers exact test for 2x2 tables

One sample of paired binary data
Estimation, McNemars test

The Chi-squared test for R x C tables

Test for trend in an ordered R x C table (Spearman rank)
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Data to analyse Type of analysis Unpaired/Paired Type Day

Continuous One sample mean Irrelevant Parametric Day 1

Nonparametric Day 3

Two sample mean Non-paired Parametric Day 2

Nonparametric Day 2

Paired Parametric Day 3

Nonparametric Day 3

Regression Non-paired Parametric Day 5

Several means Non-paired Parametric Day 6

Nonparametric Day 6

Binary One sample mean Irrelevant Parametric Day 4

Two sample mean Non-paired Parametric Day 4

Paired Parametric Day 4

Regression Non-paired Parametric Day 7

Time to event One sample: Cumulative risk Irrelevant Nonparametric Day 8

Regression: Rate/hazard ratio Non-paired Semi-parametric Day 8

Overview
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One sample from a binomial
Ex. 15.3: Smoking among 15-16 year olds in Birmingham

Question: What is the prevalence of smoking among 15-16 
year olds in Birmingham and how does it compare to the 
target 13%?

Design/Data: Self-reported smoking habits (current smoker: 
Yes/No) among 1000 randomly chosen 15-16 year olds living in 
Birmingham. 

Note, the data for each teenager is binary – it can only take 
two values Yes or No. 
One will often code a Yes as 1 and a No as 0.

The total number of Yes’s will be a whole number in the range 
0 to n=1000. 

Result: 123 out of the 1000 teenagers said they were current 
smokers.
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One sample from a binomial

We will make the following four assumptions:

1. The sample size n does not depend on the observations (e.g. 
the number of Yes’s)

2. The observations are independent.

3. There is exactly the same two possible outcomes for each 
teenager: Yes (current smoker) No (not current smoker)

4. The probability of being a smoker is the same for all the 

teenagers. Let us denote this unknown probability, π. 

The last three assumptions correspond to: 
“n independent tosses with the same coin”.

If the four assumptions are true, then the number of Yes’s, x, 
follows a binomial distribution. ( ),x b n π∼
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Comments to the assumptions behind the binomial model

1. The sample size does not need to be determined before we 
collect the data. 
But we are not allowed to base our decision on how much 
data to collect, on the number of positive answers.

2.Independency is checked, as usual, by going through the 
design.

3. It does not make sense to analyze the data, if the 
teenagers did not have exactly the same choice of answers. 

4. If the unknown probability, π, of being a current smoker  
differ in subgroups, then it may not be appropriate to 
analyze the pooled data and report just one number.

Note, the four assumptions lead to a binomial distribution. 
One does not need any additional ‘graphical check’ like the 
QQ-plot for the normal model.
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Properties of the binomial distribution

If x follows a binomial distribution with sample size n and 

probability π,

then ( ) ( ) ( )( )!
Pr ; , 1 0,1, ,

! !
n kkn

x k n k n
k n k

π π π −= = − =
−

…

The expected number of x:

and the standard deviation ( )1n π π⋅ ⋅ −

n π⋅

Note, if we know π (and the sample size), then we also 
know the standard deviation!

Estimation
The unknown probability of Yes is estimated by:
- the observed relative frequency of Yes.

ˆ
x

n
π =
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Approximate inference in the binomial distribution

There are many approximate formulas for the standard error 

(and test) for the estimate of π in the binomial distribution. 

The most simple is:

Based on that one can construct an approx. 95% CI:

( ) ( )1ˆ ˆ ˆe ns π π π= ⋅ −

The hypothesis that π has a specific value: π = π0
is tested as usually:

( )1.96ˆ ˆseπ π± ⋅

( )
0ˆ

ˆobs se
z

π π
π

−=

and a approx. p-value as ( )2 Pr standard normal obsz⋅ ≥

In Stata this is done by prtestprtestprtestprtest.
The approximations work ok if the expected number is 
larger than 10.
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Exact inference in the binomial distribution - CI

The limits of the exact 95%-confidence intervals for π is not 
based on a standard error, but on solving the equations:

( )
( )

Pr ; 0.025

Pr ; 0.025

Lowe

Upper

obs

obs

rx x

x x

π

π

π

π

≥ = =

≤ = =

In Stata 14: “ci prop variable”, -13: “ci variable, bin
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Exact inference in the binomial distribution - test

The hypothesis : π = π0

The p-value can be defined in different ways –
in Stata (bitest ) it is done as follows:

The p-value is the probability of observing an event, which is 
just as or less probable than, what you have seen, given the 
hypothesis is true, i.e.

( )
( ) ( )0 0Pr ; , Pr ,

0
;

Pr ; ,

p-val

obsx n x n

x n
π π

π
≤

=

∑
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Smoking among 15-16 year olds in Birmingham

Here n =1000and xobs =123 giving :

0
123

ˆ .123 12.3%
1000

π = = =

Exact 95% CI: (0.1033;  0.1450)
Approx 95% CI: (0.1026;  0.1434)

The hypothesis: π = 13% = 0.13 has the:

Exact p-value: p=0.541
Approx p-value: p=0.510
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Stata: One sample from a binomial

. use smokers, clear

. * The exact confidence interval

. ci prop smoker

. * In Stata 13 and prior: ci smoker,bin
-- Binomial Exact --

Variable |   Obs     Mean    Std. Err.    [95% Conf. Interval]
---------+-----------------------------------------------------

smoker |  1000     .123    .0103861     .1032769    .1449722

. * Testing the hypothesis pi=0.13  -exact p-value

. bitest smoker=0.13
Variable |    N  Observed k  Expected k  Assumed p   Observed p
---------+-----------------------------------------------------

smoker | 1000       123         130      0.13000      0.12300

Pr(k >= 123)             = 0.757843  (one-sided test)
Pr(k <= 123)             = 0.272961  (one-sided test)
Pr(k <= 123 or k >= 137) = 0.541104  (two-sided test)

Exact analysis (more commands in: Day4.do).
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Methods: 
Data was analyzed using exact methods for binomial data. 
Estimates are given with 95% confidence intervals.

Results:
The prevalence of smoking was 12.3(10.3;14.5)%. This was not 
statistically different (p=54%) from the target of 13.0%.

Conclusion:
Between 10 and 15 percent of the 15-16 year olds in 
Birmingham are smoking. The present study is not large enough 
to determine whether or not the smoking habits in Birmingham 
satisfies the goal that less than thirteen percent should 
smoke.

Smoking among 15-16 year olds in Birmingham
- formulations
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Two independent binomial samples
Example 16.1: Influenza vaccination

Question: What is the effect of vaccination against influenza? 

Design/Data: A placebo controlled randomized trial of 
influenza vaccine on 460 adults. Follow-up period three months 
after inclusion.

Data:

First impression - the vaccine reduces the risk!

Yes No Total % Yes
Vaccine 20 220 240 8.33%

Placebo 80 140 220 36.36%

Total 100 360 460 21.74%

Influenza
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Two independent binomial samples

Statistical model:
Two independent samples from two binomials: 

( )
( )

, 240

, 220

V V V V

P P P P

x b n n

x b n n

π
π

=

=

∼

∼

That is, within the two groups the design should fulfill the 
four assumptions on page 4.

Furthermore, the two samples should be independent.

Under this model the two probabilities are, of course, 
estimated by:

ˆ ˆ  and  V P
V P

V P

x x

n n
π π= =

and the two estimates are independent.
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Two independent binomial samples

Statistical model:
Two independent samples from two binomials .

This trial will only make sense if the persons in the study are 
exposed to influenza virus!

Effect of the vaccine will depend on the size of this 
exposure.

Data might not be independent as the exposure to the virus 
might cluster. 
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Two independent binomial samples

Focus is on comparing the two probabilities πV and πP.
This can be done by considering one of three measures of 
association:

( )
( )
1

1

Risk difference:  

Risk ratio:  

Odds ratio:  

V P

V

P

V P

P V

RD

RR

OR

π π
π
π
π π
π π

= −

=

⋅ −
=

⋅ −
Note, the hypothesis of no difference between the groups:

πV = πP is equivalent to, RD = 0, RR = 1 and OR = 1.

RR’s are often used when studying etiology, RDs when making 
public health statements and ORs in case-control studies or 
when the outcome is rare.
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Two independent binomial samples

Example

π1 = 0.10, π2 = 0.15, RR=1.50
Group 2 has a 50% increase in risk compared to 
group 1.

π1 = 0.10, π2 = 0.60, RD=0.50
Group 2 has a 50% increase in risk compared to 
group 1.

The two statement sounds similar!

Therefore, we could emphasize that the latter is an 
absolute difference, for example by

Group 2 has a 50% point increase in risk compared 
to group 1.
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The Risk Difference 

� ˆ ˆ

Risk difference:  

The estimate:  

V P

V P

RD

RD

π π

π π

= −

= −

�( ) ( ) ( )

( ) ( )

2 2
ˆ ˆ

ˆ ˆ ˆ ˆ1 1

V P

V V V P P P

se RD se se

n n

π π

π π π π

= +

= ⋅ − + ⋅ −

( ) � �( )1.96Approx 95%CI :RD RD se RD± ⋅

It is not possible to make exact inference for RD !

The approximative standard error:
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The Risk Ratio 

� ˆ ˆ

Risk ratio:  

The estimate:

V P

V P

RR

RR

π π

π π

=

=

Inference is made on the log-scale.

The approx. stand. error: �( )( ) 1 1 1 1
ln

V V P P

se RR
x n x n

= − + −

�( ) �( )( ) �( ) �( )
ln( )

ln 1.96 ln ln ;ln

Approx 95%CI  :

lower upper

RR

RR se RR RR RR ± ⋅ =  
 

It is not possible to make exact inference for RR ! 

�( )( ) �( )exp ln ;exp lnApprox 95%CI  :
lower upper

RR RR RR  =   
  

exp
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Why analyze Risk Ratio on a log-scale?

Normality assumption of RR violated on original scale
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Why analyze Risk Ratio on a log-scale?

Normality assumption of RR very good on log-scale
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The Odds Ratio 

( )
( )

� ( )
( )

ˆ ˆ1 1

ˆ ˆ1 1
Odds ratio:  andV P V P

P V P V

OR OR
π π π π
π π π π

⋅ − ⋅ −
= =

⋅ − ⋅ −
Inference is made on the log-scale.

The approx. stand. error:

�( ) �( )( ) �( ) �( )
ln( )

ln 1.96 ln ln ;ln

Approx 95%CI  :

lower upper

OR

OR se OR OR OR ± ⋅ =  
 

It is possible to make exact inference for OR ! see later

�( )( ) �( )exp ln ;exp lnApprox 95%CI  :
lower upper

OR OR OR  =   
  

�( )( ) 1 1 1 1
ln

V V V P P P

se OR
x n x x n x

= + + +
− −

exp
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Changing the event

In the example we considered the risk/probability of getting 
influenza.

We might instead have considered the risk/probability of not
getting influenza.

If we do that then three measures of association will change:

1

not flu flu

not flu flu

not flu
flu

Not a simple relation

RD RD

RR RR

OR
OR

= −
≠ −

=
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Comparing the unexposed to the exposed

In the example we compared the risk of getting influenza 
among vaccinated to that of the placebo-group

We could have compared the placebo-group to the 
vaccinated.

If we did that then the three measures of association would 
change:

1

1

placebo vs vaccine vaccine vs placebo

placebo vs vaccine
vaccine vs placebo

placebo vs vaccine
vaccine vs placebo

RD RD

RR
RR

OR
OR

= −

=

=
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Influenza vaccination - estimates

The risk difference is an additive/absolute measure.

The risk ratio is a multiplicative/relative measure.

estimate

Vaccine influenza 0.0833 0.0516 0.1258 Exact

Placebo influenza 0.3636 0.3000 0.4310 Exact

Risk difference -0.2803 -0.3529 -0.2078 Approx.

Risk ratio 0.2292 0.1455 0.3610 Approx.

Odds ratio 0.1591 0.0933 0.2713 Approx.

95% CI
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2x2 table test of no association

Often one would like to test the hypothesis of no 
difference in the risk in two groups, i.e.:

πV = πP , RD = 0, RR = 1 and OR = 1.

This could be done by using one of the three estimates and 
the standard errors as we have seen before.

If one uses this method, then one should remember that the 
analysis based on the two relative measures RR and OR
should be done on the log scale, see next slide.

The three tests will give almost identical p-values.
If this is not the case, then you have too few data to use any 
of them.
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2x2 table test of no association
based on estimates

�

�( ) ( ) ( )

�( )
�( )( )

( )

�( )
�( )( )

( )

0.0833 1 0.0833 0.3636 1 0.3636

240 220

1 1 1 1
20 240 80 220

1 1 1 1
20 220 80 140

0 0.2803 0

0.2803
7.57

0.0370

ln ln(1) ln 0.2292 0 1.4733
6.35

0.2319ln

ln ln(1) ln 0.1591 0 1.838

ln

RD

RR

OR

RD
z

se RD

RR
z

se RR

OR
z

se OR

− −
+

− + −

+ + +

− − −= =

−= = −

− − −= = = = −

− − −= = = 3
6.75

0.2724
= −

P<0.0001
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2x2 table test of no association
the chi-squared test

Often one would test the hypothesis of no association by the 
chi-squared test.

This test will compare the observed cell counts with the 
expected under the hypothesis

Observed Yes No Total Ecpected Yes No Total

Vacine 20 220 240 Vacine 52.17 187.83 240

Placebo 80 140 220 Placebo 47.83 172.17 220

Total 100 360 460 Total 100 360 460

( )2

2 Observed Expected
X

Expected

−
=∑

Large values are critical. The p-value is found by the χ2

distribution with 1 degree of freedom:  Pr(χ2 (1)  ≥  X2)

X2 = 53.01  p<0.0001 the hypothesis is rejected.
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Stata: Two independent binomial samples 

. use vaccine, clear

. cs influenza vaccine,or woolf
| vaccine               |
|  Exposed   Unexposed  |     Total

---------------+-----------------------+-----------
Cases |       20          80  |       100

Noncases |      220         140  |       360
---------------+-----------------------+-----------

Total |      240         220  |       460
|                       |

Risk | .0833333    .3636364  |  .2173913

|   Point estimate  |  [95% Conf.Interval]
|-------------------+-----------------------

Riskdifference |      -.280303     | -.3528516 -.2077545 
Risk ratio |      .2291667     |  .1454585  .3610472 

Prev.frac. ex. |      .7708333     |  .6389528  .8545415 
Prev.frac. pop |      .4021739     |

Odds ratio |      .1590909     |  .0932823  .2713261 (Woolf)
+-------------------------------------------

chi2(1) =   53.01  Pr>chi2 = 0.0000
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Stata: Two independent binomial samples 

. * Chi- squared test using table

. tab2 vaccine influenza,chi2

-> tabulation of vaccine by influenza  

|       influenza

vaccine |        No        yes |     Total

-----------+----------------------+----------

No |       140         80 |       220 

yes |       220         20 |       240 

-----------+----------------------+----------

Total |       360        100 |       460 

Pearson chi2(1) =  53.0084   Pr = 0.000

* Fisher's exact test (later)
* tab2 vaccine influenza,exact
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The influenza vaccine – RD formulations

Methods: 
The effect of the vaccine is measured as absolute reduction in 
risk compared to the placebo group. A Chi-squared test is used 
to asses the hypothesis of no difference in risk. Estimates are 
given with 95% confidence intervals.

Results:
In the vaccine  group 8.5(5.2;12.6)% acquired influenza 
compared to 36.4(30.0;43.1)% in the placebo group. This 
reduction of 28(21;35)% was statistically significant 
(p<0.0001).

Conclusion:
The vaccine decreases the risk of acquired influenza with 
between 21 and 35 percent points during the influenza season 
in 199 …..
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The influenza vaccine – RR formulations No 1

Methods: 
The effect of the vaccine is measured as relative risk of 
acquiring influenza in the vaccine group compared to the 
placebo group. A Chi-squared test is used to asses the 
hypothesis of no difference in risk. Estimates are given with 
95% confidence intervals.

Results:
In the vaccine  group 8.5(5.2;12.6)% acquired influenza 
compared to 36.4(30.0;43.1)% in the placebo group. This 
relative risk of 0.23(0.14;0.36) was  statistically significant 
(p<0.0001).

Conclusion:
The vaccine reduced the risk of acquired influenza with 
between 64 and 86 percent during the influenza season in 
199… .



28-09-2016 Basic Biostatistics - Day 4 34

The influenza vaccine – RR formulations No 2

Methods: 
The effect of the vaccine is measured as relative risk of 
acquiring influenza in the placebo group compared to the 
vaccine group. A Chi-squared test is used to asses the 
hypothesis of no difference in risk. Estimates are given with 
95% confidence intervals.

Results:
In the placebo group 36.4(30.0;43.1)% acquired influenza 
compared to 8.5(5.2;12.6)% in the vaccine group. This relative 
risk of 4.4(2.8;6.9) was statistically significant (p<0.0001).

Conclusion:
This randomized trial shows that the risk of acquired 
influenza was between 3 and 7 times higher among the non-
vaccinated during the influenza season in 199… ..
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Sample size for the two sample binary data –
testing no difference

The basis for the power considerations are these five 
quantities:

The formulas are complicated - use a computer!

Note you can also base it on π1 and RR, or π1 and OR using:

( )2 1 2
1 11

OR
RR

OR
π π π

π π
= ⋅ =

+ −

1

2

The probability in group one

The probability in group two

The significance level (typically 5%)

The risk of type 2 error = 1-the power

The sample size in each group 

 

 

n

π
π
α
β

=
=

=
=
=
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Consider the planning of a randomized trial comparing a new 
treatment with an old standard.

With the old treatment the one-year mortality is 5%. 
You suspect that the new treatment will reduce this with   
30% that is RR=0.7. 

This corresponds to a one-year mortality of 0.05*0.7=0.035.

How many should you include in each arm, if you want a power 
of 85%?

1 20.05, 0.035, 85%, 5%Powerπ π α= = = =

Using Stata you get that n= 6494 (per group = 3247)

.

Sample size for the two sample binary data –
testing no difference
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Stata: Sample size for the two sample binary data

. * In Stata 13 and later.

. power twoproportions 0.05 0.035, power(0.85)

Performing iteration ...

Estimated sample sizes for a two-sample proportions test
Pearson's chi-squared test 
Ho: p2 = p1  versus  Ha: p2 != p1
Study parameters:

alpha =    0.0500
power =    0.8500
delta =   -0.0150  (difference)

p1 =    0.0500
p2 =    0.0350

Estimated sample sizes:
N =      6494

N per group =      3247
. * In Stata 12, and prior.
. * sampsi 0.05 0.035, power(0.85)
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Exact inference for a two by two table

If you have few observations then the approximate 
methods will not give valid confidence intervals and p-value.

A rule-of-thumb: Few obs. = the smallest expected cell 
counts is ≤ 5. 

It is only possible to find exact confidence intervals for 
the Odds Ratio. The calculation is complicated and we will 
skip them here.

Furthermore, this is only implemented in a few programs (in 
Stata in the “cc” command). 

The exact test for the hypothesis of no association is 
called Fisher’s exact test.
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Fisher’s exact test for a two by two table

The idea behind the test is 
that under the hypothesis 
the 4 patients will be 
randomly divided in 
treatment A and B.

Treatment Yes No Total

A 1 12 13

B 3 9 12

Total 4 21 25

Bleeding complications

Treat, Yes No Total Treat, Yes No Total Treat, Yes No Total

A 0 13 13 A 1 12 13 A 2 11 13

B 4 8 12 B 3 9 12 B 2 10 12

Total 4 21 25 Total 4 21 25 Total 4 21 25

Prob= 0.039 Prob= 0.226 Prob= 0.407

Treat, Yes No Total Treat, Yes No Total

A 3 10 13 A 4 9 13

B 1 11 12 B 0 12 12

Total 4 21 25 Total 4 21 25

Prob= 0.271 Prob= 0.057

Bleeding complicationsBleeding complications

Bleeding complications

Bleeding complications

Bleeding complications

0.039 0.226 0.057 0.322P val− = + + =
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Treatment A vs B – formulations

Methods: 
Chi-squared tests are used to test the hypothesis of no 
association, except when the data are sparse, in which case 
Fisher’s exact test is applied. Estimates are given with 95% 
confidence intervals.

Results:
One in 13 patients in group A and 3 in 12 in group B 
experienced bleeding. The difference was not statistically 
significant (p=32%).

Conclusion:
This study was too small ! …..
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Example: Severe cold – paired binary data

Question: Describe the difference in risk of severe cold 
among 12 and 14 year old boys.

Design: The medical journals for 1319 boys were checked 
for symptoms of severe cold at the age 12 and 14.

Data: Two observations for each boy. Two different 
representations of the data:

age 12 age 14 Count Severe cold Age 14

Yes Yes 212 Age 12 Yes No Total

Yes No 144 Yes 212 144 356

No Yes 256 No 256 707 963

No No 707 Total 468 851 1319

Severe cold at
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Paired binary data – some considerations

The data is the cross classification of 1319 observations.

There are four different possibilities for each child.

Let us introduce some notation: 

Probabilities Age 14

Age 12 Yes No Sum

Yes πYesYes πYesNo πYes*

No πNoYes πNoNo πNo*

Sum π*Yes π*No 1

( )
( )
( ) ( )

Pr

Pr

Pr Pr

YesYes NoYes*Yes

YesYes YesNoYes*

NoYes YesNo

cold at 14

cold at 12

cold at 14 cold at 12

π π π
π π π

π π

= = +
= = +
− = −
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Paired binary data – estimation

A common measure of difference is the risk difference:

There exist several approximate formulas for the standard 
error. Here is one of them:

( ) ( )Pr Pr NoYes YesNocold at 14 cold at 12RD π π= − = −
That is of course estimated as:

� ˆ ˆ
NoYes YesNoNoYes YesNoRD x n x nπ π= − = −

�( ) ( ) �21
ˆ ˆse NoYes YesNon n RD

n
RD π π⋅ + − ⋅=

� 256 1319 144 1319 0.1941 0.1092 0.0849RD = − = − =

�( ) ( ) 21
1319 0.1941 0.1092 1319 0.0849 0.0150

1319
se RD ⋅ + − ⋅ ==

( )0.0849 1.9695% : 0.0150 0.0555;0.1143CI ± ⋅ =
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Paired binary data – The hypothesis of no difference

The hypothesis of the same risk of severe cold is equivalent 
to: ( ) ( )Pr Pr

1

2
YesNo

NoYes YesNo
NoYes YesNo

cold at 12 cold at 14

ππ π
π π

= ⇔

= ⇔ =
+

That is the discordant pairs should be divided fifty-fifty in 
the YesNo and the NoYes cells. 
The test of this is called the McNemar’s test. 
There exists both an exact version based on the binomial 
distribution as well as an approximate one.

Exact test: 144 out of 400=256+144 : pval=0.0001
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Stata: Paired binary data 

. use cold, clear

. ci prop pold14
Binomial Exact 

Variable |   Obs      Mean    Std. Err.   [95% Conf. Interval]

----------+----------------------------------------------------

cold14 |  1319  .3548143    .0131741     .3289622   .3813151

. ci prop cold12
Binomial Exact

Variable |   Obs      Mean    Std. Err.   [95% Conf. Interval]

----------+----------------------------------------------------

cold12 |  1319  .2699014    .0122228     .2461006    .294732

* In Stata 13 and prior: "ci cold14, bin" and "ci cold12, bin".

We first compute the prevalences to help interpret the 
paired binary analysis output on the next overhead:



28-09-2016 Basic Biostatistics - Day 4 46

Stata: Paired binary data 

. mcc cold14 cold12

| Controls               |
Cases            |   Exposed   Unexposed  |      Total
-----------------+------------------------+------------

Exposed |       212         256  |        468
Unexposed |       144         707  |        851

-----------------+------------------------+------------
Total |       356         963  |       1319

McNemar's chi2(1) =     31.36    Prob > chi2 = 0.0000
Exact McNemar significance probability       = 0.0000
Proportion with factor

Cases       .3548143
Controls    .2699014     [95% Conf. Interval]

--------- --------------------
difference  .0849128      .0547911   .1150345
ratio       1.314607      1.194231   1.447116
rel. diff.  .1163032      .0780381   .1545684
odds ratio  1.777778      1.443859   2.195911   (exact)
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Severe cold - formulations

Methods: 
The difference in incidence of severe cold at age 14 compared 
to at age 12 was described by a risk difference. The 
hypothesis of no difference in risk was tested by McNemar’s 
test. Estimates are given with 95% confidence intervals.

Results:
The incidence of severe cold was 35.5(31.9;38.1)% at age 14 
and 27.0(26.6;29.5)% at age 12, corresponding to a difference 
in incidence of 8.5(5.5;11.5)%. The difference was highly 
statistically significant (p<0.0001).

Conclusion:
The incidence of severe cold is between 5.5 and 11.5 percent 
points higher at age 14……………..
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There are three ways of specifying the assumptions

1. πYesNo /(πYesNo+πNoYes)  (one sample binary problem)

2. πYesNo and πNoYes

3. π*No, πYes* and Corr(Y1,Y2)

where Corr(Y1,Y2) is the Pearson correlation (see Day 5) 
between the paired binary data for one individual.

Suppose we assume that 

P(cold 12 years)=πYes* =0.30

P(cold 14 years)=π*No =0.40
Corr(Y1,Y2)=0.30

Sample size for paired binary data –
testing no difference
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Stata: Sample size for paired binary data

. power pairedproportions 0.30 0.40 , corr(0.30)

Performing iteration ...

Estimated sample size for a two-sample paired-proportions test

Large-sample McNemar's test

Ho: p+1 = p1+  versus  Ha: p+1 != p1+

Study parameters:

alpha =    0.0500

power =    0.8000

delta =    0.1000  (difference)

p1+ =    0.3000

p+1 =    0.4000

corr =    0.3000

Estimated sample size:

N =       253
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Observed Excepted

Village River Pond Spring Total Village River Pond Spring Total

A 20 18 12 50 A 23.33 16.67 10.00 50

B 32 20 8 60 B 28.00 20.00 12.00 60

C 18 12 10 40 C 18.67 13.33 8.00 40

Total 70 50 30 150 Total 70 50 30 150

Water sourceWater source

Test of no association in a RxC table

Example 17.3: 150 households cross tabulated into village 
and water source.
Hypothesis: No association between village and water source.

( )2

2 Observed Expected
X

Expected

−
=∑

Large values are critical.
The p-value is found in a χ2 distribution with df=(R-1)x( C-1). 

( )2 3.54, 3 1 (3 1) 4, 0.47 X df p= = − ⋅ − = =
The hypothesis of no association cannot be rejected!
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Test of no association in a RxC table

Comments:
The test is valid no matter whether data is collected:

with only the total number known in advance
- 150 households cross tabulated 

with the row sums fixed
– the number of households in each village is fixed

with the column sums fixed
– the number of households at each water source is fixed

The expected number in each cell should be above five –
otherwise one should use a test like Fisher’s exact test.

It is only a test! 
If the hypothesis is rejected then look at the discrepancies  
between the observed and the expected cell counts to 
understand why!
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Test of no association in a RxC table 
Ordered categories

Example 17.4: 583 women cross tabulated into age at 
menarche and triceps skinfold group.

Hypothesis: Age at menarche and size of triceps skinfold.

Note, the triceps skinfold groups are ordered and if one 
expects that deviations from the hypothesis will follow this 
ordering, then one should apply some kind of test for trend.

There exists several of these. 
One is based on Spearman’s rank correlation, see next week.

Age at

menarche Small Intermediate Large Total

<12 15 29 36 80

12+ 156 197 150 503

Total 171 226 186 583

Percentage 9% 13% 19% 14%

Triceps skinfold group -0.12

0.0035

Spearman's rank corr.

p

=
=

The hypothesis is rejected.
Skinfold decrease with age 
at menarche.
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Stata: Test of no association - ordered categories

. use triceps,clear

. spearman age triceps

Number of obs =     583

Spearman's rho =      -0.1209

Test of Ho: age and triceps are independent

Prob > |t| =       0.0035
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Comments to Spearman’s rank correlation test:
The test is valid no matter whether data is collected:

with only the total number known in advance
with the row sums fixed
with the column sums fixed

The test will work even on data with sparse cells.

To make sense both the columns and rows should be ordered 
or binary.

There are several other “tests for trend in RxC tables” -
these will typically give comparable p-values.

If the hypothesis is rejected then look at the discrepancies  
between the observed and the expected cell counts to 
understand why!

Test of no association in a RxC table 
Ordered categories


