

Ph.d. course in Basic Biostatistics - Day 1
 Erik Parner, Department of Biostatistics, Aarhus University©

Structure of the course

Introduction: An example of possible time trend.

Statistical inference - the components

Estimation

Confidence intervals

Statistics test and p-value

The normal (Gaussian) distribution

Prediction intervals

Statistical models

Model validation

Analysis of continuous data - one sample

20-09-2016

Basic Biostatistics - Day 1

1

The structure of the course

The course will consider statistical analysis of different type of data in different settings:

Data to analyse	Type of analysis	Unpaired/Paired	Type	Day
Continuous	One sample mean	Irrelevant	Parametric	Day 1
			Nonparametric	Day 3
	Two sample mean	Non-paired	Parametric	Day 2
			Nonparametric	Day 2
		Paired	Parametric	Day 3
			Nonparametric	Day 3
	Regression	Non-paired	Parametric	Day 5
	Several means	Non-paired	Parametric	Day 6
Binary	One sample mean	Irrelevant	Parametric	Day 4
	Two sample mean	Non-paired	Parametric	Day 4
		Paired	Parametric	Day 4
		Regression	Non-paired	Parametric
Time to event	One sample: Cumulative risk	Irrelevant	Nonparametric	Day 8
	Regression: Rate/hazard ratio	Non-paired	Semi-parametric	Day 8

The document "Overview.pdf" gives more details.

20-09-2016

Basic Biostatistics - Day 1

2

Practical things

3 hours lecture and 3 hours exercise.

All analysis presented in the lecture at Day 1 are given in the Stata do-file "Day1.do", ect.

Standard analysis and formulation of the topic at Day 1 is given in the pdf-file: Standard1-1.pdf, ect.

Exercises in "Grupperum" in the Victor Albeck building.

Form groups of size 4-5.

Use the paper bin to indicate you need help.

Check your solution with the teacher!

Solutions to exercises day 1 is given in the Stata do-file "Exercise1.do" and possible supplementary pdf-files.

Name tags are given here.

Coffee will be served (approx. 9.30 am and 2 pm).

20-09-2016

Basic Biostatistics - Day 1

3

Practical things

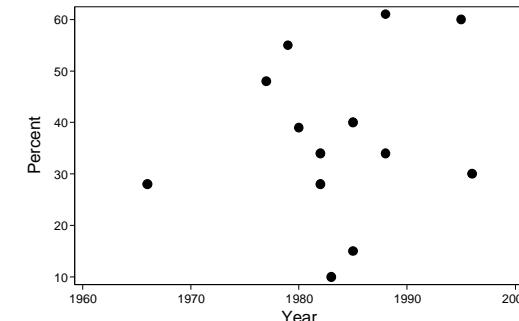
An exam is given at the last Thursday, and a solution should be handed in 3 weeks after.

Statistical advice on you own data: <http://bias.au.dk/>

4

An example of possible time trend

A table from Altman (1998)

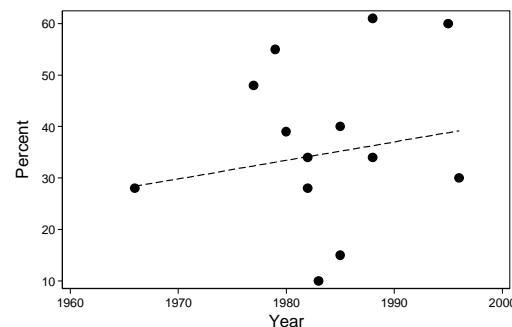

Year sampled		No obs.	No clustre	Percent
1966	Schor ⁴	295	10	28
1977	Gore ⁵	77	1	48
1979	White ⁶	139	1	55
1980	Glantz ⁷	79	2	39
1982	Felson ⁸	74	1	34
1982	MacArthur ⁹	114	1	28
1983	Tyson ¹⁰	86	4	10
1985	Avram ¹¹	243	2	15
1985	Thorn ¹²	120	4	< 40
1988	Murray ¹³	28	1	61
1988	Morris ¹⁴	103	1	34
1995	McGuigan ¹⁵	164	1	60
1996	Welch ¹⁶	145	1	30

Any trend in the proportions?

Basic Biostatistics - Day 1

5

Let's make a graph, ignoring for the moment the different sample size and clusters:



Any trend in the proportions?

Basic Biostatistics - Day 1

6

A fitted line is added taking the the different sample size into account:

A slight increasing trend, however not statistical significant.
So what is the statistical problem here?

20-09-2016

Basic Biostatistics - Day 1

7

More informations:

Table I. Summary of some reviews of the quality of statistics in medical journals, showing the percentage of 'acceptable' papers (of those using statistics)

Year published	First author	Number of papers	Number of Journals	% papers acceptable
1966	Schor ⁴	295	10	28
1977	Gore ⁵	77	1	48
1979	White ⁶	139	1	55
1980	Glantz ⁷	79	2	39
1982	Felson ⁸	74	1	34
1982	MacArthur ⁹	114	1	28
1983	Tyson ¹⁰	86	4	10
1985	Avram ¹¹	243	2	15
1985	Thorn ¹²	120	4	< 40
1988	Murray ¹³	28	1	61
1988	Morris ¹⁴	103	1	34
1995	McGuigan ¹⁵	164	1	60
1996	Welch ¹⁶	145	1	30

Altman (1998). Statistical reviewing in medical journals. *Statist. Med.* 17, 2661–2674.

Basic Biostatistics - Day 1

8

The main problem in the non-acceptable papers is that the statistical model does not correspond to the type and sampling of the data.

20-09-2016

Basic Biostatistics - Day 1

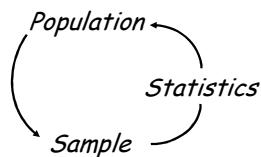
9

One sample, continuous outcome

Suppose our scientific interest is

1. to **estimate** the expected (mean) BMI for 40-year old women.
2. to see if this mean could be 24.5 kg/m^2 .

We collect data on Body Mass Index for a random sample of eighty-five 40-year old women:


25.7	23.0	22.9	22.1	23.4	28.3	21.2	19.3	18.2
21.5	30.6	24.5	28.1	24.4	22.3	27.9	16.9	28.6
27.2	21.1	18.8	31.0	31.5	17.3	26.5	20.3	27.8
31.7	23.3	29.9	24.6	22.1	25.7	26.1	28.0	27.2
26.9	27.1	27.1	23.5	21.5	24.2	22.8	28.8	27.4
26.1	28.9	25.7	27.1	27.1	28.0	30.4	22.1	
25.7	25.5	31.0	21.7	27.2	18.6	23.4	23.7	
25.5	18.3	22.4	28.3	26.6	28.4	24.9	26.1	
23.6	21.0	30.8	27.7	26.0	19.5	27.5	21.8	
20.8	29.3	23.6	28.3	23.1	20.6	24.1	25.6	

20-09-2016

Basic Biostatistics - Day 1

10

What can we say about the population of 40- year old women?

Note that : "the mean BMI for 40-year old women" in the population is an **unknown quantity** - let us call it μ !

The purpose of the study is to **estimate** μ .

That is, to come up with a **relevant guess**, based on the data we have collected.

20-09-2016

Basic Biostatistics - Day 1

11

Under certain **assumptions** (we will **return to these later**) the best estimate is the sample average:

$$\hat{\mu} = \bar{x} = \frac{1}{85}(x_1 + x_2 + \dots + x_{85}) = 24.99$$

^ : indicates that this is a (data-based) estimate

To avoid formulas that become very wide we will use the notation:

$$\bar{x} = \frac{1}{85} \sum_{i=1}^{85} x_i = \frac{1}{85}(x_1 + x_2 + \dots + x_{85})$$

A **statistical model** is a set of assumptions about the sampling of the data and its variation.

Often the statistical analysis starts by a description of the data to find an appropriate statistical model.

20-09-2016

Basic Biostatistics - Day 1

12

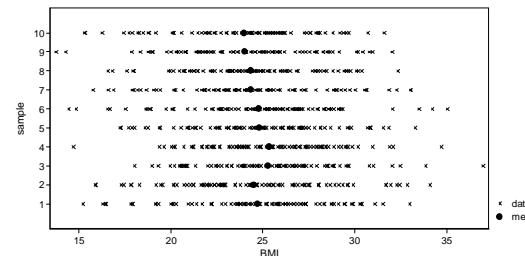
Properties of the mean estimate

$$\hat{\mu} = \bar{x} = \frac{1}{85} \sum_{i=1}^{85} x_i = 24.99$$

The statistical analysis depends on properties of the estimate.

Note, the estimate **depends on the sampled data**.

We would get another estimate, if we had sampled some other women!


20-09-2016

Basic Biostatistics - Day 1

13

Properties of the mean estimate

If we repeated sampling 10 studies of 85 observations we obtain:

Thus

- The estimate is a **random quantity**.
- The variation of the estimate is much smaller than the variation of the individual observations.

20-09-2016

Basic Biostatistics - Day 1

14

Properties of the mean estimate

$$\hat{\mu} = \bar{x} = \frac{1}{85} \sum_{i=1}^{85} x_i = 24.99$$

One usually quantifies the variation/uncertainty of the estimates by the **standard error**.

The **precise formula** for the standard error depends on the **assumptions/model**.

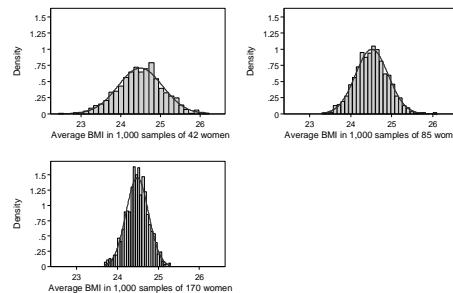
The estimate it is most often found by using a **computer program**.

In the special case of a random sample from the **normal distribution** we have:

$$\text{sem} = \text{se}(\hat{\mu}) = \text{sd} / \sqrt{n}$$

$$= 3.58 / \sqrt{85} = 0.388$$

sem is short for **standard error of the mean**


20-09-2016

Basic Biostatistics - Day 1

15

Properties of the mean estimate

If we repeated sampling 1000 studies of 42, 85 and 170 observations we obtain:

Note

- The variation of the estimate becomes smaller as the sample size (42, 85 and 170) increase.
- The distribution of the estimates is symmetric.

20-09-2016

Basic Biostatistics - Day 1

16

The Confidence Interval

$$\text{sem} = \text{se}(\hat{\mu}) = \text{sd}/\sqrt{n}$$

From the formula we see, that the standard error decreases as the sample size increases - as \sqrt{n} .

Based on the estimate and the standard error we can construct a **95% Confidence Interval** - here the "large sample version":

$$95\% - CI(\mu) : \hat{\mu} \pm 1.96 \cdot \text{se}(\hat{\mu})$$

$$\begin{aligned} 95\% - CI(\mu) &: 24.99 \pm 1.96 \cdot 0.388 \\ &= 24.99 \pm 0.760 \\ &= (24.23; 25.75) \end{aligned}$$

20-09-2016


Basic Biostatistics - Day 1

17

The Confidence Interval

$$95\% - CI(\mu) : (24.23; 25.75)$$

Because the confidence interval depends on the data - it will vary from sample to sample:

The central property of a 95% confidence interval:
95% of the 95% confidence intervals will contain the true, but unknown, value of μ .

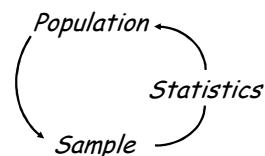
20-09-2016

Basic Biostatistics - Day 1

18

Purpose 1: the conclusion

Mean BMI: $24.99 (24.23; 25.75) \text{ kg/m}^2$


Based on the data our best guess is that the mean BMI for 40-year old women is: 24.99 kg/m^2 .

But it might be as low as 24.23 kg/m^2 or as high as 25.75 kg/m^2 .

Note, as 24.5 kg/m^2 is in the confidence interval, we cannot reject, that the mean BMI is 24.5 kg/m^2 !

That is, the confidence interval also answers **purpose 2!**

The confidence interval quantifies information about the population:

20-09-2016

Basic Biostatistics - Day 1

19

Another way to answer purpose 2 is to **test** the hypothesis that the mean BMI is 24.5 kg/m^2 , i.e. to test:

$$\text{Hypothesis: } \mu = 24.5$$

This is a statistical test. The argument is somewhat more involved.

A statistical test - the basic version

We have observed: $\mu = 24.99$ $se(\mu) = 0.388$

We want to test the hypothesis: $\mu = \mu_0 = 24.5$

The basic idea of a statistical test is to **compare** the **observed** with, what we **expect**, if the hypothesis is true - taking the **precision** of the observed into account:

$$z = \frac{\text{observed} - \text{expected}}{\text{standard error}} = \frac{\mu - \mu_0}{se(\mu)}$$

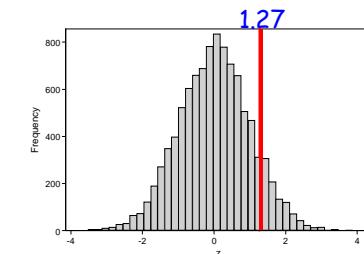
Here we get: $z = \frac{24.99 - 24.50}{0.388} = 1.27$

Again this quantity, z , depends on the sample, i.e. it is random.

20-09-2016

Basic Biostatistics - Day 1

21

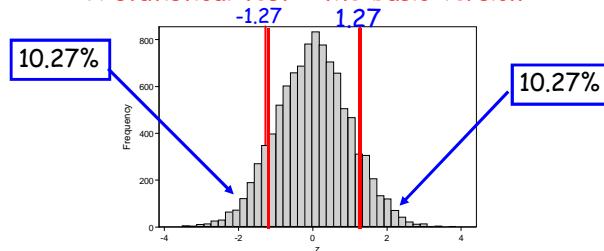

A statistical test - the basic version

$\mu = 24.99$ $se(\mu) = 0.388$ Hypothesis: $\mu = \mu_0 = 24.5$

$$z_{obs} = (24.99 - 24.50) / 0.388 = 1.27$$

If the hypothesis is true, then z follows a standard normal distribution (A result based on mathematical theory).

Numerically large values of z are critical for the hypothesis!



20-09-2016

Basic Biostatistics - Day 1

22

A statistical test - the basic version

The **p-value** = the probability of observing data at least as critical as what we have seen - given the hypothesis is true!

$$p \approx 2 \cdot 10.27\% = 20.54\%$$

Conclusion: Given the hypothesis is true, then there is a 21% chance of observing something as or more critical.

20-09-2016

Basic Biostatistics - Day 1

23

Interpretation of the p-value

The **p-value** = the probability of observing data at least as critical as what we have seen - given the hypothesis is true!

A **small p-value**, e.g. $p=0.1\%$, implies that it is virtually impossible to observe the data we actually observed, if the hypothesis is true.

So we conclude that the hypothesis cannot be true - we **reject the hypothesis**.

If we do not reject the hypothesis, then we **might accept it**!

Note, a 'large' p-value is **not evidence**, that the hypothesis is true.

It only indicates that there is little evidence against it!

Maybe because we have little information
- **check the confidence interval!**

20-09-2016

Basic Biostatistics - Day 1

24

A statistical test - p-values and significance levels

The **p-value** = the probability of observing data at least as critical as what we have seen - given the hypothesis is true!

Usually, we will **reject the hypothesis** if the p-value is below a pre-specified value, the **significance level** (α).

Traditionally, one uses a **5% significance level**.

That is, we reject the hypothesis, if we - **given the hypothesis is true** - only had a 5% chance of observing data as extreme as the data we actually observed.

The significance level is equal to the risk of making a **Type 1 error** - reject a hypothesis given it is true.

20-09-2016

Basic Biostatistics - Day 1

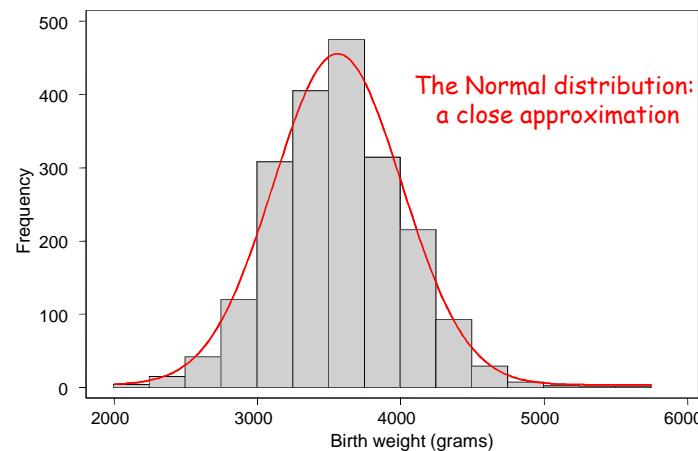
25

The Normal (Gaussian) distribution

A central distribution due to two reasons:

- Many types of **data** are **almost** normally distributed (Maybe after a transformation).
- Many (more!) **estimates** are **almost** normally distributed, if they are based on a large number of observations (Maybe after a transformation).

Nothing is exactly normally distributed, but it is very often a real good approximation

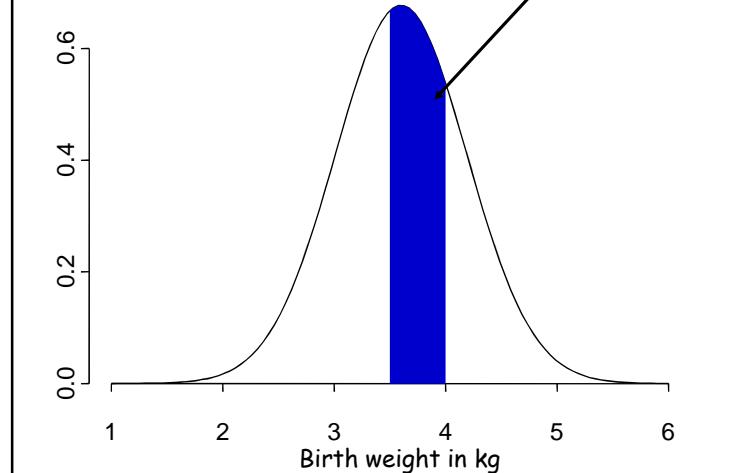

Relative quantities like **Odds Ratio**, **Relative Risk** or **Rate Ratio** should be analysed on **log-scale** (ln).

20-09-2016

Basic Biostatistics - Day 1

26

Birth weight of 2031 children



20-09-2016

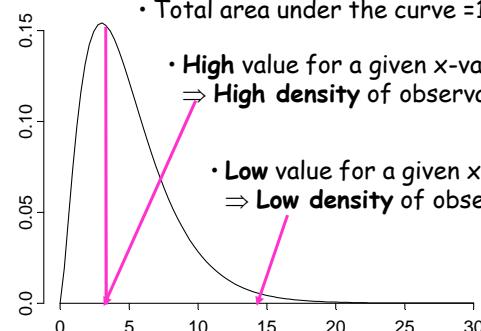
Basic Biostatistics - Day 1

27

$\Pr(3.5kg < \text{Birth weight} < 4.0kg)$

20-09-2016

Basic Biostatistics - Day 1

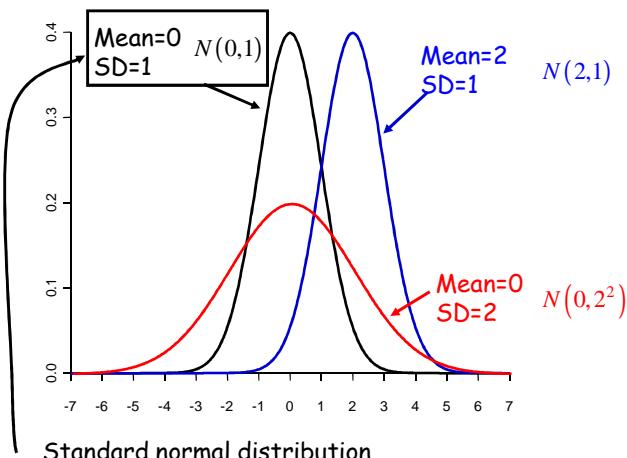

28

The density function:

- The probability of an observation in an interval = area under the curve.

- Total area under the curve = 1.

- High value for a given x -value
 \Rightarrow High density of observations close to x .
- Low value for a given x -value
 \Rightarrow Low density of observations close to x .

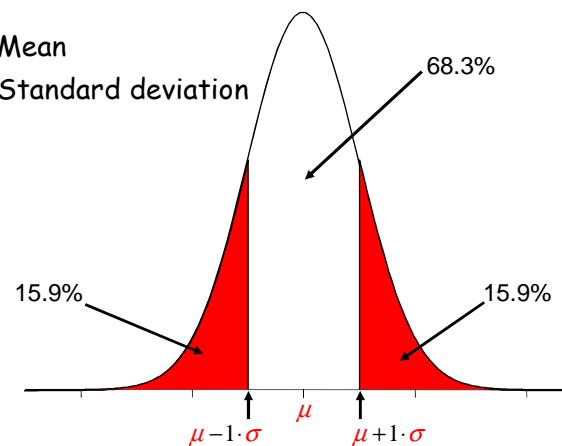


20-09-2016

Basic Biostatistics - Day 1

29

Different normal distributions:

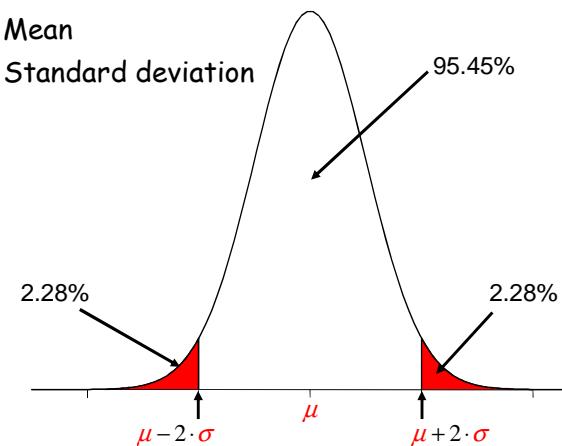


20-09-2016

Basic Biostatistics - Day 1

30

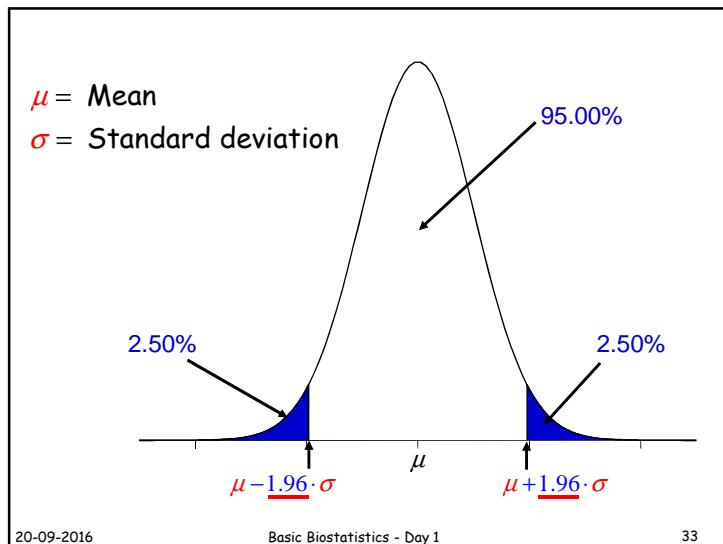
How to understand the standard deviation (SD)?


 μ = Mean σ = Standard deviation

20-09-2016

Basic Biostatistics - Day 1

31


How to understand the standard deviation (SD)?

 μ = Mean σ = Standard deviation

20-09-2016

Basic Biostatistics - Day 1

32

Prediction interval (reference range)
A **95% Prediction Interval** (not a confidence interval!) is a interval that will contain 95% of the observations from a given population.

We saw that, if the data follows a normal distribution, then:
 $\mu \pm 1.96 \cdot \sigma$

will contain 95% of the observations, i.e. it is a **95%-PI**

If we want to base it on data, we have: $\bar{x} \pm 1.96 \cdot \text{sd}$

Here we get 95%PI: $24.99 \text{ kg/m}^2 \pm 1.96 \cdot 3.58 \text{ kg/m}^2$
 $= (17.97; 32.01) \text{ kg/m}^2$

That is, 95% of the women in a comparable population will have a BMI between 18 and 32 kg/m^2 .
2.5% below 18 kg/m^2 and 2.5% above 32 kg/m^2 ,
if the data follow a normal distribution.

20-09-2016 Basic Biostatistics - Day 1 34

Statistical models

All results on the previous pages are based on a **statistical model**.

A statistical model is, like all other models, an **approximation** - that is a simplified description of the **real world**.

The **validity of the conclusions** depends on whether or not the model describes the important features of the process that generate the data.

As a consequence, **checking** the appropriateness of the underlying **assumptions** is an important part of the statistical analysis!

In the analysis of the BMI data, we have assumed that the data was a **random sample from a normal distribution**.

20-09-2016

Basic Biostatistics - Day 1

35

A random sample from a normal distribution. The three assumptions

1. The observations are **independent** (knowing one observation will not alter the distribution of the others)
2. The observations come from the **same distribution**, e.g. they all have the same mean and variance.
3. This distribution is a **normal distribution** with unknown **mean**, μ , and **standard deviation**, σ . $N(\mu, \sigma^2)$

20-09-2016

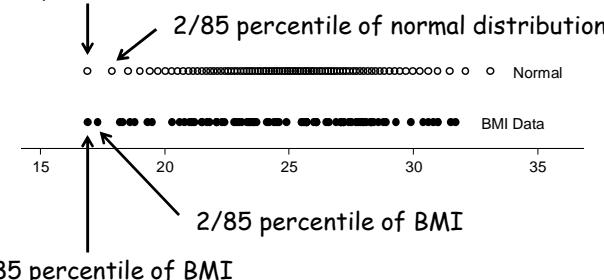
Basic Biostatistics - Day 1

36

A random sample from a normal distribution Checking the assumptions

1. Most often **independence** can only be checked by going through the **design** - **how was the data collected?**
The assumption is violated if data/observational units **cluster**: some of the women are relatives, some are measured with one weight and some with another.
2. The **same distribution**: Do we have independent repetitions of the same "experiment"?
If the data is collected over time, then one could plot the data as function of time.
3. Is the distribution **approximately normal**.
Here one should make a **histogram** and a **Q-Q plot** of the data.

20-09-2016

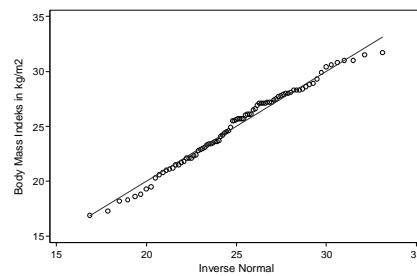

Basic Biostatistics - Day 1

37

QQ plots

A QQ plots evaluate if the data follows approximately a normal distribution by comparing the percentiles of the data to the percentiles of a normal distribution with the same mean and standard deviation.

1/85 percentile of normal distribution


20-09-2016

Basic Biostatistics - Day 1

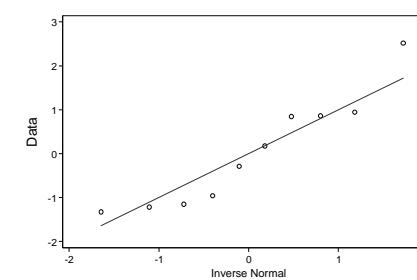
38

QQ plots

It is easier to evaluate if we plot the percentiles of the data to the percentiles of the normal distribution.

This is the QQ plot.

The points should be approximately on the identity line.
We conclude that BMI follows approximately a normal distribution.

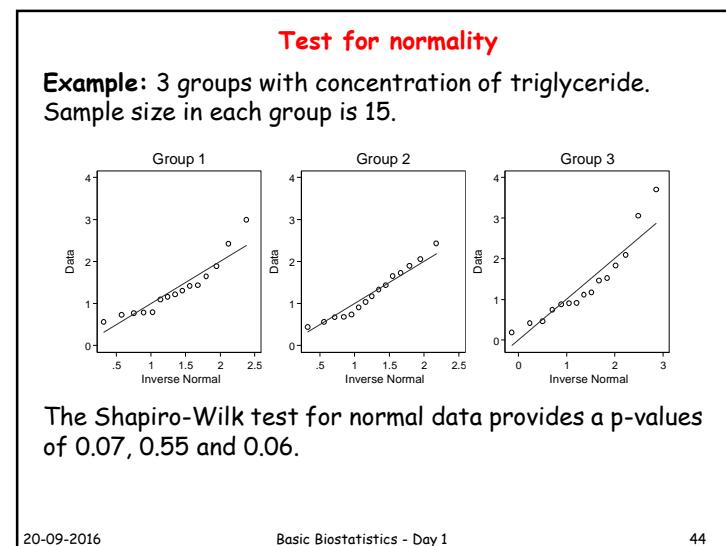
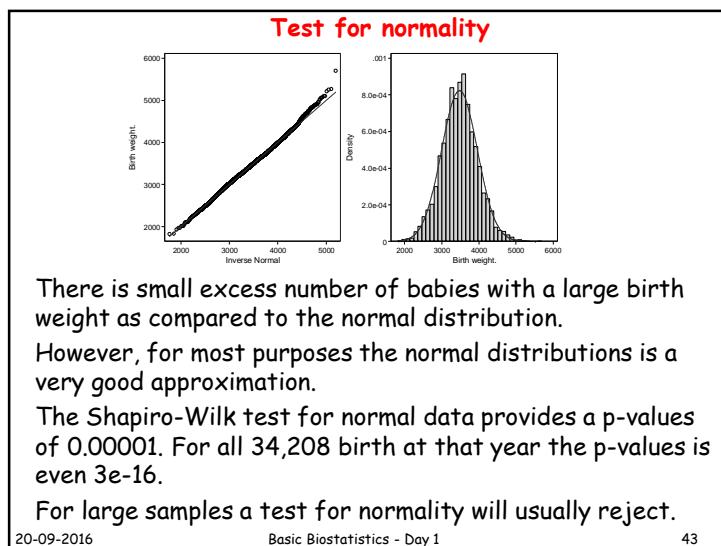
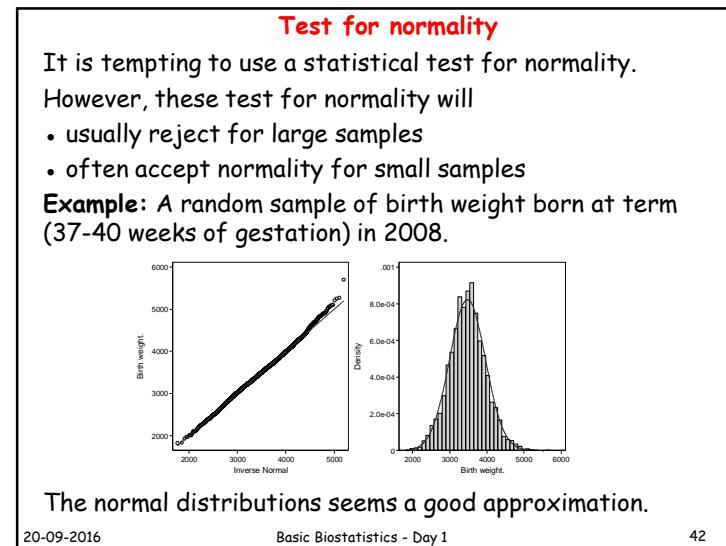
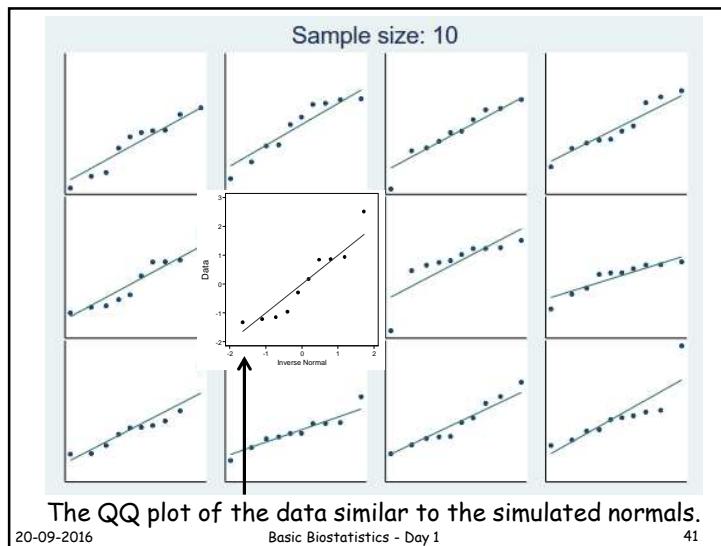

20-09-2016

Basic Biostatistics - Day 1

39

QQ plot: The QQcatalog

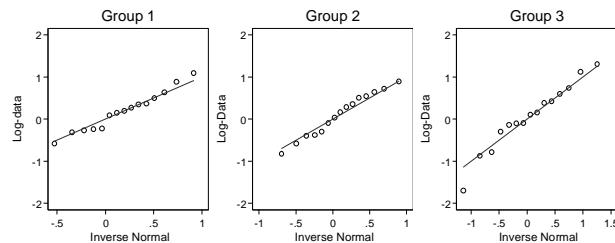
For small sample sizes it may be less easy to evaluate. An example with 10 observations:

Experience may be obtained by comparing your QQ-plots to simulated QQ plots of similar sample size in the QQcatalog.pdf.

20-09-2016

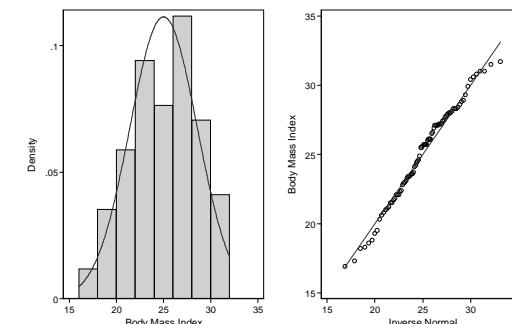
Basic Biostatistics - Day 1


40

Test for normality

Concentration measurements are often analyzed on the log-scale.

The log-transformed QQ plots are a bit nicer.


For small samples a test for normality may have limited power.

20-09-2016

Basic Biostatistics - Day 1

45

A random sample from a normal distribution Histogram and Q-Q plot

If the data follows a normal distribution, then points in the Q-Q plot (right, which we most often use) would lie close to a straight line - it looks okay here!

20-09-2016

Basic Biostatistics - Day 1

46

Summary: A random sample from a normal distribution Estimation

The model contains **two unknown parameters**:
the **mean**, μ , and the **standard deviation**, σ !

Under the model they are estimated by:

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \text{ and } \hat{\sigma} = \text{sd} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}$$

That is the **average** (the observed mean) and the **observed standard deviation**.

An **approximate confidence interval** for μ is given by:

$$95\% - CI(\mu) : \hat{\mu} \pm 1.96 \cdot \text{se}(\hat{\mu})$$

$\text{se}(\hat{\mu}) = \text{sem} = \text{sd}/\sqrt{n}$ is the standard error of the mean

20-09-2016

Basic Biostatistics - Day 1

47

A random sample from a normal distribution Approximate inference

If one have more than **sixty** observations from a normal distribution one can rely on **approximate** methods

$$95\% - CI(\mu) : \hat{\mu} \pm 1.96 \cdot \text{se}(\hat{\mu})$$

$\text{se}(\hat{\mu}) = \text{sem} = \text{sd}/\sqrt{n}$ is the standard error of the mean

The test of the hypothesis: $\mu = \mu_0$ is based on

$$z_{\text{obs}} = \frac{\hat{\mu} - \mu_0}{\text{se}(\hat{\mu})}$$

and the p-value is given as $2 \cdot \Pr(\text{standard normal} \geq |z_{\text{obs}}|)$

This is, however, not the method that is implemented in standard statistical packages.

20-09-2016

Basic Biostatistics - Day 1

48

A random sample from a normal distribution Exact inference

Under the normal model one can make **exact** inference using the t-distribution:

$$95\% - CI(\mu) : \mu \pm t_{0.975} \cdot se(\mu)$$

Where $t_{0.975}$ is the upper 97.5-percentile in a t-distribution with $n-1$ **degrees of freedom**, $df=n-1$.

The test of the hypothesis: $\mu = \mu_0$ is based on $z_{obs} = \frac{\mu - \mu_0}{se(\mu)}$

and the p-value is given as

$$2 \cdot \Pr(\text{t-distribution with } df = (n-1) \geq |z_{obs}|)$$

Nowadays this is done by computer!

20-09-2016

Basic Biostatistics - Day 1

49

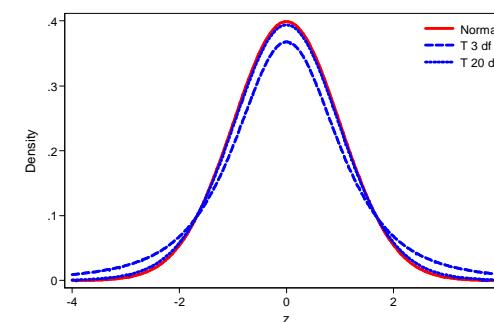
The BMI example Exact inference

Using a computer we get: $95\% - CI(\mu) : (24.22; 25.76)$

Hypothesis: $\mu = \mu_0 = 24.5$ p-value=20.89%

The approximate results we found before are very close to these exact - the sample is "large".

20-09-2016


Basic Biostatistics - Day 1

51

The t distributions

The 97.5- percentiles in some t-distributions:

d.f.	1	2	5	10	20	60	84	∞
$t_{0.975}$	12.71	4.30	2.57	2.23	2.09	2.00	1.99	1.96

20-09-2016

Basic Biostatistics - Day 1

50

Summary: A random sample from a normal distribution Confidence interval of σ

$$\hat{\sigma} = \text{sd} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}$$

The precision of the estimate of σ is generally given by the degrees of freedom, df , which in general is the number of observations minus the number of unknown parameters describing the mean. Here $df=n-1$.

Finding the 95% CI for σ is a bit complicated, as it involves the upper and lower 2.5 percentile in a chi-squared distribution with df degrees of freedom:

$$\hat{\sigma} \cdot \sqrt{\frac{df}{\chi^2_{df}(0.975)}} \leq \sigma \leq \hat{\sigma} \cdot \sqrt{\frac{df}{\chi^2_{df}(0.025)}}$$

20-09-2016

Basic Biostatistics - Day 1

52

Stata: QQ-plot, centile, CI and t-test

The main commands use today (more details can be found in the file day1.do).

```
. use bmiwomen.dta, clear
( data on body Mass Index for 40 year old women)
. qnorm bmi
. * Confidence interval for the mean
. ci bmi
Variable |   obs      Mean   Std. Err.   [95% Conf. Interval]
bmi |     85  24.99176  .3883103  24.21957  25.76396
```

20-09-2016

Basic Biostatistics - Day 1

53

```
. * Student's t-test for the hypothesis: H_0: Mean BMI = 24.5
. ttest bmi=24.5
One-sample t test
variable |   obs      Mean   Std.Err. Std.Dev. [95% Conf. Interval]
bmi |     85  24.99176  .3883103  3.580044  24.21957  25.76396
mean = mean(bmi)                                t =    1.2664
Ho: mean = 24.5                                degrees of freedom =  84
Ha: mean < 24.5      mean != 24.5      Ha: mean > 24.5
Pr(T < t) = 0.8956    Pr(|T| > |t|) = 0.2089  Pr(T > t) = 0.1044
. * Prediction interval
. centile bmi, centile(2.5 97.5) meansd
-- Normal, based on mean and std. dev.--
variable |   obs   Percentile   Centile   [95% Conf. Interval]
bmi |     85        2.5    17.97501  16.66924  19.28077
|          97.5    32.00852  30.70275  33.31429
```

20-09-2016

Basic Biostatistics - Day 1

54

```
. * Confidence interval of sigma.
. display 3.580044*sqrt(84/invchi2(84,0.975))
3.1109505
. display 3.580044*sqrt(84/invchi2(84,0.025))
4.2170376
* In Stata 14 the syntax is: ci variance bmi, sd
```

20-09-2016

Basic Biostatistics - Day 1

55

Stata: Creating a log-file

Log files are documentation of the statistical analyses.
Here is a simple, but typical example.

```
*****
. * File: BMI analysis.do
. * Task: Compare the mean BMI to a hypothesis of 24.5.
. * Author: Erik Parner. 14-1-2015.
*****
. * Change the directory.
. cd "D:\Teaching\BasicBiostat\Examples\BMI"
D:\Teaching\BasicBiostat\Examples\BMI
.
. * Close the log file, if there is one open.
. capture log close
.
. * Start a new log file.
. log using "BMI analysis.log" ,text replace
*** output omitted ***
. * Read the data.
. use bmiwomen.dta,clear
( data on body Mass Index for 40 year old women)
```

20-09-2016

Basic Biostatistics - Day 1

56

```

. * Checking if the data follows a normal distribution using
. * a QQ plot.
. qnorm bmi

. * Student's t-test for the hypothesis: Mean BMI = 24.5
. ttest bmi=24.5

One-sample t test
-----
Variable| obs      Mean Std.Err. Std.Dev. [95%Conf.Interval]
-----+
bmi | 85  24.99176  .3883103  3.580044  24.21957  25.76396
-----
*** output omitted ***
. * Close the log file.
. log close
*** output omitted ***

```

The video "Structure of the do file" gives more details.

20-09-2016

Basic Biostatistics - Day 1

57

The BMI example - formulation in Methods and Results

Methods:

Data was analyzed as one sample from a normal distribution based on the **Students t**. The assumption of normality was checked by a Q-Q plot.

Results:

The mean BMI was **25.0 kg/m²** with a 95%-CI (**24.2; 25.8**) kg/m². The mean BMI was not statistically different from **24.5 kg/m²** (p=**21%**).

Alternatively, with more focus on the expected **24.5 kg/m²**

The average BMI was **25.0 kg/m²**.

This was **0.5** (95%-CI: **-0.3; 1.3**) kg/m² more than the expected **24.5 kg/m²**. This difference was not statistically significant (p=**21%**).

20-09-2016

Basic Biostatistics - Day 1

58

The BMI example - conclusion

The conclusions will **always depend on setting**.

- What was **the purpose** of the study?
Are we interested in **clinically relevant** effects/differences or on smaller differences that could have implications for the **etiology**?
- How large effects/differences are relevant?
- What is known a priory?

Here you, the researcher, come in.....

20-09-2016

Basic Biostatistics - Day 1

59